

Event-triggered Model Predictive Control for Autonomous Vehicle with Rear Steering

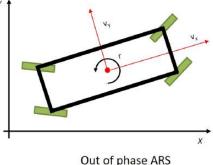
Shan Huang and Jun Chen, Oakland University

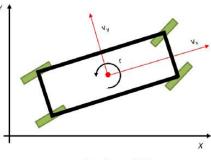
Presentation Outline

- Background and Motivation
- Problem Formulation
- Event-triggered Model Predictive Control
- Numerical Simulation Results
- Conclusion

Background

- In steer-by-wire system, the mechanical connection between the steering wheel and road wheels is replaced by electronics, algorithms, and actuators.
- The use of electronic control system allows much more precise control.
- It also allows active steering control where the driver's command may be intelligently altered.
- The disadvantage includes potential delay in control systems and the lack of "road feel".




Rear steering capability has been recently introduced by OEM to increase vehicle agility and stability.

• For passive rear steering, the rear wheel is programmed to be

Background

- Out of phase with the front wheel in low speed to increase agility
- In phase with the front wheel in high speed to increase stability.
- The ratio between rear wheel angles and front wheel angles is fixed.

In phase ARS

Background

- For active rear steering, the rear wheel angles are computed in real-time.
- Active rear steering can be used for human driver or autonomous vehicles (AV).
- For its real-time optimal control, model predictive control (MPC) has been investigated.
- However, as active rear steering increase the vehicle flexibility, the number of optimization variables is also increased.
- And the high computational requirement of MPC prevents its usage for massive production.

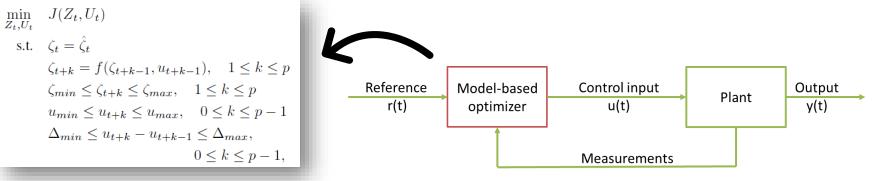
Past

Future

r(t)

prediction y

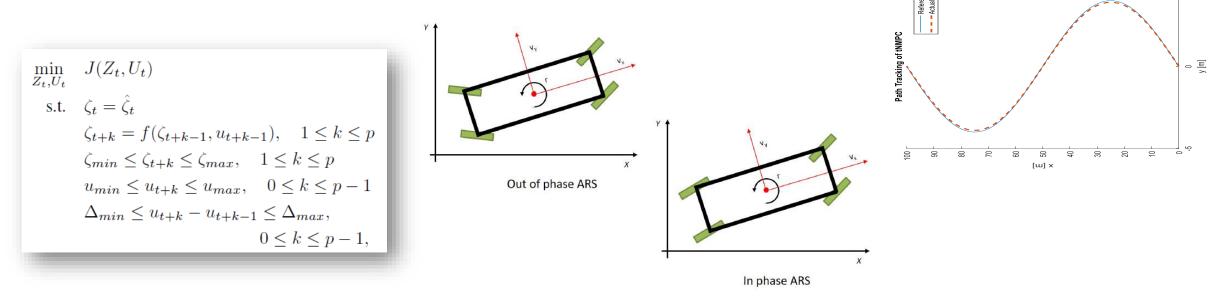
6

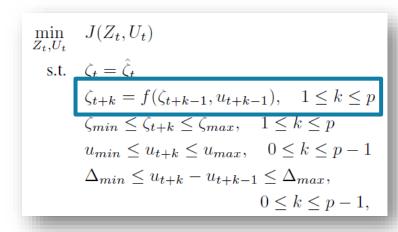

Optimal control input uk

Prediction horizon

MPC Formulation

Model Predictive Control (MPC)

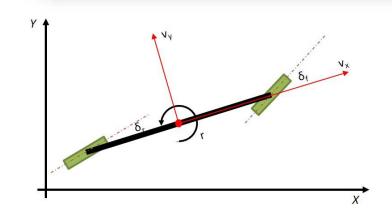

- solves a model-based constrained optimization in real-time,
- finds the optimal control sequence over a finite horizon,
- applies only the first optimal control action to actuators,
- repeats above optimization process is at new time step with new measurement.


MPC Formulation

- We consider the autonomous vehicle (AV) path following problem.
- The vehicle is assumed to have four-wheel-steering capability.
- MPC is to optimize both front and rear steering angles.

MPC Formulation: Bicycle Model

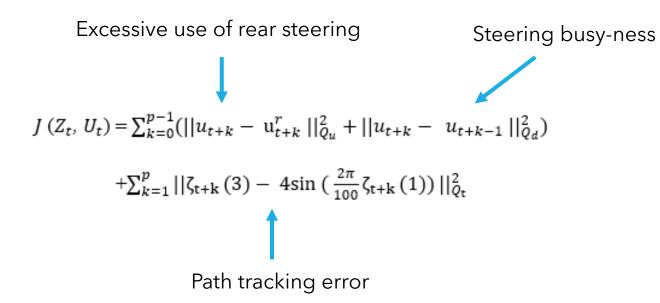
- To reduce computation, we use bicycle
- 6 degree-of-freedom planar model with longitudinal, lateral and yaw dynamics,
- In addition, linear tire force model, aero dynamics and wheel dynamics are also included.
 - Load transfer is ignored as we only considered x-y planar model.

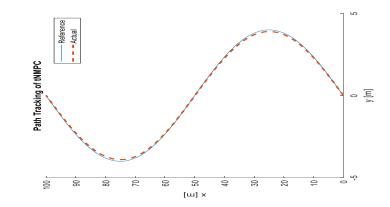


MPC Formulation: Bicycle Model

- x, y, and ψ are in global coordinate.
- v_x , v_y , and r are in vehicle coordinate.
- δ_f and δ_r are front and rear steering angles.

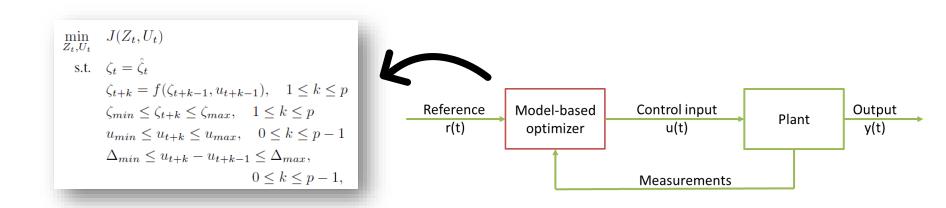
Longitudinal position Longitudinal velocity Lateral position Lateral velocity Heading angle Yaw rate $\begin{aligned} \dot{x} &= v_x \cos \psi - v_y \sin \psi \\ \dot{v}_x &= v_y r + \frac{2}{m} \sum_{i=f,r} F_{x,i} - g \sin \sigma_g - \frac{1}{m} F_a \\ \dot{y} &= v_x \sin \psi + v_y \cos \psi \\ \dot{v}_y &= -v_x r + \frac{2}{m} \sum_{i=f,r} F_{y,i} \\ \dot{\psi} &= r \\ \dot{r} &= \frac{1}{I} \left(2L_{xf} F_{y,f} - 2L_{xr} F_{y,r} \right), \end{aligned}$


\min_{Z_t, U_t}	$J(Z_t, U_t)$
	$\zeta_t = \hat{\zeta}_t$
	$\begin{aligned} \zeta_{t+k} &= f(\zeta_{t+k-1}, u_{t+k-1}), 1 \le k \le p \\ \zeta_{min} &\le \zeta_{t+k} \le \zeta_{max}, 1 \le k \le p \end{aligned}$
	$\zeta_{min} \le \zeta_{t+k} \le \zeta_{max}, 1 \le k \le p$
	$u_{\min} \le u_{t+k} \le u_{\max}, 0 \le k \le p-1$
	$\Delta_{\min} \le u_{t+k} - u_{t+k-1} \le \Delta_{\max},$
	$0 \le k \le p - 1,$

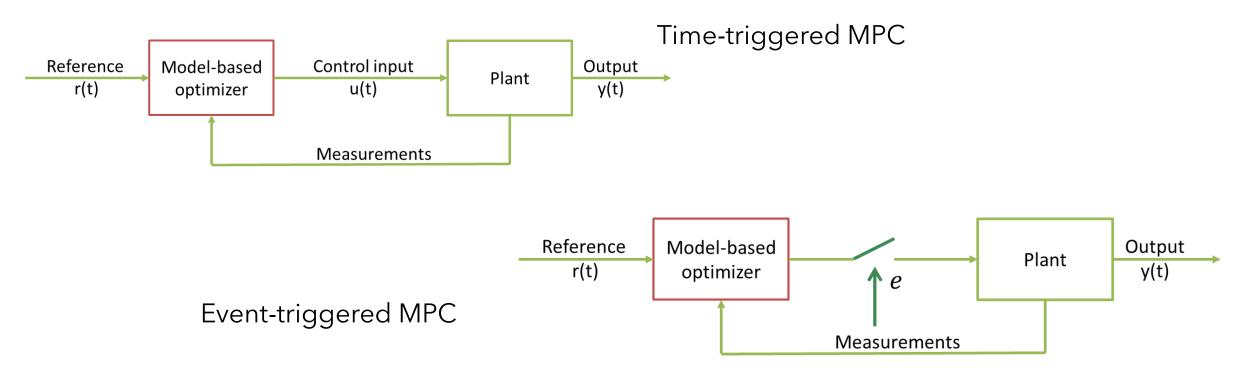


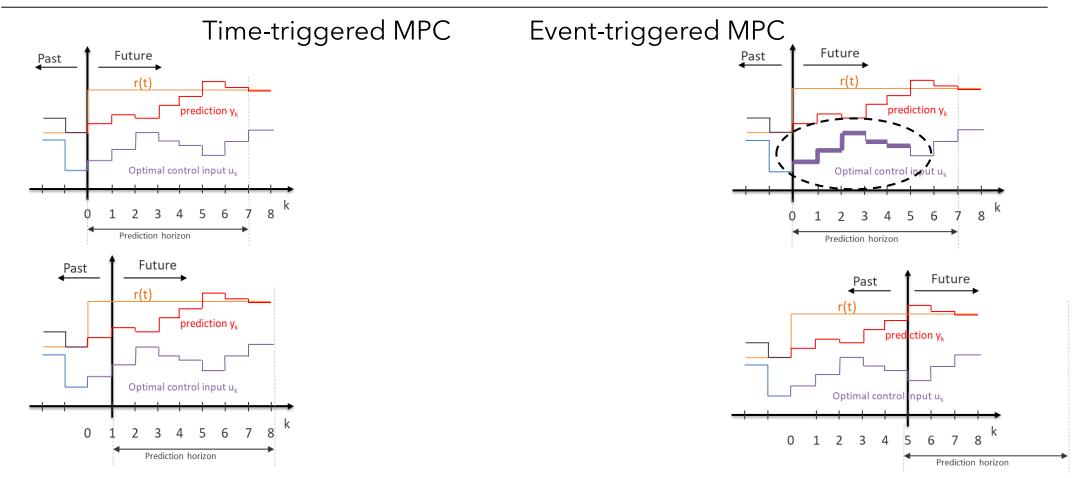
MPC Formulation: Cost Function

• As demonstrate, the vehicle is to follow a sinusoidal path.


$$\begin{split} \min_{Z_t, U_t} & J(Z_t, U_t) \\ \text{s.t.} & \zeta_t = \hat{\zeta}_t \\ & \zeta_{t+k} = f(\zeta_{t+k-1}, u_{t+k-1}), \quad 1 \leq k \leq p \\ & \zeta_{min} \leq \zeta_{t+k} \leq \zeta_{max}, \quad 1 \leq k \leq p \\ & u_{min} \leq u_{t+k} \leq u_{max}, \quad 0 \leq k \leq p-1 \\ & \Delta_{min} \leq u_{t+k} - u_{t+k-1} \leq \Delta_{max}, \\ & 0 \leq k \leq p-1, \end{split}$$

MPC Challenge


- For conventional MPC, the optimization is repeated at every sampling time step.
- For steering application, a sampling time of 1 second is often adopted.
- The nonlinear MPC formulated above requires high computing power that may not be available in production grade ECU.


Event-Triggered MPC

 Event-triggered MPC reduces computational requirement by solving optimization problem on demand.

Event-Triggered MPC

Event-Triggered MPC

- Time-triggered MPC solves the optimization at fixed sampling time, implements the first elements of optimal control sequence, and abandons the rest.
- Event-triggered MPC solves the optimization only if a triggering event is on, defined as:

 $e = \begin{cases} 1 & \text{if } ||Z_{t_1}(k) - \hat{\zeta}_t||_Q^\infty > \sigma \text{ or } k > k_{max} \\ 0 & \text{Otherwise} \end{cases}$

- In this case, the first elements of optimal control sequence is implemented, and the rest is passed to the next control loop.
- When no triggering event, the previous optimal sequence is shifted to obtain control action

 $u = \begin{cases} \text{Solution of } (2) & \text{if } e = 1\\ U_{t_1}(k+1) & \text{Otherwise} \end{cases}$

Algorithm 1 Event-Triggered NMPC 1: procedure ENMPC($\hat{\zeta}_t, k, U_{t_1}, Z_{t_1}$) $k \leftarrow k + 1;$ 2: $e \leftarrow \text{computing (5)};$ 3: if e = 1 then 4: $k \leftarrow 0$: 5: $(Z_t, U_t) \leftarrow \text{Solving OCP}$ 6: $u \leftarrow U_t(1);$ 7: $U_{t_1} \leftarrow U_t;$ 8: $Z_{t_1} \leftarrow Z_t;$ 9: else 10: $u \leftarrow U_{t_1}(k+1);$ 11: 12: end if return u, k, U_{t_1}, Z_{t_1} 13: 14: end procedure

- Model mismatch is introduced in the simulation environment to test control robustness.
- Time-triggered MPC and event-triggered MPC use different calibration for the cost function.
- Input constraints are used to further reduced the abrupt change of steering angle.

Table 2. Parameters for The Bicycle Model

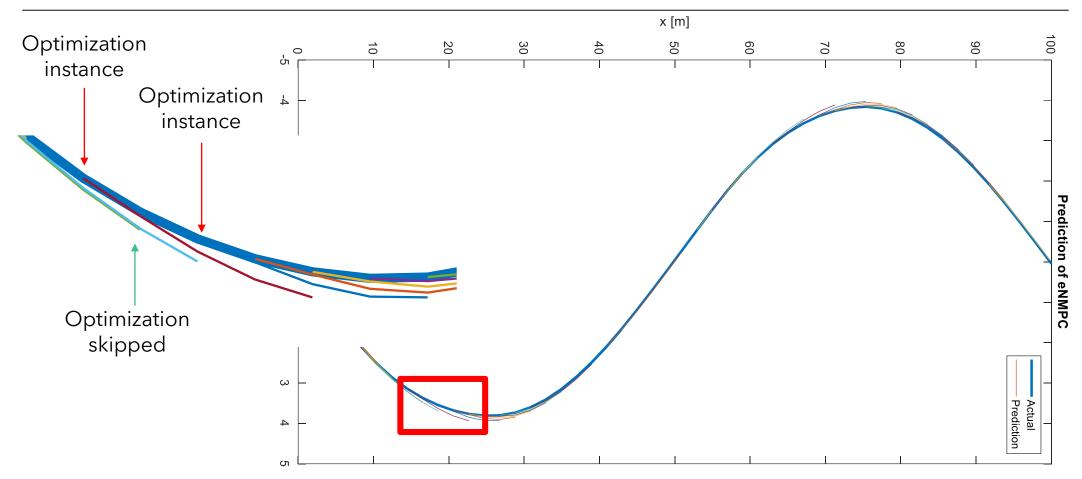
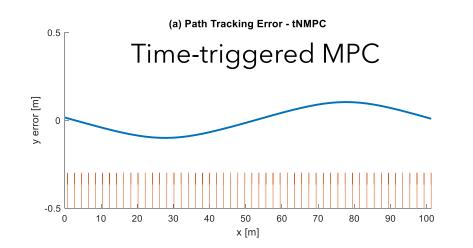
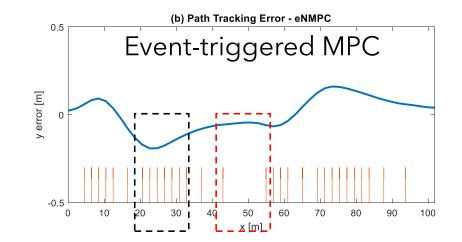
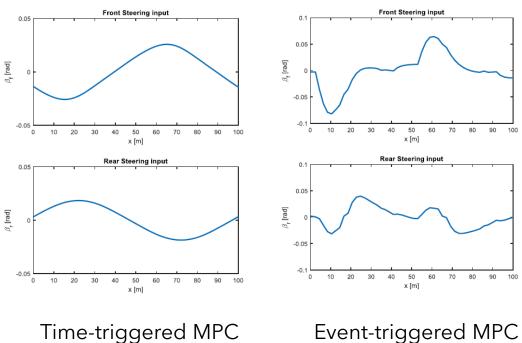

Parameter [Unit]	NMPC	Virtual Vehicle
M [kg]	1500	1425
$L_{xf}[m]$	1.2	1.3
<i>L_{xr}</i> [m]	1.4	1.3
I [kgm ²]	4192	4402
R [m]	0.2159	0.2159
C _i [-]	-4.5837	-4.5837
μ _i [-]	1	0.95

Table 3. MPC Calibrations

Calibration	tNMPC	eNMPC
Qt	20	20
Q _u	[30,0;0,60]	[10,0;0,45]
Q _d	[50,0;0,6.8]	[100,0;0,20]
Q	-	[25 0;0 20]
σ	-	1


 $u_{max} = \begin{bmatrix} 0.54105\\ 0.17453 \end{bmatrix}$ $u_{min} = \begin{bmatrix} -0.54105\\ -0.17453 \end{bmatrix}$ $\Delta_{max} = \begin{bmatrix} 0.034907\\ 0.034907 \end{bmatrix}$ $\Delta_{min} = \begin{bmatrix} -0.034907\\ -0.034907 \end{bmatrix}$




- Event-triggered MPC achieves similar path tracking error compared to conventional time-triggered MPC.
- Event-triggered MPC saves up to 50% computations, significantly relaxing the requirement on ECU computing power.

- Time-triggered MPC always use out-of-phase steering, while event-triggered MPC uses both out-of-phase and in-phase.
- Event-triggered MPC results less smooth control commands.
- Event-triggered MPC relies more on rear steering.
- The impacts on ride comfort deserves future investigation!

Conclusion

- Active rear steering increases the control flexibility, while at the same time requires higher computing power for its real-time optimal control.
- The proposed event-triggered MPC formulation can significantly lower the computing requirement, and maintains comparable control performance.
- As future work, the impact on ride comfort will be investigated, by penalizing large lateral acceleration in the cost function.

Speaker information

Jun Chen, Ph.D., Assistant Professor


Oakland University, Rochester, MI

junchen@okland.edu

Shan Huang, M.S. Student

Oakland University, Rochester, MI

shanhuang@oakland.edu

