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Abstract Unlike information, behaviors cannot be encrypted and may instead be
protected by providing covers that generate indistinguishable observations from
behaviors needed to be kept secret. Such a scheme may still leak information about
secrets due to statistical difference between the occurrence probabilities of the secrets
and their covers. Jensen-Shannon Divergence (JSD) is a possible means of quanti-
fying statistical difference between two distributions and can be used to measure
such information leak as is presented in this chapter. Using JSD, we quantify loss of
secrecy in stochastic partially-observed discrete event systems in two settings: (i) the
centralized setting, corresponding to a single attacker/observer, and (ii) the dis-
tributed collusive setting, corresponding to multiple attackers/observers, exchanging
their observed information. In the centralized case, an observer structure is formed
and used to aide the computation of JSD, in the limit, as the length of observations
approach infinity to quantify the worst case loss of secrecy. In the distributed col-
lusive case, channel models are introduced to extend the system model to capture the
effect of exchange of observations, that allows the JSD computation of the cen-
tralized case to be applied over the extended model to measure the distributed
secrecy loss.
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1 Introduction

Growing progress in information and communication technologies has led to growth
in eavesdropping and tampering of private communication or behaviors. In contrast
to information, behaviors cannot be encrypted, and their secrecy can instead be
attained through introduction of covers that ambiguate secrets in presence of partial
observation. Many techniques for hiding secrets based on ambiguation schemes
have been proposed as, Steganography and Watermarking [5, 16], Network level
Anonymization [18], and Software Obfuscation [9].

Also, various notions of information secrecy have also been explored in litera-
ture. For example [1, 8, 21], examine non-interference, requiring that secrets (pri-
vate variables) do not interfere with or influence the observables (public variables).
Non-interference is a logical notion that can only indicate the presence or the
absence of interference, but is unable to quantify the level of interference. In
contrast, for stochastic systems, the mutual information between the private and
public variables can be used to quantify the level of interference, and hence loss of
secrecy [21]. Mutual information is only an average case measure, and a worst case
measure can also be defined, using for example min-entropy [8]. Extension of the
notion of non-interference over behaviors (sequences) was explored in [22],
requiring that every secret behavior must be masked by a cover behavior so secrets
do not uniquely influence the observations.

For probabilistic systems, mutual information can again be used to quantify the
level of secrecy loss, and as shown in [3, 12], it can be related to a certain
Jensen-Shannon Divergence (JSD) computation, which was first employed in [2] to
measure the disparity between the distributions of a secret versus its cover as a way
to quantify the secrecy. An approximation algorithm for computing an upper bound
of JSD was also provided in [2]. In a similar spirit, Saboori and Hadjicostis [20]
considered mutual information between the secret states and the observed behav-
iors, and required it to be upper bounded. Checking this is undecidable, and Saboori
and Hadjicostis [19] proposed a stronger notion, requiring the probability of
revealing secrets to remain upper bounded at each time step. In contrast, Ss-secrecy
[11] bounds the probability of revealing secrets over the set of all behaviors, as
opposed to for each step. Ss-secrecy can be viewed as a variant of the divergence
used in [2]. More related works on secrecy can be found in a recent survey [13].

In this work, we employ the JSD based measure of secrecy loss, and propose a
method to compute it for stochastic partially-observed discrete event systems
(PODES), under two settings, centralized and distributed. In the centralized setting,
the computation of “limiting” JSD measure, quantifying the worst case statistical
difference that is defined over arbitrary long observation sequences, is presented.
The proposed JSD based quantification for secrecy loss is shown to be equivalent to
the mutual information between the distribution over the observations and that over
the possible status of system execution (whether secret or cover) [3]. In the dis-
tributed collusive setting, there exist multiple observers/attackers that have their
own personal observations, and also collude by exchanging their observations over
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channels, that introduce delays that are bounded. To compute JSD measure in this
setting, we introduce channel models and use those to extend the system model as
in [17], capturing own observations as well as the delayed communicated obser-
vations. The JSD computation approach of the centralized setting is then employed
to the extended model to yield the JSD measure of the distributed collusive setting.
Illustrative examples, including one concerning AES (Advanced Encryption
Standard), are provided to demonstrate the proposed secrecy loss computation
approaches.

2 Notation and Preliminaries

For an event set R; define R :¼ R[feg, where e denotes “no-event”. The set of all
finite length event sequences over R, including e is denoted as R�,
Rþ :¼ R� � feg, and Rn is the set of event sequences of length n 2 N. A trace is a
member of R� and a language is a subset of R�. We use s� t to denote if s 2 R� is a
prefix of t 2 R�, and jsj to denote the length of s or the number of events in s. For
L�R�, its prefix-closure is defined as prðLÞ :¼ fs 2 R�j9t 2 R� : st 2 Lg and L is
said to be prefix-closed (or simply closed) if prðLÞ ¼ L, i.e., whenever L contains a
trace, it also contains all the prefixes of that trace. For s 2 R� and L�R�, Lns :¼
ft 2 R�jst 2 Lg denotes the set of traces in L after s.

Stochastic PODES. We can model a stochastic PODES by a stochastic
automaton G ¼ ðX;R; a; x0Þ, where X is the set of states, R is the finite set of
events, x0 2 X is the initial state, and a : X � R� X ! ½0; 1� is the probability
transition function [10], and 8x 2 X;

P
r2R

P
x02X aðx; r; x0Þ ¼ 1. A non-stochastic

PODES can be modeled as the same 4-tuple, but by replacing the transition function
with a : X � R� X ! f0; 1g, and a non-stochastic DES is deterministic if
8x 2 X;r 2 R;

P
x02X aðx; r; x0Þ 2 f0; 1g. The transition probability function a can

be generalized to a : X � R� � X in a natural way: 8xi; xj 2 X; s 2 R�; r 2 R;
aðxi; sr; xjÞ ¼

P
xk2X aðxi; s; xkÞaðxk; r; xjÞ, and aðxi; e; xjÞ ¼ 1 if xi ¼ xj and 0

otherwise.
Define the language generated byG as LðGÞ :¼ fs 2 R�j9x 2 X; aðx0; s; xÞ[ 0g.

For a given G, a component C ¼ ðXC; aCÞ of G is a “subgraph” of G, i.e., XC�X and
8x; x0 2 XC and r 2 R, aCðx; r; x0Þ ¼ aðx; r; x0Þ whenever the latter is positive, and
aCðx; r; x0Þ ¼ 0 otherwise. C is said to be a strongly connected component (SCC) or
irreducible if 8x; x0 2 XC, 9s 2 R� such that aCðx; s; x0Þ[ 0. A SCC C is said to be
closed if for each x 2 XC,

P
r2R

P
x02XC

aCðx; r; x0Þ ¼ 1. The states which belong to
a closed SCC are recurrent states and the remaining states (that do not belong to any
closed SCC) are transient states. Another way to identify recurrent versus transient
states is to consider the steady-state state distribution p� as the fixed-point of
p� ¼ p�X, where p� is a row-vector with the same size as X, and X is the transition
matrix with i jth entry being the transition probability

P
r2R aði; r; jÞ. (In case X is

periodic with period d 6¼ 1, we consider the set of fixed-points of p� ¼ p�Xd .) Then
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any state i is recurrent if and only if there exists a reachable fixed point p� such that
the ith entry of p� is nonzero. Identifying the set of recurrent states can be done
polynomially, by the algorithm presented in [24].

Information Theoretic Notations. For a probability distribution p over discrete
set A, its entropy is defined as HðpÞ ¼ �P

a2A pðaÞlog pðaÞ. For two probability
distributions p and q over A, their Kullback-Leibler (KL) divergences denoted as

DKLðp; qÞ, is defined as DKLðp; qÞ ¼
P

a2A pðaÞlog pðaÞ
qðaÞ. Given k1 [ 0 and k2 [ 0

satisfying k1þ k2 ¼ 1, the Jensen-Shannon Divergence (JSD) between p and
q under the weights ðk1; k2Þ; is defined as Dðp; qÞ ¼ k1DKLðp; k1pþ
k2qÞþ k2DKLðq; k1pþ k2qÞ, which is equivalent to Dðp; qÞ ¼ Hðk1pþ k2qÞ �
k1HðpÞ � k2HðqÞ (for more details, refer to [6]). For two probability distributions
p over A and q over B, their mutual information is defined as

Iðp; qÞ ¼P
a2A;b2B Prða; bÞlog Prða;bÞ

pðaÞqðbÞ, which can also be equivalently defined as

Iðp; qÞ ¼ HðpÞ � HðpjqÞ, where the conditional entropy HðpjqÞ is given as
HðpjqÞ ¼ �P

a2A pðaÞ
P

b2B PrðbjaÞ logPrðbjaÞ.

3 Illustrative Example: AES Side-Channel Attack

We consider a version of cache side-channel attack that can be used to compromise
AES (Advanced Encryption Standard), adopted from [25]. The difference in access
times of cache hit versus miss may be used to learn the AES key as described
below.

AES is a symmetric crypto-system, which processes data blocks of 16, 24, or 32
bytes, using encryption keys of the same size as data, corresponding to “AES-16”,
“AES-24”, or “AES-32”. In what follows below, we consider AES-16 for illus-
tration purposes. For encryption, the plain-text block is converted into the
cipher-text block, both viewed as 4 × 4 array of bytes, in several rounds. The
intermediate results of rounds are also of same sizes, and are termed “states”. (For
AES-16, the number of rounds Nr equals 10 [7, 15].) For setting up the keys for the
various rounds, a key expansion algorithm is applied to an initial key Kð0Þ, out-
putting a linear array of 4-byte words, of length 4Nr, corresponding to the keys
fKðrÞ; r ¼ 1; . . .;Nrg for the future rounds.

Starting from a 16-byte plain-text P ¼ ðp0; . . .; p15Þ, encryption proceeds by

computing a 16-byte intermediate state xðrÞ ¼ ðxðrÞ0 ; . . .; xðrÞ15 Þ at each round r. The

initial state xð0Þ is computed by xð0Þi ¼ pi 	 ki; i ¼ 0; . . .; 15, and the next Nr � 1
rounds for r ¼ 0; . . .;Nr � 2 are computed as follows:
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ðxðrþ 1Þ
0 ; xðrþ 1Þ

1 ; xðrþ 1Þ
2 ; xðrþ 1Þ

3 Þ  T0½xðrÞ0 � 	 T1½xðrÞ5 � 	 T2½xðrÞ10 � 	 T3½xðrÞ15 � 	 Kðrþ 1Þ
0

ðxðrþ 1Þ
4 ; xðrþ 1Þ

5 ; xðrþ 1Þ
6 ; xðrþ 1Þ

7 Þ  T0½xðrÞ4 � 	 T1½xðrÞ9 � 	 T2½xðrÞ14 � 	 T3½xðrÞ3 � 	 Kðrþ 1Þ
1

ðxðrþ 1Þ
8 ; xðrþ 1Þ

9 ; xðrþ 1Þ
10 ; xðrþ 1Þ

11 Þ  T0½xðrÞ8 � 	 T1½xðrÞ13 � 	 T2½xðrÞ2 � 	 T3½xðrÞ7 � 	 Kðrþ 1Þ
2

ðxðrþ 1Þ
12 ; xðrþ 1Þ

13 ; xðrþ 1Þ
14 ; xðrþ 1Þ

15 Þ  T0½xðrÞ12 � 	 T1½xðrÞ1 � 	 T2½xðrÞ6 � 	 T3½xðrÞ11 � 	 Kðrþ 1Þ
3 ;

ð1Þ

where the notation Tn½m� denotes the index-m entry of table Tn that is used to store
pre-computed transformations of states, involving the operations of substitute-bytes,
shift-rows, and mix-columns. The last round is also computed using (1), except that

tables T0; . . .; T3 are replaced by tables Tð10Þ0 ; . . .; T ð10Þ3 , respectively. (The last round
does not need the mix-columns operation and so uses different tables.)

An attacker may populate a cache line with an initial state xi ¼ pi 	 ki, generated
using a known plain-text pi and a known key ki, i ¼ 0; . . .; 15. When the host
populates the same cache line with another initial state x0i ¼ p0i 	 k0i , using another
plain-text p0i; also known to the attacker, and a key k0i that is unknown to the
attacker, a cache hit, as indicated by a shorter access time, can indicate xi ¼ x0i,
implying pi 	 ki ¼ p0i 	 k0i , from which the attacker can infer the unknown key,
k0i ¼ p0i 	 pi 	 ki. Thus each cache hit, which may be thought of host’s cache line
interfering with the attacker’s cache line, provides an opportunity for an attacker to
infer one byte of the key used by a host.

To provide additional protection against this vulnerability, the system may
introduce random evictions of the cache. Figure 1a, b show the abstracted versions

Fig. 1 a Cache side-channel attack model with no evictions, b cache side-channel attack model
with random evictions, c observer for the cache side-channel attack with random evictions
(reproduced from [3])
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of the two cache architectures, with no protection and with added protection,
respectively, where the models track the status of an individual cache line. (Similar
models track other cache lines.) The 4 states in Fig. 1a are: “A” (occupied by the
attacker and of low confidentiality), “H”, “AH” (occupied, respectively, by the host,
and the attacker while occupied by the host in the previous step, both of high
confidentiality), or “I” (invalid—that has no valid contents from attacker or host,
and also of low confidentiality). If the host holds its own data in cache, its cache
access results in a hit ðHhitÞ, but if the attacker evicts the host’s data in the cache
lines by requesting cache access, it results in a miss ðHmissÞ. The attackers cache hit
and miss, Ahit and Amiss are dually defined. Note that the occurrence of Amiss or Ahit

can be used to infer “H” or “AH” states, using which one byte of the encryption key
can be compromised. However, an attacker can only observe its own cache hits and
misses (i.e., Ahit and Amiss are the only observable events). In Fig. 1b, random cache
eviction is introduced by the system to invalidate the data, denoted by “Inv” event.
This introduces ambiguity in the attacker’s knowledge about the occupancy of the
cache, i.e., when it observes a cache miss, it does not know whether it is due to the
processor’s eviction or due to the host’s cache access. Then, in Fig. 1b, we can
view fH;AHg to be the high confidential or “secret” states whereas fI;A; I 0g to be
the low confidential or “cover” states, which present ambiguity against the “secret”
states.

4 Quantification of Secrecy Loss in Centralized Setting

In this section, we study secrecy quantification in stochastic PODESs in the pres-
ence of a single attacker/observer, having partial observability of system behaviors
for revealing sensitive system behaviors, as introduced below.

Secret/non-Secret Behaviors and Refined System. Certain system behaviors
may be considered sensitive and hence secret, whereas the remaining behaviors act
as covers for the secrets. Letting L ¼ LðGÞ denote the set of all behaviors (traces) of
a stochastic PODES G as introduced in the notation section, suppose K 
 L models
the secret behaviors (also called a specification), while the remaining traces in
L� K act as its cover. K may be modeled by a deterministic acceptor R ¼
ðY ;R; b; y0Þ such that LðRÞ ¼ K. By introducing a dump state D in R, and com-
pleting its transition function, we can obtain R ¼ ðY ;R; b; y0Þ, where Y ¼ Y [D,
and 8�y;�y0 2 Y ; r 2 R,

bð�y; r;�y0Þ :¼ bð�y; r;�y0Þ if ð�y;�y0 2 YÞ ^ ðbð�y; r;�y0Þ[ 0Þ;
1 if ½ð�y ¼ �y0 ¼ DÞ _ ð�y0 ¼ D ^P

y2Y bð�y; r; yÞ ¼ 0Þ�:
�

Then, the system model can be refined with respect to the specification to identify
the secret and cover behaviors as states in the refined system GR ¼ GjjR, and is
given by GR ¼ ðX � Y ;R; c; ðx0; y0ÞÞ, where 8ðx;�yÞ; ðx0;�y0Þ 2 X � Y ; r 2 R,
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cððx;�yÞ; r; ðx0;�y0ÞÞ :¼
aðx; r; x0Þ if½ð�y;�y0 2 Y ^ bð�y; r;�y0Þ[ 0Þ _ ð�y ¼ �y0 ¼ DÞ

_ð�y0 ¼ D ^P
y2Y bð�y; r; yÞ ¼ 0Þ�;

0 otherwise:

8<
:

The events in R executed by the system are observed by an observer (an attacker or
an adversary) through an observation mask M : R! D, where D is the set of
observed symbols, and MðeÞ ¼ e. (M can be extended to R� as follows: MðeÞ ¼ e
and 8s 2 R�; r 2 R;MðsrÞ ¼ MðsÞMðrÞ.) The appendix describes the computation
of an observer transition structure for GR that can be used to track its evolution over
its observed symbols D, and also the associated transition matrices fHðdÞjd 2 Dg.

Jensen-Shannon Divergence Based Secrecy Quantification. The statistical
difference between the conditional distributions of secrets versus covers over the
system observations of a common length, provides a measure of the amount of
secrecy leaked by a system. A possible way of measuring difference between two
distributions is the JSD (Jensen Shannon Divergence) measure. Here we present a
way to compute the JSD measure for stochastic PODESs. The JSD computation can
be carried out over the refined system model following the method introduced in [3,
12], which we summarize here.

Given a length-n observation o 2 Dn, let pnðoÞ denote its probability. Then, since
the occurrences of observations of length n are mutually disjoint,

P
o2Dn pnðoÞ ¼ 1,

i.e., pn is a probability distribution over Dn. Then we can write its entropy as:

HðpnÞ ¼ �
X
o2Dn

pnðoÞ log pnðoÞ ¼ Hðpn�1Þ �
X

o2Dn�1
pn�1ðoÞ

X
d2D

pðdjoÞlog pðdjoÞ:

Observations in Dn can be generated by secrets (behaviors in K) or by covers
(behaviors in L� K), and so we define two more probability distributions over Dn:
probability that an observation o 2 Dn is generated by some secret in K, denoted
psnðoÞ, versus that is generated by some cover in L� K, denoted pcnðoÞ:

psnðoÞ :¼
Prðs 2 K \M�1ðoÞÞ
Prðs 2 K \M�1ðDnÞÞ ; pcnðoÞ :¼

Prðs 2 ðL� KÞ \M�1ðoÞÞ
Prðs 2 ðL� KÞ \M�1ðDnÞÞ :

Further, define ksn :¼ Prðs 2 K \M�1ðDnÞÞ to be the probability of secrets and
kcn :¼ Prðs 2 ðL� KÞ \M�1ðDnÞÞ to be the probability of covers, respectively,
generating length-n observation. Then, it is easy to show that kcn :¼ Prðs 2
ðL� KÞ \M�1ðDnÞÞ for all n 2 N.

The ability of an intruder to identify secret versus cover behaviors based on
observations of length-n, depends on the disparity between the two distributions psn
versus pcn: If p

s
n and pcn are identical, i.e., with “zero disparity”, there is no way to

statistically tell apart secrets from covers, and in that case there is perfect secrecy.
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However, when psn and pcn are different, then one could characterize the ability of an
intruder to discriminate secrets from covers, based on length-n observations, using
the JSD between psn and pcn under the weights ðksn; kcnÞ; denoted Dðpsn; pcnÞ ¼
Hðksnpsnþ kcnp

c
nÞ � ksnHðpsnÞ � kcnHðpcnÞ.

The following theorem from [3] shows that the JSD measure is indeed a useful
measure of information revealed, as it equals the mutual information between the
observations pn and the status (whether secret or cover) of system executions. This
status can be captured by a bi-valued random variable Kn, defined for each n 2 N,
such that PrðKn ¼ sÞ ¼ ksn and PrðKn ¼ cÞ ¼ kcn.

Theorem 1 ([3]). The JSD between psn and pcn equals the mutual information
between Kn and pn, i.e.,

Dðpsn; pcnÞ ¼ IðKn; pnÞ:

An intruder is likely to discriminate more if he/she observes for a longer period,
and accordingly, our goal is to evaluate the worst-case loss of secrecy as obtain in
the limit: limn!1Dðpsn; pcnÞ. This worst-case JSD provides an upper bound to the
amount of information leaked about secrets.

In order to compute JSD, we need to first compute the state-distribution of the
observer, following each observation. Each observation o 2 D� results in a condi-
tional state distribution pðoÞ, which can be computed recursively as follows: for any

o 2 D�; d 2 D: pðeÞ ¼ p0 and pðodÞ ¼ pðoÞ�HðdÞ
jjpðoÞ�HðdÞjj [4], where p0 is the initial state

distribution, whereas the computation of transition matrix HðdÞ is given in the
appendix. Let P denote the set of all such conditional state distributions, and for
each p 2 P and n 2 N, denote PnðpÞ ¼ Prðo 2 Dn : pðoÞ ¼ pÞ, which is the
probability that the set of all observations of length-n, upon which the conditional
state distribution is p. For a state distribution p, define the following notations:

ksjp :¼
X
d2D

pHðdÞIs; kcjp :¼
X
d2D

pHðdÞIc

psjpðdÞ :¼ pHðdÞIs

ksjp
; pcjpðdÞ :¼ pHðdÞIc

kcjp
;

where Is and Ic denote indicator column vectors of same size as number of states,
with binary entries to identify the secret versus cover states (states reached by traces
in K vs. L� K). Then, as shown in Lemma 4 of [3],

Dðpsn; pcnÞ ¼ Hðfksn; kcngÞþ
X
p2P

Pn�1ðpÞ �Hðfksjp; kcjpgÞþDðpsjp; pcjpÞ
h i

: ð2Þ

In the limit when n!1, if the distribution Pnð�Þ over P converges to P�ð�Þ, then
limn!1Dðpsn; pcnÞ exists. See for example [14] for a condition under which such a
convergence is guaranteed.
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For an observer Obs, the computation of limn!1Dðpsn; pcnÞ using (2), requires the
computation of limn!1Pn�1ðpÞ which can be accomplished with the help of an
observer introduced in [3, 12]. The observer tracks the possible system states
following each observation, and also allows the computation of the corresponding

state distribution. We let Obs be an observer automaton with state set Z�2X�Y , so
that each node z 2 Z of the observer is a subset of the refined system states, i.e.,
z�ðX; YÞ, and we use jzj to denote the number of system states in z. Obs is
initialized at node z0 ¼ fðx0; y0Þg, and there is a transition labeled with d 2 D from
node z to z0 if and only if every element of z0 is reachable from some elements of
z along a trace that ends in the only observation d, i.e., z0 ¼ fðx0;�y0Þ 2 X � Y :
9ðx;�yÞ 2 z; LGRððx;�yÞ; d; ðx0;�y0ÞÞ 6¼ ;g. Associated with this transition is the tran-
sition probability matrix Hz;d;z0 of size jzj by jz0j (a submatrix of HðdÞ matrix given
in the appendix), whose ijth element is hi;d;j, which is the transition probability from
ith element ðx;�yÞ of z to jth element ðx0;�y0Þ of z0 while producing the observation d,
and equals aðLGRððx;�yÞ; d; ðx0;�y0ÞÞÞ.
Example 1 Consider the system, specification and refinement models of Fig. 2a–c,
respectively, where MðuÞ ¼ e, MðaÞ ¼ a and MðbÞ ¼ b. Then, the corresponding
observer Obs is given in Fig. 2d, where each state in observer is a subset of states of
the refined-system GR, and transitions are on observed events that are labeled by
their occurrence transition probability matrices.

Fig. 2 a System model G, b specification for secrets, R, c refined system model GR, d observer
model (reproduced from [3])
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Associated with each observation o 2 D�, there is a reachable state distribution
pðoÞ as discussed earlier. Let the state z be reached in Obs following observation
o. Then, obviously the number of positive elements of pðoÞ is the same as the
number of elements in z. Then, with a slight abuse of notation, we also use pðoÞ to
denote the row-vector containing only positive elements, and of same size as the
number of elements in the node reached by o in Obs. Then, pðoÞ can also be
recursively computed as follows: for any o 2 D�; d 2 D: pðeÞ ¼ 1 and

pðodÞ ¼ pðoÞ�Hzo ;d;zod
jjpðoÞ�Hzo ;d;zod

jj, where zo and zod are the nodes reached in Obs following

o and od respectively. Then, it can be seen that along any cycle in Obs, the
distribution upon completing the cycle is a function of the distribution upon
entering the cycle, through a sequence of transition matrix-multiplications and their
normalizations. In case of steady-state, those two distributions will be the same,
namely, a fixed point of that function. The following assumption is made as in
[3, 12].

Assumption 1 ([3, 12]) Assume that for any sufficiently long observations o1� o2,
if Obs reaches the same node following o1 and o2, then pðo1Þ ¼ pðo2Þ.

Then as shown in [3, 12], the following procedure computes the worst-case loss
of secrecy limn!1Dðpsn; pcnÞ, under Assumption 1.

1. Construct a
P

z jzj
� �� P

z jzj
� �

square matrix ~H, whose ijth block is the jzij �
jzjj matrix

P
d Hzi;d;zj . Compute the fix point distribution associated with ~H by

solving p� ¼ p� ~H, where p� is a row vector of size
P

z jzj. For each zi 2 Z, let
pðziÞ be the summation of the ith block of p�, then zi is recurrent if pðziÞ[ 0.
Also note that for each z 2 Z, exists a sufficiently large N such that
pðzÞ ¼P

o2DN :o reaches z pNðoÞ. In other words, pðzÞ computes the probability of
all sufficiently long observations that reach the observer state z.

2. Obtain ks as the summation of the elements of p� corresponding to the secret
states, i.e., ks :¼ p�Is, and kc ¼ 1� ks.

3. For a set of recurrent nodes fz1; z2; . . .; zng that form a SCC, define a set of
distributions fp�z1 ; p�z2 ; . . .; p�zng to be a set of steady state distributions if

8i; j; d; such that Hzi;d;zj is defined, the following holds: p�zj ¼
p�ziHzi ;d;zj

jjp�ziHzi ;d;zj jj, i.e., p
�
zi

represents a steady state conditional distribution following a single sufficiently
long observation, that reaches zi. Note that in this case, any other extension of
o that also reaches zi will induce the same conditional distribution p�zi . There
may exist multiple sets of steady state distributions for a given set of recurrent
nodes, denoted say as ffp�z1;k; . . .; p�zn;kg; k 2 Ng. Then, if steady-state always
exists, for any sufficiently long observation that reaches a recurrent node z, there
exists k 2 N such that pðoÞ ¼ p�z;k . Denote pðz; kÞ :¼ Pr½fojo reaches z
and pðoÞ ¼ p�z;kg�.
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4. Let Is
z0 and Ic

z0 be indicator column vectors with binary entries of size jz0j for
identifying within z0, the secret and cover states, respectively. For each steady
state distribution p�z;k of each recurrent node z, define:

ksjp
�
z;k :¼

X
d2D

p�z;kHz;d;z0I
s
z0 ; kcjp

�
z;k :¼

X
d2D

p�z;kHz;d;z0I
c
z0

psjp
�
z;k ðdÞ :¼ p�z;kHz;d;z0I

s
z0

ksjp
�
z;k

; pcjp
�
z;kðdÞ: ¼ p�z;kHz;d;z0I

c
z0

kcjp
�
z;k

:

5. Then, applying (2), the JSD between psn and pcn when n!1 is given by:

lim
n!1Dðpsn; pcnÞ ¼ Hðfks; kcgÞ

þ
X

z:z is recurrent

X
k2N

pðz; kÞ �Hðfksjp�z;k ; kcjp�z;kgÞþDðpsjp�z;k ; pcjp�z;kÞ
h i

:

ð3Þ

(Note when the set of steady state distributions is unique, then in that case,
k ¼ 1 and we have: pðz; kÞ ¼ pðzÞ in (3) above.)

Example 2 We revisit Example 1. Then based on Obs of Fig. 2d, the following
computation illustrates the steps of JSD computation.

1.
P

z jzj ¼ 8 and so ~H is a 8 × 8 matrix with entries:
~Hð1; 2Þ ¼ ~Hð1; 3Þ ¼ ~Hð1; 5Þ ¼ 0:1, ~Hð3; 4Þ ¼ ~Hð3; 7Þ ¼ 0:5, ~Hð1; 4Þ ¼
~Hð2; 6Þ ¼ ~Hð5; 5Þ ¼ 0:7, ~Hð2; 5Þ ¼ ~Hð5; 8Þ ¼ 0:3, ~Hð4; 4Þ ¼ ~Hð6; 6Þ ¼
~Hð7; 7Þ ¼ ~Hð8; 8Þ ¼ 1, and zeros elsewhere. Then, p� ¼
0 0 0 0:75 0 0:07 0:05 0:13½ �. Therefore, pðz0Þ ¼ pðz1Þ ¼ 0,
pðz2Þ ¼ 0:75, pðz3Þ ¼ 0:12 and pðz4Þ ¼ 0:13.

2. Here Is ¼ 1 1 0 0 1 1 0 1½ �T ,
Ic ¼ 0 0 1 1 0 0 1 0½ �T . And so, ks ¼ 0:2 and kc ¼ 0:8.

3. Here z2, z3 and z4 are recurrent nodes, and each of them forms a SCC. We have
p�z2 ¼ ½ 1 0 �, p�z4 ¼ ½1�, and while there are multiple solutions to the equation

set p�z3 ¼
p�z3Hz3 ;a;z3

p�z3Hz3 ;a;z3
and p�z3 ¼

p�z3Hz3 ;b;z3

p�z3Hz3 ;b;z3
, only p�z3 ¼ ½ 0:5833 0:4167 � is reach-

able. Thus, each set of recurrent nodes is a singleton set, and each with a unique
fixed-point distribution. Therefore, for each recurrent node z, pðz; kÞ ¼ pðzÞ.

4. Here Is
z2 ¼ ½ 0 1 �T , Ic

z2 ¼ ½ 1 0 �T , Is
z3 ¼ ½ 1 0 �T , Ic

z3 ¼ ½ 0 1 �T , Is
z4 ¼

½1�T and Ic
z4 ¼ ½0�

T . For z2 and p�z2 , ksjp
�
z2 ¼ 0; kcjp

�
z2 ¼ 1,

pcjp
�
z2 ðbÞ ¼ p�z2Hz2 ;b;z2I

c
z2

k
cjp�z2

¼ 1, psjp
�
z2 ðaÞ ¼ pcjp

�
z2 ðaÞ ¼ psjp

�
z2 ðbÞ ¼ 0. For z3 and p�z3 ,

ksjp
�
z3 ¼ 0:5833; kcjp

�
z3 ¼ 0:4167, psjp

�
z3 ðaÞ ¼ p�z3Hz3 ;a;z3I

s
z3

k
sjp�z3

¼ 0:3, psjp
�
z3 ðbÞ ¼

p�z3Hz3 ;b;z3I
s
z3

k
sjp�z3

¼ 0:7, pcjp
�
z3 ðaÞ ¼ p�z3Hz3 ;a;z3I

c
z3

k
cjp�z3

¼ 0:3, pcjp
�
z3 ðbÞ ¼ p�z3 Hz3 ;b;z3I

c
z3

k
cjp�z3

¼ 0:7.
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For z4 and p�z4 , ksjp
�
z4 ¼ 1; kcjp

�
z4 ¼ 0, psjp

�
z4 ðaÞ ¼ p�z4Hz4 ;a;z4I

s
z4

k
sjp�z4

¼ 0:3,

psjp
�
z4 ðbÞ ¼ p�z4Hz4 ;b;z4I

s
z4

k
sjp�z4

¼ 0:7, pcjp
�
z4 ðaÞ ¼ pcjp

�
z4 ðbÞ ¼ 0.

5. Then, we have

lim
n!1Dðpsn; pcnÞ ¼ Hðfks; kcgÞ

þ
X

z:z is recurrent

pðzÞ½�Hðfksjp�z ; kcjp�z gÞþDðpsjp�z ; pcjp�z Þ�

¼ 0:6043:

Thus, for the system in Fig. 2, the worst case secrecy loss, as measured by the
limiting JSD, is 0.6043.

Application to Cache Side-Channel Attack. For the cache side-channel attack
model of Fig. 1b, the observer model is given in Fig. 1c. It can be computed that
pðz1Þ ¼ 1=6, pðz2Þ ¼ 5=6, p�z1 ¼ ½1�, p�z2 ¼ ½ 0:6 0:4 �, ks ¼ 1=3 and kc ¼ 2=3.
From which, the limiting divergence limn!1 Dðpsn; pcnÞ ¼ 0, meaning that no
amount of secrecy could be leaked through the side-channel if the cache line is
periodically evicted by the processor.

5 Quantification of Distributed Secrecy Loss in Stochastic
PODESs Under Bounded-Delay Communications

We now extend the analysis of previous section to study the secrecy quantification
in stochastic PODESs in the presence of distributed collusive attackers/observers,
each with its own local partial observability, and where the local observers collude
and exchange their observations over communication channels with bounded
delays, to be able to infer more about the system secrets.

d-Delaying&Masking Communication Channel. Figure 3a shows the archi-
tecture of a system with distributed observers/attackers, where it is assumed for
simplicity and without loss of any generality that there are two local observers at
two local sites I ¼ f1; 2g. Each site has three modules [17]: (i) observation mask
Mi : R! Di, where Di is the set of locally observed symbols and MiðeÞ ¼ e (Mi can
be extended to R� as follows: MiðeÞ ¼ e, and 8s 2 R�; r 2 R;MiðsrÞ ¼
MiðsÞMiðrÞ), (ii) communication channels CðdÞij ; j 6¼ i; i; j 2 I; which are lossless and
order-preserving, but introduce delays bounded by d, and (iii) observer Obsi, that
tracks the system “information-state” following the arrival of its local observations
and the communicated observations received from other sites j 2 I; j 6¼ i.

The communication channel is a “delay-block” with d-bounded communication
delay that holds the transmitted information in First-In-First-Out (FIFO) manner for
at most d delay steps. Accordingly, since there can be at most d events executed by
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system G between the transmission and the reception of a message on a channel, the
channel has a maximum queue length dþ 1. Also, the channel queue evolves
whenever a system event occurs, or a transmitted observation is delivered to a
destination observer, where such arrival and departure events occur asyn-
chronously. Accordingly, the d-delaying&masking non-stochastic channel model

from site-i to site-j ði 6¼ j; i; j 2 IÞ is of the form, CðdÞij ¼ ðQðdÞij ;R[Di;b
ðdÞ
ij ; q0Þ, with

the elements as follows. QðdÞij �R� denotes the set of states, which are the event
traces executed in the system but their observed values pending to be delivered at

the destination. For q 2 QðdÞij , it holds that jqj � dþ 1. R[Di is the event set of C
ðdÞ
ij ,

where R is its set of input events and Di is its set of output events. Without loss of
generality, we assume that R\Di ¼ ;, and Di \Dj ¼ ;; ðj 6¼ iÞ (otherwise, we can
simply rename some of the symbols). q0 ¼ e is the initial state, whereas the tran-

sition function bðdÞij is defined as follows:

1. “Arrival” due to an event execution in the system: 8q 2 QðdÞij ; 8r 2 R, if jqj � d,

then bðdÞij ðq; rÞ ¼ qr,

2. “Departure” due to a reception at the destination observer: 8q 2 QðdÞij ; 8di 2 Di,

if MiðheadðqÞÞ ¼ di, then bðdÞij ðq; diÞ ¼ qnheadðqÞ,
3. Undefined, otherwise,

where headðqÞ is the first event in trace q, and the after operator “\” in qnheadðqÞ
returns the trace after removing the initial event headðqÞ from the trace q.

Fig. 3 a Distributed secrecy system architecture to b equivalent system architecture (reproduced
from [17])
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Example 3 A system model G is shown in Fig. 4a, with LðGÞ ¼ aþ [ ba� [ ubaþ .
Suppose the observation masks of two local sites are defined as follows:

• M1ðaÞ ¼ a0; M1ðbÞ ¼ M1ðuÞ ¼ e; and
• M2ðbÞ ¼ b0; M2ðaÞ ¼ M2ðuÞ ¼ e:

For delay d ¼ 0, Fig. 4b shows the model Cð0Þ12 , and for delay d ¼ 1, Fig. 4c, d

show the models Cð1Þ12 and Cð1Þ21 , respectively. If we follow the trace bab0 in Cð1Þ21 , the
states e, b, ba and a are traversed sequentially. This corresponds to the situation in
which site-2 sends out its observation b0 to site-1 following the execution of ba in
the system, whereas the observation of event a is pending to be received at site-1.

Next, since the operations of masking and delaying can be interchanged, the
behaviors under the schematic of Fig. 3a are equivalent to those of Fig. 3b. Then, it
is clear that the distributed setting of Fig. 3a can be converted to a decentralized
setting of Fig. 3b, having an extended system GðdÞ and local observers having the
extended observation masks fMig, defined below. The extended system is given by

GðdÞ ¼ Gjji;j2I;i6¼jCðdÞij , whereas the extended system model Gi at site-i ði 2 IÞ
includes the system model and only the incoming channel models:

Gi ¼ Gjjj2I�figCðdÞji . The extended system Gi “generates” events in R[ j6¼iDj, which
are observed by site-i observer Obsi through an extended observation mask
Mi : R[ j2I�figDj ! D ¼ [ i2IDi. Mi acts the same as Mi for events in R, whereas
it is an identity mask for events in Dj ðj 6¼ iÞ. Formally, it is defined as follows:

MiðrÞ :¼ MiðrÞ; r 2 R;
r; r 2 Dj ðj 6¼ iÞ:

�
ð4Þ

The extended system model at site-i ði 2 IÞ can be refined with respect to the
specification to identify the secret and cover behaviors as states in the refined

system, and is given by GR
i ¼ Gjjj2I�figCðdÞji jjR.

Fig. 4 a Stochastic PODES G, b Cð0Þ12 , c Cð1Þ12 , d Cð1Þ21
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Next, we assign probabilities to transitions in GR
i as follows. For each state in

GR
i , the transition is either one of the system events, or at most one of channel

j ðj 6¼ iÞ events (either arrival or departure of that channel). Suppose at a system GR
i

state, with vector of all incoming channel lengths k, the system event is picked with
probability p0k, and suppose the channel j ðj 6¼ iÞ event can occur with probability p j

k

such that, p0kþ
P

j6¼i p
j
k ¼ 1. We also require that when all channels are empty

ðk ¼ 0Þ; p0k ¼ 1 (so no channel output can occur when channels are empty), when

all channels are full ðk ¼ dþ 1
���!Þ; p0k ¼ 0 (so no channel input can occur when

channels are full), and if channel j has higher queue length than channel j0 (kj� k0j),

then it can be expected that p j
k� pj

0
k (channel j event is more likely than channel j0

event when channel j has more number of pending observations). With this choice

of selection probability of events, refined extended system model is given by GR
i ¼

ðX � ðPj6¼iQ
ðdÞ
ji Þ � Y ; R[ j6¼iDj; c; ðx0; q0; y0ÞÞ, where Y ¼ Y [fDg; and 8ðx; q;�yÞ;

ðx0; q0;�y0Þ 2 X � ðPj 6¼iQ
ðdÞ
ji Þ � Y ; r 2 R[ j6¼iDj,

cððx; q;�yÞ; r; ðx0;q0;�y0ÞÞ ¼ aðx; r; x0Þ � p0k if r 2 R;
p j
k if r 2 [ j 6¼iDj;

�

if the following holds:

ð�y;�y0 2 Y ^ bð�y; r;�y0Þ[ 0Þ _ ð�y ¼ �y0 ¼ DÞ
_ ð�y0 ¼ D ^

X
y2Y

bð�y; r; yÞ ¼ 0Þ;

and otherwise, cððx; q;�yÞ; r; ðx0; q0;�y0ÞÞ ¼ 0.
The computation of an observer transition structure for GR

i and the associated
transition matrices fHðdÞjd 2 Dg, is exactly the same as in the centralized setting,
as is described in the appendix.

Example 4 Continuing Example 3, suppose the delay bound d ¼ 1, so there are
three possibilities for the length of the only channel, k ¼ f0; 1; 2g. Let p00 ¼ 1; p01 ¼
0:5; p02 ¼ 0 (implying p20 ¼ 1� p00 ¼ 0; p21 ¼ 1� p01 ¼ 0:5; p22 ¼ 1� p02 ¼ 1).
Figure 5a shows the extended system model G1 at site-1. Suppose R is given in
Fig. 5b, i.e., K ¼ LðRÞ ¼ aþ [ ba�. Then, the refinementGR

1 is shown in Fig. 5c. So
for example, at the initial state ð0; e; 0Þ, the channel is empty, and no channel events
occur at this state (p20 ¼ 0 while p00 ¼ 1). Then, for any system event r 2 R,
cðð0; e; 0Þ; u; ð2; u;DÞÞ ¼ að0; u; 2Þ � p00 ¼ 0:7� 1 ¼ 0:7, cðð0; e; 0Þ; b; ð1; b; 1ÞÞ ¼
að0; b; 1Þ � p00 ¼ 0:2� 1 ¼ 0:2, and cðð0; e; 0Þ; a; ð1; a; 1ÞÞ ¼ að0; a; 1Þ � p00 ¼
0:1� 1 ¼ 0:1. Whereas, at state ð2; u;DÞ, there is observation u queued up in the
channel. Thus, either the system can execute a new event b 2 R, with probability
cðð2; u;DÞ; b; ð3; ub;DÞÞ ¼ að2; b; 3Þ � p01 ¼ 1� p01 ¼ 0:5, or a channel event can
occur, with probability cðð2; u;DÞ; e; ð2; e;DÞÞ ¼ p21 ¼ 0:5. The remaining state
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transitions can be computed similarly. The models G2 and GR
2 at site-2 can be

generated in a manner similar to G1 and GR
1 , respectively.

In Sect. 4, we presented a way to compute JSD-based measure of secrecy loss
for stochastic PODES when there is a single observer. To compute the secrecy loss
in the distributed setting, resulting from the aggregated observations at any site-
i ði 2 IÞ, which include it’s own immediate observations and the delayed com-
municated observations from other distributed sites, the JSD computation can be
carried out over the refined extended system model GR

i , following the method
introduced in Sect. 4. The example below illustrates the extended observer structure
and the corresponding JSD based secrecy loss computation in a distributed collu-
sive setting, respectively.

Example 5 Consider the refined extended system model of Fig. 5c at site-1 where
M1ðaÞ ¼ a0, M1ðbÞ ¼M1ðuÞ ¼ e, while the extended mask function is the iden-
tity function over the received observations, D2 ¼ fb0g. Then, Fig. 6a shows the
extended observer Obs1.

Then, based on Obs1, the following computation illustrates the steps of JSD
computation at site-1.

1.
P

z jzj ¼ 14 and so ~H is a 14 × 14 matrix with entries:
~Hð1; 2Þ ¼ ~Hð1; 3Þ ¼ ~Hð1; 5Þ ¼ 0:1, ~Hð1; 4Þ ¼ ~Hð1; 6Þ ¼ 0:35, ~Hð2; 7Þ ¼
~Hð2; 8Þ ¼ ~Hð7; 7Þ ¼ ~Hð7; 8Þ ¼ ~Hð8; 7Þ ¼ ~Hð8; 8Þ ¼ ~Hð9; 11Þ ¼ ~Hð9; 12Þ ¼
~Hð10; 13Þ ¼ ~Hð10; 14Þ ¼ ~Hð11; 11Þ ¼ ~Hð11; 12Þ ¼ ~Hð12; 11Þ ¼ ~Hð12; 12Þ ¼

Fig. 5 a Extended system model G1 at site-1, b specification for secrets, R, c refined system
model GR

1
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~Hð13; 13Þ ¼ ~Hð13; 14Þ ¼ ~Hð14; 13Þ ¼ ~Hð14; 14Þ ¼ 0:5, ~Hð3; 9Þ ¼
~Hð4; 10Þ ¼ ~Hð5; 9Þ ¼ ~Hð6; 10Þ ¼ 1 and zeros elsewhere.
Then, p� ¼ 0 0 0 0 0 0 0½
0:05 0:05 0 0 0:1 0:1 0:35 0:35�: Therefore,
pðz0Þ ¼ pðz1Þ ¼ pðz2Þ ¼ 0, pðz3Þ ¼ 0:1, pðz4Þ ¼ 0, and pðz5Þ ¼ 0:9.

2. Here Is ¼ 1 1 1 0 1 0 1 1 1 0 1 1 0 0½ �T ,
Ic ¼ 0 0 0 1 0 1 0 0 0 1 0 0 1 1½ �T . And so ks ¼ 0:3
and kc ¼ 0:7.

3. Here z3, and z5 are recurrent nodes, and each of them forms a SCC. We have
p�z3 ¼ ½ 0:5 0:5 �, and while there are multiple solutions to the equation set

p�z5 ¼
p�z5Hz5 ;a

0 ;z5
jjp�z5Hz5 ;a

0 ;z5 jj
, only p�z5 ¼ ½ 0:11 0:11 0:39 0:39 � is reachable. Thus,

each set of recurrent nodes is a singleton set, and each with a unique fixed-point
distribution. Therefore, for each recurrent node z, pðz; kÞ ¼ pðzÞ.

4. Here Is
z3 ¼ ½ 1 1 �T , Ic

z3 ¼ ½ 0 0 �T , Is
z5 ¼ ½ 1 1 0 0 �T ,

Ic
z5 ¼ ½ 0 0 1 1 �T . For z3 and p�z3 , ksjp

�
z3 ¼ 1; kcjp

�
z3 ¼ 0, psjp

�
z3 ða0Þ ¼

p�z3Hz3 ;a
0 ;z3I

s
z3

k
sjp�z3

¼ 1, psjp
�
z3 ðb0Þ ¼ pcjp

�
z3 ðb0Þ ¼ pcjp

�
z3 ða0Þ ¼ 0. For z5 and p�z5 , k

sjp�z5 ¼
0:22; kcjp

�
z5 ¼ 0:78; psjp

�
z5 ða0Þ ¼ p�z5Hz5 ;a

0 ;z5 I
s
z5

k
sjp�z5

¼ 1, pcjp
�
z5 ða0Þ ¼ p�z5Hz5 ;a

0 ;z5 I
c
z5

k
cjp�z5

¼ 1,

psjp
�
z5 ðb0Þ ¼ pcjp

�
z5 ðb0Þ ¼ 0.

Fig. 6 a Observer Obs1 for the system of Fig. 5c, b model GR for system of Fig. 4a under no
collusion, c observer under no collusion

Quantification of Centralized/Distributed Secrecy … 37



5. Then, we have

lim
n!1D1ðpsn; pcnÞ ¼ Hðfks; kcgÞ

þ
X

z:z is recurrent

pðzÞ½�Hðfksjp�z ; kcjp�z gÞþD1ðpsjp�z ; pcjp�z Þ�

¼ 0:197:

Note this happens to be the same as JSD measure of secrecy loss at site-2.

In contrast, when there is no collusion among observers (so there is no com-
munication among the two sites), Fig. 6b, c show, respectively, the refined system
GR (no incoming channels and so identical refined model at all sites) and the
corresponding site-1 observer structure. The JSD value, computed in same manner
as above but with respect to the observer structure of Fig. 6c, is simply Zero, i.e.,
no amount of secrets is revealed under no collusion. This is because for every
observation, the probability of it coming from secrets in K vs from covers in L� K
is exactly the same.

6 Conclusion

In this chapter, we presented information theoretic measure for secrecy loss
quantification in PODESs in both centralized versus distributed collusive settings,
in the presence of a single attacker/observer versus multiple attackers/observers
exchanging their observations, respectively. The statistical difference, in the form of
the Jensen-Shannon Divergence, between the influence of secrets versus covers on
the observations, is employed to quantify the loss of secrecy. It is shown that this
JSD measure is equivalent to the mutual information between the distribution over
the possible observations versus that over the possible status of system execution
(whether secret or cover). An observer structure is formed and used to aide the
computation of JSD in the limit as the length of the observation approaches infinity
to quantify the worst case loss of secrecy. In distributed collusive setting, channel
models are introduced to extend the system model to capture the effect of exchange
of observations, and the JSD computation of the centralized case is applied over the
extended model to arrive at the measure for secrecy loss. Future work will involve
developing a software tool for JSD computation, and performing application
studies. Knowing the JSD value can help an engineer to perform secrecy analysis of
a system, and revisit the system design to make it improve its level of secrecy as
needed.
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Appendix

In this appendix, we describe the computation of an observer transition structure
that can be used to track the evolution of GR over its observed symbols D, and the
associated transition matrices fHðdÞjd 2 Dg. Given the refined system model GR,
and its observation mask M : R! D, define the set of traces originating at ðx;�yÞ,
terminating at ðx0;�y0Þ and executing a sequence of unobservable events followed by
a single observable event with observation d as LGRððx;�yÞ; d; ðx0;�y0ÞÞ :¼ fs 2
R�js ¼ ur; MðuÞ ¼ e;MðrÞ ¼ d; cððx;�yÞ; s; ðx0;�y0ÞÞ[ 0g. Define its probability,
aðLGRððx;�yÞ; d; ðx0;�y0ÞÞÞ :¼P

s2LGR ððx;�yÞ;d;ðx0;�y0ÞÞ cððx;�yÞ; s; ðx
0;�y0ÞÞ, and denote it as

hðx;�yÞ;d;ðx0;�y0Þ. Also, define kij ¼
P

r2Ruo
cði; r; jÞ as the probability of transitioning

from ðx;�yÞ to ðx0;�y0Þ while executing a single unobservable event. Then, letting
i ¼ ðx;�yÞ and j ¼ ðx0;�y0Þ, hi;d;j ¼

P
k kikhk;d;jþ

P
r2R:MðrÞ¼d ði; r; jÞ, where the first

term on the right hand side (RHS) corresponds to transitioning in at least two steps
(i to intermediate k unobservably, and k to j with a single observation d at the end),
whereas the second term on RHS corresponds to transitioning in exactly one step
[3, 12]. Thus, for each d 2 D, all the probabilities fhi;d;jji; j 2 X � Yg can be found
by solving the following matrix equation [23]: HðdÞ ¼ KHðdÞþCðdÞ; where
HðdÞ;K and CðdÞ are all jX � Y j � jX � Y j square matrices whose ijth elements are
given by hi;d;j; kij and

P
r2R:MðrÞ¼d cððx;�yÞ; r; ðx0;�y0ÞÞ, respectively.
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