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Abstract— We study the prognosis of fault, i.e., its prediction
prior to its occurrence, in stochastic discrete event systems. We
introduce the notion of m-steps Stochastic-Prognosability, called
Sm-Prognosability, which allows the prediction of a fault at least
m-steps in advance. We formalize the notion of a prognoser and
also show that Sm-Prognosability is necessary and sufficient for
the existence of a prognoser that can predict a fault at least m-
steps prior to occurrence, while achieving any arbitrary false
alarm and missed detection rates. We also provide a polynomial
algorithm for the verification of Sm-Prognosability.

I. INTRODUCTION

The problem of predicting a fault prior to its occurrence is
a well researched area [1]-[5]. In [1] the notion of uniformly
bounded prognosability of fault was formulated for logical
discrete event systems (DESs), where each fault-trace must
possess a nonfault-prefix such that for all indistinguishable
traces, a future fault is inevitable within a bounded delay
that is uniform across all fault-traces. Such a nonfault-prefix
from which a future fault is inevitable is termed an indicator.
The notion was later extended to the decentralized setting
in [2] and the requirement of the existence of a uniform
bound was also removed. Reference [2] also established that
the notion of prognosability is equivalent to the existence
of a prognoser with no false alarm (FA) and no missed
detection (MD). The issue of prognosability under a general
decentralized inferencing mechanism was proposed in [4],
where a prognostic decision involved inferencing among a
group of local prognosers over their local decisions and their
ambiguity levels, and the notion of inference-prognosability
and its verification was introduced to capture the necessity
and sufficiency of inferencing based decentralized prognosis.
The problem of distributed prognosability under bounded-
delay communications among the local prognosers was stud-
ied in [5], where the notion of joint-prognosability and its
verification was proposed.

In order to generalize the notion of prognosability to
stochastic DESs, in this paper, we introduce m-steps
Stochastic-Prognosability, or simply Sm-Prognosability,
which requires for any tolerance level ρ and error bound
τ , there exists a reaction bound k ≥ m, such that the set
of fault-traces for which a fault cannot be predicted k steps
in advance with tolerance level ρ, occurs with probability
smaller than τ . We formalize the notion of a prognoser
that maps observations to decisions by comparing a suitable
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statistic with a threshold, and show that Sm-Prognosability
is a necessary and sufficient condition for the existence of
a prognoser with reaction bound at least m (i.e., prediction
at least m-steps prior to the occurrence of a fault) that can
achieve any specified FA and MD rate requirement. In this
sense Sm-Prognosability can be viewed as a generalization
of the logical prognosability, since it provides a basis for the
existence and synthesis of a prognoser that can achieve a
user-specified level of FA and MD. In contrast, the logical
version is rather rigid, offering no further options for systems
that fail to be logically prognosable, even when there may
exist a prognoser that can achieve a satisfying performance as
measured in terms of FA and MD rates. Also, in the logical
setting, an indicator cannot visit a cycle of nonfault-states,
which can be restrictive; in contrast in the stochastic setting,
an indicator can visit a cycle of nonfault-states as long as the
cycle is not absorbing. A polynomial complexity algorithm
for verifying Sm-Prognosability is also provided.

The rest of this paper is organized as following: The
notations and some preliminaries are presented in Section II,
followed by the definition of Sm-Prognosability and stochas-
tic prognoser in Section III and IV, respectively. Section IV
also shows necessity and sufficiency of Sm-prognosability
for the existence of an m-prognoser that can fulfill any
desired level of error bounds over FA and MD. Section V
gives an algorithm for verifying Sm-Prognosability and the
paper is concluded in Section VI.

II. NOTATIONS AND PRELIMINARIES

For an event set Σ, define Σ := Σ∪ {ε}, where ε denotes
“no-event”. The set of all finite length event sequences over
Σ, including ε, is denoted as Σ∗. A trace is a member of
Σ∗ and a language is a subset of Σ∗. We use s ≤ t to
denote that s ∈ Σ∗ is a prefix of t ∈ Σ∗, pr(s) to denote
the set of all prefixes of s, and |s| to denote the length of s
or the number of events in s. For ∼∈ {<,≤, >,≥,=} and
n ∈ N, where N denotes the set of all nonnegative integers,
define Σ∼n := {s ∈ Σ∗ : |s| ∼ n} and denote Σ=n as
Σn for simplicity. For L ⊆ Σ∗, its prefix-closure is defined
as pr(L) :=

⋃
s∈L pr(s), and L is said to be prefix-closed

(or simply closed) if pr(L) = L. Given two languages L1

and L2, their concatenation is defined as L1L2 := {st :
s ∈ L1, t ∈ L2}, the set of traces in L1 after L2 is defined
as L1\L2 := {t ∈ Σ∗ : ∃s ∈ L2, st ∈ L1}, and the set
of traces in L1 quotient L2 is defined as L1/L2 := {s ∈
pr(L1) : ∃t ∈ L2, st ∈ L1}.

A stochastic DES can be modeled by a stochastic au-
tomaton G = (X,Σ, α, x0), where X is the set of states,
Σ is the set of events, x0 ∈ X is the initial state, and
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α : X×Σ×X → [0, 1] is the transition probability function
[6] satisfying ∀x ∈ X,

∑
σ∈Σ

∑
x′∈X α(x, σ, x′) = 1, i.e.,

there is no “termination” at any of the states. (Note there
is no loss of generality in assuming no termination, since
otherwise, one can augment the model with a newly intro-
duced “termination-state”, and transitions from each state to
the termination state on a newly introduced “termination-
event” that is unobservable and whose occurrence probability
equals the probability of termination of the said state.)
The transition probability function α can be generalized to
α : X × Σ∗ × X recursively as follows: ∀xi, xj ∈ X, s ∈
Σ∗, σ ∈ Σ, α(xi, sσ, xj) =

∑
xk∈X α(xi, s, xk)α(xk, σ, xj),

and α(xi, ε, xj) = 1 if xi = xj and 0 otherwise. Define a
transition in G as a triple (xi, σ, xj) ∈ X × Σ × X where
α(xi, σ, xj) > 0 and Define the language generated by G as
L(G) := {s ∈ Σ∗ : ∃x ∈ X,α(x0, s, x) > 0}. A component
C = (XC , αC) of G is a “subgraph” of G, i.e., XC ⊆ X
and ∀x, x′ ∈ XC and σ ∈ Σ, αC(x, σ, x′) := α(x, σ, x′),
whenever the latter is defined. C is said to be a strongly
connected component (SCC) or irreducible if ∀x, x′ ∈ XC ,
∃s ∈ Σ∗ such that αC(x, s, x′) > 0. An SCC C is said to be
closed if for each x ∈ XC ,

∑
σ∈Σ

∑
x′∈XC

αC(x, σ, x′) = 1.

A DES G is non-stochastic if α : X × Σ ×X → {0, 1},
and a non-stochastic DES is deterministic if ∀x ∈ X,σ ∈
Σ,

∑
x′∈X α(x, σ, x′) ∈ {0, 1}, i.e., each state has at most

one transition on each event. Note for non-stochastic DES,
we allow the summation

∑
σ∈Σ

∑
x′∈X α(x, σ, x′) to be

larger than one, as for non-stochastic DES, α is simply a
transition indicator, and not a probability.

To represent the limited sensing capabilities of a prog-
noser, we introduce an event observation mask, M : Σ→ ∆,
where ∆ is the set of observed symbols and M(ε) = ε.
An event σ is unobservable if M(σ) = ε. The set of
unobservable events is denoted as Σuo, and so the set of
observable events is given by Σ − Σuo. The observation
mask can be generalized to M : 2Σ → 2∆ in a natural way:
∀s ∈ Σ∗, σ ∈ Σ, L ⊆ Σ∗, M(ε) = ε, M(sσ) = M(s)M(σ)
and M(L) = {M(s) : s ∈ L}.

For a stochastic automaton G = (X,Σ, α, x0) with gener-
ated language L(G) = L, let K ⊆ L be a nonempty closed
sublanguage representing a nonfault-specification for G, i.e.,
L −K consists of behaviors that execute some fault. Then
the task of prognosis is to predict the execution of any fault-
trace in L −K prior to its execution, and at least m steps
in advance, and with sufficient confidence. Let K ⊆ L be
generated by a deterministic automaton R = (Q,Σ, β, q0)
such that L(R) = K (from now on we interchangably use
K and R to refer to the “nonfault-specification”). Then the
refinement of the plant with respect to the specification,
denoted as GR, can be used to capture the fault-traces in the
form of the reachability of a fault-state carrying the label F
in GR, which is given by GR := (X × Q,Σ, γ, (x0, q0)),
where Q = Q ∪ {F}, and ∀(x, q), (x′, q′) ∈ X × Q, σ ∈

Fig. 1. (a) Stochastic automaton G; (b) Nonfault specification R; (c)
Refinement GR.

Σ, γ((x, q), σ, (x′, q′)) = α(x, σ, x′) if the following holds:

(q, q′ ∈ Q ∧ β(q, σ, q′) > 0)

∨(q = q′ = F ) ∨

q′ = F ∧
∑
q∈Q

β(q, σ, q) = 0

 ,

and otherwise γ((x, q), σ, (x′, q′)) = 0. Then it can be seen
that the refined plant GR has the following properties: (1)
L(GR) = L(G) = L, (2) any fault-trace s ∈ L − K
transitions the refinement GR to a fault-state (a state con-
taining F as its second coordinate), and (3) the occurrence
probability of each trace in GR is the same as that in G, i.e.,∑
x∈X α(x0, s, x) =

∑
(x,q)∈X×Q γ((x0, q0), s, (x, q)).

Example 1: Fig. 1(a) is an example of a stochastic au-
tomaton G. The set of states is X = {0, 1, 2, 3, 4} with
initial state x0 = 0, and event set Σ = {a, b, c, d, f}. A
state is depicted as a node, whereas a transition is depicted
as an edge between its origin and termination states, with
its event name and probability value labeled on the edge.
The observation mask M is such that M({d, f}) = {ε} and
M(σ) = σ for σ ∈ Σ−{d, f}. The nonfault-specification is
given in Fig. 1(b). Therefore L −K = {ab∗cac∗f}Σ∗ ∩ L
and the refinement GR is shown in Fig. 1(c). As can be
seen, all traces in L−K transition GR to the only fault-state
(4, F ). In GR there are two closed SCCs, one is formed by
the nonfault-state (1, 1) and its selfloop transitions whereas
the other is formed by the fault-state (4, F ) and its selfloop
transitions.

For xi, xj ∈ X and σ ∈ Σ − Σuo, define the set
of traces originating at xi, terminating at xj and ex-
ecuting a sequence of unobservable events followed by
a single observable event σ as LG(xi, σ, xj) := {s ∈

2042



Σ∗ : s = uσ,M(u) = ε, α(xi, s, xj) > 0}. Define
α(LG(xi, σ, xj)) :=

∑
s∈LG(xi,σ,xj) α(xi, s, xj) as the oc-

currence probability of traces in LG(xi, σ, xj) and denote it
as µi,σ,j for short. Also define λij =

∑
σ∈Σuo

α(xi, σ, xj) as
the probability of transitioning from xi to xj while executing
a single unobservable event. Then it can be seen that µi,σ,j =∑
m λimµm,σ,j + α(xi, σ, xj), where the first term on the

right hand side (RHS) involves transitioning in at least two
steps via some intermediate states, whereas the second RHS
term involves transitioning directly in exactly one step. Thus
for each σ ∈ Σ− Σuo, given the values {λij |i, j ∈ X} and
{α(xi, σ, xj)|i, j ∈ X}, all the probabilities {µi,σ,j |i, j ∈
X,σ ∈ Σ − Σuo} can be found by solving the following
matrix equation (see for example [7], [8] for a similar matrix
equation):

µ(σ) = λµ(σ) + α(σ), (1)

where µ(σ), λ and α(σ) are all |X| × |X| square matrices
whose ijth elements are given by µi,σ,j , λij and α(xi, σ, xj),
respectively. In the presence of partial observability, we de-
fine LG(xi,M(σ), xj) := ∪σ′∈Σ:M(σ′)=M(σ)LG(xi, σ

′, xj),
i.e., it is the set of all traces originating at xi, terminating
at xj and executing a sequence of unobservable events
followed by a single observable event that has the same mask
value M(σ). Then their occurrence probability is given by
α(LG(xi,M(σ), xj)) :=

∑
σ′∈Σ:M(σ′)=M(σ) µi,σ′,j .

III. PROGNOSABILITY OF STOCHASTIC DESS

In this section, we formalize the notion of prognosability,
called m-steps Stochastic-Prognosability, or simply Sm-
Prognosability, for stochastic DESs, and provide neces-
sary and sufficient conditions for the verification of Sm-
Prognosability. In the next section we show that for finite-
state systems, Sm-Prognosability is necessary and sufficient
for the existence of a prognoser that can predict a fault
at least m-steps prior to occurrence, while achieving any
arbitrary false alarm and missed detection rates.

Let L be a nonempty closed language and K ⊆ L
be a nonempty closed language representing a nonfault-
specification. In order to be able to make a prognostic
decision, we define the n-step prognostic probability of no-
fault following an observation o ∈M(L) as:

PnN (o) :=
Pr({M−1(o)}Σn ∩K)

Pr({M−1(o)}Σn ∩ L)

=
Pr({M−1(o) ∩K}Σn ∩K)

Pr(M−1(o) ∩ L)
, (2)

and the least prognostic probability of no-fault following o ∈
M(L) as:

P ∗N (o) := min
n∈N

PnN (o)

=
minn∈N Pr({M−1(o)}Σn ∩K)

Pr({M−1(o)} ∩ L)
. (3)

Note PnN (o) is the probability, following the observation o,
that the system does not execute a fault in the next n steps;
and P ∗N (o) is the least probability, following the observation

o, that the system does not execute a fault over all finite-step
futures. Note in the denominator of (2), we used the fact
that probability of all extensions of length n, beyond the
traces in M−1(o), is the same as the probability of traces in
M−1(o), for there is no termination at any of the states. As a
result, the denominator is constant with respect to n, and the
minimization operation in (3) only applies to the numerator.

To help formalize the prognosability for stochastic DESs,
we introduce the notions of boundary fault-traces whose all
strict prefixes are nonfault, m-steps interior nonfault-traces
for which a fault can occur in the next (m+1)th step while no
fault can occur within the next m steps, persistent nonfault-
traces whose all extensions are nonfault, indicator nonfault-
traces for which a future fault is guaranteed with arbitrary
confidence and nonindicator nonfault-traces that are not the
indicator traces.

Definition 1: Given a pair (L,K) of closed languages
with K ⊆ L, we define the set of
• boundary fault-traces as, ∂ := {s ∈ L − K : pr(s) −
{s} ⊆ K};

• m-steps interior nonfault-traces of K with respect to L
(where m ≥ 0) as, ∂−m := {s ∈ K : {s}Σ≤m ∩ (L −
K) = ∅, {s}Σm+1 ∩ ∂ 6= ∅};

• persistent nonfault-traces of K with respect to L as,
ℵ := {s ∈ K : ∀n ∈ N, {s}Σn ∩ (L−K) = ∅};

• indicator nonfault-traces of K with respect to L as,
J := {s ∈ K : ∀ρ > 0,∃n ∈ N, P r({s}Σn ∩K) ≤ ρ};

• nonindicator nonfault-traces of K with respect L as,
Υ := K − J.

Note that Υ = {s ∈ K : ∃ρ > 0,∀n ∈ N, P r({s}Σn∩K) >
ρ}. Also note that ℵ is “extension-closed” in the sense that
if it possesses s ∈ K, then it also possesses all extensions
t ∈ L with s ≤ t.

Next we introduce the definition of Sm-Prognosability
which requires that, for any threshold value ρ > 0 and error
bound τ > 0, there exists a reaction bound k ≥ m, such
that the set of boundary fault-traces, that are either shorter
than k in length or for which a prognostic decision can not
be made k steps in advance with confidence level ρ, occurs
with probability smaller than τ .

Definition 2: A pair (L,K) of closed languages with K ⊆
L is said to be m-steps Stochastically-Prognosable, or simply
Sm-Prognosable, if

(∀τ, ρ > 0)(∃k ≥ m)

Pr(s ∈ ∂ : [|s| ≤ k]

∨[∀u ∈ s/Σ>k, P ∗N (M(u)) > ρ]) < τ, (4)

where P ∗N is as defined by (2) and (3).
The next lemma states that we can always choose the reac-

tion bound k in Definition 2 to equal m, thereby simplifying
the definition a bit.

Lemma 1: A pair (L,K) of closed languages with K ⊆ L
is Sm-Prognosable if and only if ∀τ, ρ > 0,

Pr(s ∈ ∂ : [|s| ≤ m]

∨[∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ]) < τ. (5)
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Denote `(∂) = min{|s|, s ∈ ∂} as the length of the short-
est fault-trace in L−K. Then the following theorem provides
a necessary and sufficient condition for Sm-prognosability
requiring the reaction bound m to be smaller than the length
of the shortest fault-trace, `(∂), and every boundary fault-
trace in ∂ to possess a nonfault-prefix which is more than
m-steps shorter and is unambiguously an indicator.

Theorem 1: A pair (L,K) of closed languages with K ⊆
L is Sm-Prognosable if and only if m < `(∂) and

(∀s ∈ ∂)(∃u ∈ s/Σ>m)(M−1M(u) ∩K ⊆ J). (6)
Example 2: For the system in Fig. 1, `(∂) = 4, so by

Theorem 1, the system can not be Sm-Prognosable with m ≥
4. The set of indicator traces is J = {a}Σ∗∩K, and the set of
nonindicator traces is Υ = {ε}∪{d}Σ∗∩L, while the set of
boundary fault-traces is ∂ = ab∗cac∗f . One can check that
for any s ∈ ∂, there exists u ∈ s/Σ>1 ⊆ {ab∗c}Σ∗∩K such
that M−1M(u) ∩K ⊆ J. Therefore by Theorem 1, (L,K)
is S1-Prognosable. On the other hand, for s = acaf ∈ ∂,
u = a ∈ s/Σ>2 is such that M−1M(u)∩K∩Υ = {da} 6= ∅.
Therefore by Theorem 1, (L,K) is not S2-Prognosable.

The following corollary is directly obtained from Theorem
1, and captures the expected property that prognosability
continues to hold even with smaller reaction bound.

Corollary 1: Given a pair (L,K) of closed languages
with K ⊆ L, if (L,K) is Sm-Prognosable, then (L,K)
is Sm′ -Prognosable for all nonnegative m′ ≤ m, whereas
if (L,K) is not Sm-Prognosable, then (L,K) is not Sm′ -
Prognosable for all m′ ≥ m.

For an Sm-Prognosable system, Theorem 1 requires that
each boundary fault trace possess a more than m-steps
shorter prefix that is unambiguously an indicator. We can
strengthen this theorem by requiring that exactly the (m +
1)-shorter prefix possess the said property. This requires
the result of the next lemma stating that indicators are
“extension-closed” (nonfault-extensions of indicators are also
indicators), while nonindicators are prefix-closed (prefixes of
nonindicators are also nonindicators).

Lemma 2: For a pair (L,K) of closed languages with
K ⊆ L, it holds that JΣ∗ ∩K ⊆ J, and pr(Υ) ⊆ Υ.

Using Lemma 2, we can strengthen Theorem 1 to obtain
a new result which we employ in Section V for verify-
ing Sm-Prognosability. The new theorem states that Sm-
Prognosability holds if and only if the reaction bound m <
`(∂), and all m-steps interior traces are distinguishable from
any nonindicator trace.

Theorem 2: A pair (L,K) of closed languages with K ⊆
L is Sm-Prognosable if and only if m < `(∂) and

M−1M(∂−m) ∩Υ = ∅. (7)
Example 3: For the system shown in Fig. 1, J = {a}Σ∗∩

K, Υ = {ε} ∪ {d}Σ∗ ∩ L, ∂−2 = ab∗ and ∂−1 = ab∗c.
One can easily check that M−1M(∂−2 ) ∩ Υ = dab∗ 6= ∅
and M−1M(∂−1 ) = ab∗c ⊆ J. Therefore (L,K) is S1-
Prognosable but not S2-Prognosable, as discussed in Exam-
ple 2.

IV. PROGNOSER AND ITS EXISTENCE CONDITION

In this section we formally define a prognoser with reac-
tion bound at least m, called an m-prognoser, along with
its FA and MD rates, and show that the notion of Sm-
Prognosability introduced in the previous section acts as a
necessary and sufficient condition for the existence of an
m-prognoser capable of achieving any FA and MD rates.

In order to predict a fault in advance, the prognoser
computes for each o ∈ M(L), the prognostic probability of
no-fault P ∗N (o) as defined by (2)-(3), and compares it with an
appropriately chosen threshold ρ. Whenever P ∗N (o) is below
this threshold, implying that there is only a small likelihood
of no-fault in future, the prognoser issues a fault warning F ,
predicting/prognosing a future fault, and otherwise it remains
silent (issues ε). In other words, a prognoser is formally a
map, D : M(L)→ {F, ε} defined as:

∀o ∈M(L), [D(o) = F ]⇔ [∃o ≤ o : P ∗N (o) ≤ ρ], (8)

where P ∗N is as defined by (2) and (3). Note that according
to (8), once a warning is issued, it remains unchanged for
the subsequent extensions.

For a prognoser that aims to predict a fault at least m
steps before its occurrence, a missed detection (MD) occurs
when a fault happens while the prognoser fails to issue a
warning m steps in advance. On the other hand a false alarm
(FA) occurs when a warning is issued for a trace whose all
extensions are nonfault, i.e., a trace in ℵ. Therefore the MD
rate Pmd and the FA rate P fa for an m-prognoser can be
defined as:

Pmd = Pr(s ∈ ∂ : [|s| ≤ m] ∨ [D(M(s/Σm+1)) = ε]

(9)
P fa = Pr(s ∈ ℵ : D(M(s)) = F ). (10)

Considering the fact the once the prognoser issues F , it is-
sues F for any subsequent observations, the above equations
can also be equivalently presented as:

Pmd = Pr(s ∈ ∂ : [|s| ≤ m]

∨ [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ])

P fa = Pr(s ∈ ℵ : ∃u ∈ pr(s), P ∗N (M(u)) ≤ ρ).

Example 4: For the system GR shown in Fig. 1. Suppose
GR executes dabbb and produces observation o = abbb,
then P ∗N (o) = 0.5872. Hence for any m-prognoser with
threshold ρ ≥ 0.5872, traces in {dabbb}Σ∗ ∩ L will be
false-alarmed. When GR executes a trace in ab∗cac∗f ⊆ ∂
and produces an observation o ∈ ab∗cac∗, then P ∗N (o)
approaches 0. Therefore for a 1-prognoser with any threshold
ρ, all fault-traces can be prognosed, and hence no missed
detection. However, for a 2-prognoser with ρ = 0.3, when
GR executes the fault-trace abcaf , a prognostic decision can
be made only upon observing abc (since for all its prefixes,
the threshold remains lower than the prognostic probability
of no fault: P ∗N (ε) = 0.5, P ∗N (a) = 0.375, P ∗N (ab) = 0.444,
P ∗N (abc) = 0), which violates the least reaction bound
m = 2, and hence abcaf gets miss-detected.
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In order to establish a condition for the existence of an
m-prognoser in terms of the property of Sm-prognosability,
we first establish the following corollary of Theorem 1 and
Lemma 2.

Corollary 2: If a pair (L,K) of closed languages with
K ⊆ L is Sm-Prognosable, then M−1M(Υ)∩ (L−K) = ∅.

The next lemma states that under the assumption of
regularity of languages L and K, equivalently the finiteness
of the state-space of GR, no extension of an indicator
can be persistently nonfault, whereas some extension of
a nonindicator must be persistently nonfault. The lemma
requires the finiteness of the state-space that guarantees the
probability of staying in a transient state approaches 0 while
the system evolves.

Lemma 3: For a pair (L,K) of closed regular languages
with K ⊆ L, we have JΣ∗ ∩ ℵ = ∅ and ΥΣ∗ ∩ ℵ 6= ∅.

Now we are ready to present the main result of the section,
which shows that for regular languages L and K, Sm-
Prognosability is necessary and sufficient for the existence
of an m-prognoser to satisfy any level of FA and MD rates.

Theorem 3: Consider a pair (L,K) of closed regular
languages with K ⊆ L. Then for any FA rate φ > 0 and MD
rate τ > 0, there exists an m-prognoser (and its associated
prognostic decision threshold) defined by (8) such that the
MD and FA rates defined by (9)-(10) satisfy Pmd ≤ τ and
P fa ≤ φ if and only if (L,K) is Sm-Prognosable.

V. VERIFICATION OF Sm-PROGNOSABILITY

Having established Sm-Prognosability as a central prop-
erty, needed for the existence of an m-prognoser, we next
provide a polynomial algorithm for the verification of Sm-
Prognosability utilizing Theorem 2. We need the following
definitions that identify m-steps interior nonfault-states from
where no fault can occur within m steps but will occur at the
(m+1)th step, indicator nonfault-states from where a future
fault is inevitable with arbitrary confidence, and nonindicator
nonfault-states which are not indicator states.

Definition 3: Given a stochastic DES G = (X,Σ, α, x0),
deterministic nonfault-specification R = (Q,Σ, β, q0), with
their refinement GR = (X ×Q,Σ, γ, (x0, q0)), the set of
• m-steps interior nonfault-states ∂−m(X ×Q) ⊆ X ×Q

(where m ≥ 0) are states (x, q) such that q 6= F , and
there exists (x′, q′) with q′ = F and s ∈ Σm+1 s.t.
γ((x, q), s, (x′, q′)) > 0 and for all (x′, q′), s ∈ Σ≤m,
[γ((x, q), s, (x′, q′)) > 0]⇒ [q′ 6= F ];

• indicator nonfault-states J(X×Q) are states (x, q) such
that q 6= F and from which the system can not reach a
closed SCC in GR that contains a nonfault-state;

• nonindicator nonfault-states Υ(X ×Q) are states from
which the system can reach a closed SCC in GR that
contains a nonfault-state.

The following lemma is immediate from Definition 1,
Definition 3 and Lemma 3.

Lemma 4: Given a pair (L = L(G),K = L(R)) of closed
regular languages with K ⊆ L, then for any s ∈ K,
• [s ∈ ∂−m] ⇔ [∃(x, q) ∈ ∂−m(X ×
Q), γ((x0, q0), s, (x, q)) > 0];

• [s ∈ J]⇔ [∃(x, q) ∈ J(X ×Q), γ((x0, q0), s, (x, q)) >
0];

• [s ∈ Υ] ⇔ [∃(x, q) ∈ Υ(X ×
Q), γ((x0, q0), s, (x, q)) > 0].

The following algorithm verifies the condition of Theorem
2.

Algorithm 1: For a given stochastic automaton G =
(X,Σ, α, x0) and a deterministic nonfault-specification R =
(Q,Σ, β, x0), perform the following steps:
1) Check if the length of the shortest trace to a state X×{F}

in GR is smaller than m, if the answer is yes, proceed to
step 2), otherwise (L,K) is not Sm-Prognosable;

2) Construct a testing automaton T = GR × GR such
that at each step the first copy of GR takes lead in
executing transitions, whereas the second copy responds
by executing an indistinguishable nonfault-trace. This
automaton is denoted as T = (Z,Σ× Σ, δ, z0), where
• Z = X ×Q×X ×Q;
• z0 = ((x0, q0), (x0, q0)) is the initial state;
• δ : Z × Σ × Σ × Z → [0, 1] is de-

fined as: ∀((x1, q1), (x2, q2)), ((x′1, q
′
1), (x′2, q

′
2)) ∈

Z, (σ, σ′) ∈ Σ× Σ,

δ(((x1, q1), (x2, q2)), (σ, σ′), ((x′1, q
′
1), (x′2, q

′
2)))

=



γ((x1, q1), σ, (x′1, q
′
1)),

if (σ ∈ Σuo) ∧ (σ′ = ε)

∧ ((x2, q2) = (x′2, q
′
2)) ∧ (q′2 6= F );

γ((x1,q1),σ,(x′
1,q

′
1))α(LGR ((x2,q2),σ′,(x′

2,q
′
2)))

α(LGR ((x2,q2),M(σ))) ,

if (σ ∈ Σ− Σuo) ∧ (M(σ) = M(σ′))

∧ (LGR((x2, q2), σ′, (x′2, q
′
2))) 6= ∅)

∧ (q′2 6= F );

0 otherwise.

.

According to the definition of δ, when the first copy
of GR executes an unobservable event, the second copy
responds by ε (since it observes nothing); if the first
copy executes an observable event σ, then the second
copy responds by executing a nonfault-trace consisting
of sequence of unobservable events followed by an ob-
servable event that has the same mask value as M(σ).
Note a conditioning is applied to limit the executions of
the second copy to indistinguishable nonfault-traces.

3) Check if every state ((x1, q1), (x2, q2)) with (x1, q1) ∈
∂−m(X × Q) satisfies (x2, q2) 6∈ Υ(X × Q), (L,K) is
Sm-Prognosable if and ony if the answer is yes.

The following theorem guarantees the correctness of Al-
gorithm 1.

Theorem 4: A pair (L = L(G),K = L(R)) of closed
regular languages with K ⊆ L is Sm-Prognosable if and
only if any fault-state can only be reached in more than m-
steps in GR and every reachable state ((x1, q1), (x2, q2)) of
T with (x1, q1) ∈ ∂−m(X×Q) satisfies (x2, q2) 6∈ Υ(X×Q).

Example 5: Let us revisit the system shown in Fig. 1. Ac-
cording to Definition 3, J(X ×Q) = {(2, 2), (3, 3), (4, 4)},
Υ(X × Q) = {(0, 0), (1, 1)}, ∂−1 (X × Q) = {(3, 3)} and
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Fig. 2. Testing automaton for the system GR shown in Fig. 1.

∂−2 (X × Q) = {(2, 2)}. It is easy to check that 1 <
2 < `(∂) = 4. The testing automaton is shown in Fig.
2. The only state ((x1, q1), (x2, q2)) such that (x1, q1) ∈
∂−1 (X × Q) is labeled in italics, i.e., state ((3, 3), (3, 3)),
which satisfies (x2, q2) 6∈ Υ(X × Q). Therefore (L,K)
is S1-Prognosable. All the states ((x1, q1), (x2, q2)) such
that (x1, q1) ∈ ∂−2 (X × Q) are labeled in bold, and there
exists ((2, 2), (1, 1)) such that (2, 2) ∈ ∂−2 (X × Q) and
(1, 1) ∈ Υ(X×Q). Therefore (L,K) is not S2-Prognosable.
These are as expected from the discussion in Examples 2 and
3.

Remark 1: In Algorithm 1. GR has O(|X| × |Q|) states
and O(|X|2×|Q|×|Σ|) transitions, and the testing automaton
T = GR×GR has O(|X|2×|Q|2) states and O(|X|4×|Q|2×
|Σ|2) transitions. The computation of transition probabilities
in T requires solving the matrix equation (1) for each σ ∈
Σ−Σuo with complexity that is cubic in the number of states
in GR and linear in the number of events in GR, namely,
O(|X|3×|Q|3×|Σ|). Thus the complexity of constructing T
is O(|X|4×|Q|2×|Σ|2+|X|3×|Q|3×|Σ|). The shortest path
to a fault state in GR can be computed in O(

√
|X| × |Q| ×

|X|2× |Q| × |Σ|) [9]. Identifying the set of m-steps interior
nonfault-states in GR can be done linearly in the size of
GR, i.e., O(|X|2 × |Q| × |Σ|), and identifying the set of
indicator nonfault-states can be achieved by determining all
the nonfault closed SCC in GR using the algorithm in [10],
which can be done in O(|X|3× |Q|3). Therefore the overall
complexity of Algorithm 1 is O(|X|4×|Q|2×|Σ|2 + |X|3×
|Q|3 × |Σ|), which is polynomial in the number of states
and events. Further if G is also deterministic (besides R)
so that GR has a smaller number of transitions, namely,
O(|X|× |Q|× |Σ|), then the verification complexity reduces
to O(|X|2×|Q|2×|Σ|2 + |X|3×|Q|3×|Σ|). Furthermore, if
the mask is “projection-type”, the complexity further reduces
due to a reduction in the number of transitions in GR,
where each state can now only have at most |Σ| outgoing
transitions, and thus the |Σ|2 term will get replaced by |Σ|
in the complexity expression.

VI. CONCLUSION

In this paper, we studied the progosis of fault, i.e., its
prediction prior to its occurrence, for stochastic discrete event
systems. We formulated the notion of Sm-Prognosability
for stochastic DESs, generalizing the corresponding notion
from the logical setting [1], [2], and showed that it is a
necessary and sufficient condition for the existence of a
prognoser that can predict a fault at least m-steps prior to
its occurrence, while achieving any arbitrary false alarm and
missed detection rates. A polynomial complexity algorithm
for the verification of Sm-Prognosability was also provided.
There are several directions for future research: 1) An
online recursive prognosis algorithm to compute the state
distribution resulted by an observation o, π(o), so as to be
able to check whether P ∗N (o) ≤ ρ by checking if π(o) falls
within a suitable range, and 2) algorithms for computing the
decision threshold ρ and the largest possible reaction bound
m for a given performance requirement φ, τ > 0 of FA
and MD rates. Also, the applications of probabilistic model
checking (see [11] and the references therein) for stochastic
prognosis computations, and the prediction of violation of
requirement expressed as temporal logic ([12], [13], [14])
would be other directions for future research.
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