
Operations Optimization of Hybrid Energy Systems
under Variable Markets

Jun Chen, Member, IEEE, and Humberto E. Garcia, Senior Member, IEEE

Abstract—Hybrid energy systems (HES) have been proposed
to be an important element to enable increasing penetration of
clean energy. This paper investigates the operations flexibility of
HES, and develops a methodology for operations optimization
to maximize its economic value based on predicted renewable
generation and market information. The proposed operations
optimizer allows systematic control of energy conversion for
maximal economic value, and is illustrated by numerical results.

Index Terms—Hybrid energy systems, renewable, operations
optimization.

I. INTRODUCTION

Hybrid energy systems (HES) have been proposed to be
an important element to enable higher penetration of clean
energy generation, [1]–[7]. Prior works suggest that HES can
be operated under flexible operations schedules to accommo-
date the variability introduced from renewable generation and
power markets, [4]–[6]. Such flexibility enables the participa-
tion of HES in several markets including wholesale ancillary
service [4]. HES take energy inputs from Controllable Energy
Resources (CER, e.g., nuclear station), Variable Energy Re-
sources (VER, e.g., wind farm), and Energy Storage Elements
(ESE, e.g., electrical battery). HES typically include one or
more Alternative Production Plants (APP) besides a Power
Cycle (PC). These APP allow the repurposing of energy for
non-electricity commodity production. HES interrelate with
feedstock markets for the procurement of feedstock material,
with power market for the sale of electricity and ancillary ser-
vice, and with commodity market for the sale of commodities
(alternative energy output). Furthermore, each market in turn
includes several forward and spot markets. While a forward
market is a financial market by which contracts for future
delivery of product are cleared, a spot market is such that
commodities are traded for immediate delivery [8].

Optimization on HES has been investigated in the literature,
e.g., [3], [9], [10]. The objective of the proposed operations
optimizer is to compute operations schedule among HES con-
stituents for optimal economic performance. Such operations
optimizer collects predicted information on VER generation
and various market information, and updates the operations of
the given HES through low-level controllers according to the
computed optimized schedule.
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Fig. 1. Computational flow of the proposed operations optimizer.

The computational flow of the proposed operations op-
timizer is shown in Fig. 1. For each delivery time t (at
which all the products sold in each forward market [ForM]
and spot market [SM] need to be delivered), N forward
markets and one spot market are considered. The optimization
starts at ForM1 by computing the optimal strategy between
selling products at ForM1 and holding resources for the next
available market, based on current prices and prediction of
VER generation and future prices. The optimization problem
at ForM1 is constrained by C1 resulted from system dynamics
and available resources. Such optimization repeats for each
ForM and then also for SM. Similar to the case of ForM,
the optimization for SM is based on the SM prices and VER
profile, and is constrained by CS . At each delivery time t, the
optimal operations schedule is computed by adding the optimal
strategies resulted from each forward and spot market.

The contributions of this work are as follows: (1) a frame-
work to economically optimize operations of HES under
variable renewable generations and market volatility; (2) eval-
uate, under the proposed operations optimizer, the economic
viability of HES.

II. NOTATIONS AND PRELIMINARIES

HES configuration: In general, HES may consist of mul-
tiple generation units including CER and VER, and multiple
energy conversion units besides Power Cycle. Without loss of
generality, HES considered here include one CER (denoted
as Primary Heat Generation or PHG), one VER (modeled
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Fig. 2. Architectural topology of considered HES in this work.

as renewable energy input and denoted as REN), and one
APP, as shown in Fig. 2. Note that APP may require process
steam and/or electricity for production, and an Auxiliary Heat
Generation (AHG) may be used to generate on-demand steam
if required by APP.

Optimization methodology: The standard form of a con-
strained optimization problem is given as follows:

minimize f(x)

subject to gi(x) ≤ 0 i = 1, . . . , k

hi(x) = 0 i = 1, . . . , p

where f(x) : Rn → R is the objective function to be mini-
mized over decision variables x, and gi(x) and hi(x) are the
set of inequality and equality constraints, respectively. To solve
this general optimization problem, one needs to design an
algorithm that iterates the values of the decision variables and
terminates only when certain conditions regarding the values
of the objective function and constraints are met (e.g., Karush-
Kuhn-Tucker [KKT] conditions [11]). Numerous algorithms,
including gradient-based and gradient-free methods have been
developed and applied to a wide variety of optimization
problems, e.g., [12] and [13]. In this paper, the interior-point
method [14] that aims at solving linear and nonlinear convex
optimization problems is chosen as the optimizaton algorithm.

Electric power market: A common practice in deregu-
lated power market is the two-settlement process consisting
of day-ahead market and real-time market. Day-ahead market
(DAM) is a forward market in which offers and bids on
electricity and ancillary service are made for each hour of
the next day. DAM is cleared and closed before the delivery
date. On the other hand, to balance the difference between
commitment in DAM and the actual demand, real-time market
(RTM, a spot market) allows the transactions on electricity
and ancillary service during the course of the operating day,
with delivery time near “real-time” (e.g., within one hour).
The delivery period can vary from five minutes to half hour
depending on market designs. In this work an RTM with
delivery period of 15 minutes is investigated.

III. ECONOMIC FUNCTIONS

A. Economic figures of merit (FOM)

The economic FOMs considered here include net present
value (NPV), payback period, and internal rate of return (IRR).

In particular, NPV is defined as follows [15]:

NPV =

N∑
k=0

FCFFR,k

(1 + rR)k
, (1)

where N is the years of operations of HES, rR denotes the
discount rate (assumed to be 5%) used in computing weighted
average cost of capital (WACC), and FCFFR,k is the real
discounted Free Cash Flow to Firm for year k, defined as:

FCFFR,k = (Rk − CO&M,k −DAk(1 + i)−k)(1− σ)

+DAk(1 + i)−k − Cghg,k − CAPEXk, (2)

where σ is tax rate, and i is inflation rate (assumed to be 3%).
CAPEXk (capital expense) only occurs when k = 0, i.e.,
year 0, given by CAPEX0 = Ccap, and CAPEXk = 0 for
all k > 0. The capital cost Ccap, operations and maintenance
(O&M) cost CO&M,k, cost for greenhouse gas (GHG) emis-
sion Cghg,k, and revenue Rk, for year k, are given by equations
(3), (4), (6), and (7), respectively, in the following sections.
Depreciation and amortization for year k for tax deduction un-
der Modified Accelerated Cost Recovery Systems (MACRS),
i.e., DAk in (2), is calculated by DAk = ρda,kCcap, where
ρda,k is the DA rates1 at year k.

Payback period, or payback time, is defined as the years of
operations such that NPV equals 0 [17]. Finally, for a fixed
N years of operations, the IRR is defined as the value of the
discount rate rR such that NPV equals 0 [18].

B. Economic functions for cost and revenue

Economic functions introduced here are necessary for com-
putations of above economic FOMs. For simplicity of pre-
sentation, we only consider spot market for feedstock and
alternative product, and one forward market and one spot
market for electricity. Note that while some variables are
varying with respect to time t, they are denoted without
subscript t when there is no confusion.

a) Capital cost: The capital cost Ccap associated with
building HES includes costs relevant to PHG (including PC),
AHG (optional), APP, REN, and ESE as follows:

Ccap = Cphg + Cahg + Capp + Cren + Cese. (3)

The capital cost for PHG (including PC) is calculated as:
Cphg = αphgNphg , where αphg is the capital cost per unit
of installed capacity and Nphg denotes the installed capacity
of PHG. Similar equations are formulated for computing Cahg ,
Capp, Cren, and Cese by replacing the subscript “phg” with
ahg, app, ren, and ese, respectively.

1ρda,k for k ≤ 16, i.e., the first 16 years, are 5.00%, 9.50% , 8.55%,
7.70%, 6.93%, 6.23%, 5.90%, 5.90%, 5.91%, 5.90%, 5.91%, 5.90%, 5.91%,
5.90%, 5.91%, 2.95%, respectively, and 0% afterwards [16].
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b) Operations and maintenance cost: The O&M cost
CO&M,k for year k can be further divided into fixed O&M
cost, O&Mf , and variable O&M cost, O&Mv , i.e.,

CO&M,k = O&Mf +O&Mv. (4)

Note that O&Mf includes O&M cost that is relatively constant
with respect to operations, while O&Mv essentially corre-
sponds to the cost of fuel and other feedstock. Similarly to
capital cost, O&Mf and O&Mv are given as following:

O&Mf = O&Mf phg +O&Mf ahg +O&Mf app

+ O&Mf ren +O&Mf ese

O&Mv = O&Mv ahg +O&Mv app, (5)

with O&Mf ahg and O&Mv ahg being optional (depending
on specific HES configuration). The fixed O&M cost for PHG
is calculated as: O&Mf phg = βf phgCphg , where βf phg is
used to indicate that the (annual) fixed O&M cost for operating
PHG is a fraction of its capital cost. Similar equations are for-
mulated for computing O&Mf ahg , O&Mf app, O&Mf ren,
and O&Mf ese by replacing the subscript “phg” with ahg,
app, ren, and ese, respectively. The variable O&M cost for
APP is calculated by:

O&Mv app =

Napp∑
n=1

∫ T

0

βv app,nMv app,ndt,

where T is the considered time period (e.g., a year), Mv app,n

and βv app,n are the consuming rate and price of the nth feed-
stock, respectively. Similar equation for AHG is formulated by
replacing the subscript “app” with “ahg”.

c) Greenhouse gas emission cost: Since CO2 is the
dominant GHG, this cost is essentially equal to the CO2 cost,
computed as follows:

Cghg,k =

∫ T

0

βco2Mco2dt, (6)

where βco2 is the taxation rate over CO2 and Mco2 is the
combined CO2 emission rate by all components within HES.

d) Revenues from sale of electricity and commodity: The
revenue Rk for year k can be computed as

Rk = Rda,e +Rda,as +Rrt +Rapp, (7)

where Rda,e, Rda,as, Rrt and Rapp represent the revenues
from sale of electrical energy in DAM, sale of ancillary
services in DAM, sale of electrical energy in RTM, and sale
of alternative product in commodity market. Rda,e can be
computed by Rda,e =

∫ T

0
πda,ePda,edt, where πda,e is the

price of electrical energy in DAM and Pda,e is the amount
of power sold in DAM, both potentially varying with time.
Similar equations are formulated for computing Rda,as, Rrt,
and Rapp by replacing the subscript “da, e” with “da, as”,
“rt”, and “app”, respectively. When the ancillary service is
called for, the energy delivered as ancillary service will be
remunerated at the real-time price πrt. This “hidden” revenue
is implicitly included in Rda,as as shown in Section IV.

IV. ECONOMIC OPTIMIZATION OF OPERATIONS

It is not hard to see that, maximizing the NPV, minimizing
the payback period Tpb, and maximizing the IRR, are all
equivalent to maximizing the FCFFR,k defined in (2) for
each year k (assuming system design is fixed). By dropping
from (2) the terms that are constant with respect to operations,
which include O&Mf , CAPEXk, and terms related to DAk,
the objective function for operations optimization is thus
formulated as:

J = (Rk −O&Mv)(1− σ)− Cghg,k. (8)

In the following sections, two operations optimizers are in-
troduced, one for DAM and one for RTM. The optimizer for
DAM, denoted as DAO (day-ahead optimizer), maximizes (8)
by computing the optimal amounts of energy and ancillary
service capacity sold in DAM, as well as the amount of energy
held to participate in RTM. It is assumed that the price in
RTM and the renewable generation available at the delivery
time need to be predicted by DAO, while all other price
information are well known. On the other hand, the optimizer
for RTM, denoted as RTO (real-time optimizer), maximizes
(8) by computing the optimal amount of energy sold in RTM,
based on the results of DAO. It is assumed that both price in
RTM and renewable generation are known by RTO.

A. Optimization for day-ahead market

For each hour interval, the objective function for DAO is
given as, by expanding (8) using (5), (6), and (7),

Jda = (1− σ)

∫ ∆T

0

[πda,ePda,e + (πda,as + pasπ̃rt)Pda,as

+ π̃rtPda,rt + πappM̃app −
Napp∑
n=1

βv app,nM̃v app,n

−
Nahg∑
n=1

βv ahg,nM̃v ahg,n]dt−
∫ ∆T

0

βco2M̃co2dt, (9)

where ∆T is one hour interval, Pda,rt is the amount of
power held to participate in real-time market, and notation ·̃
means the prediction of corresponding variables. The decision
variables considered by DAM are Pda,e, Pda,as, Pda,rt, M̃app,
M̃v app,n, n = 1, . . . , Napp, M̃v ahg,n, n = 1, . . . , Nahg .
Constraints over decision variables are given as follows,

P̃app + Pda,e + Pda,rt = Pphg + P̃ren (10)

PL
app ≤ P̃app ≤ PU

app (11)

Pda,as ≤ P̃app − PL
app (12)

fi(Pda,e, Pda,as, Pda,rt, M̃v app,1, . . . , M̃v app,Napp

M̃v ahg,1, . . . , M̃v ahg,Nahg
, M̃app, M̃co2) = 0. (13)

Combining (10) and (11) gives PL
app ≤ Pphg + P̃ren−Pda,e−

Pda,rt ≤ PU
app, or equivalently

Pphg + P̃ren − PU
app ≤ Pda,e + Pda,rt ≤ Pphg + P̃ren − PL

app.
(14)
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Similarly, combining (10) and (12) gives Pda,as ≤ Pphg +

P̃ren − Pda,e − Pda,rt − PL
app, or equivalently

Pda,e + Pda,as + Pda,rt ≤ Pphg + P̃ren − PL
app. (15)

To ensure that the above constraints (14) and (15) are satisfied
within the entire period of each hour, we have:

Pphg + P̃U
ren − PU

app ≤ Pda,e + Pda,rt ≤ Pphg + P̃L
ren − PL

app

(16)

Pda,e + Pda,as + Pda,rt ≤ Pphg + P̃L
ren − PL

app, (17)

where P̃U
ren and P̃L

ren are the maximum and minimum of the
predicted renewable generation within the hour. Furthermore,
it is also assumed that the capacity sold as ancillary service
and the energy held for real-time market cannot exceed certain
limits, denoted as PU

da,as and PU
da,rt, respectively. Therefore,

0 ≤ Pda,as ≤ PU
da,as (18)

0 ≤ Pda,rt ≤ PU
da,rt. (19)

Finally, we have
Pda,e ≥ 0. (20)

In summary, the optimization problem for DAM is formu-
lated as:

maximize Jda as in (9)

subject to (10), (13), (16)− (20)

B. Optimization for real-time market

For each quarter hour interval, the objective function for
RTO is given by expanding (8) using (5), (6), and (7), as:

Jrt = (1− σ)

∫ ∆T

0

[πda,ePda,e + (πda,as + pasπrt)Pda,as

+ πrtPrt + πappMapp −
Napp∑
n=1

βv app,nMv app,n

−
Nahg∑
n=1

βv ahg,nMv ahg,n]dt−
∫ ∆T

0

βco2Mco2dt, (21)

where, with a slight abuse of notation, ∆T is a quarter hour
interval, and Prt is the amount of electricity sold in RTM.
The decision variables considered by RTO are Prt, Mapp,
Mv app,n, n = 1, . . . , Napp, Mv ahg,n, n = 1, . . . , Nahg ,
and Mahg,co2 . Since in this case DAM has been closed and
all transactions are cleared, Pda,e and Pda,as are no longer
variables and their values throughout the course of the day
are fixed by DAO. Likewise, constraints can be reformulated
as follows:

Papp + Pda,e + Prt = Pphg + Pren (22)

PL
app ≤ Papp ≤ PU

app (23)

Pda,as ≤ Papp − PL
app (24)

fi(Pda,e, Pda,as, Pda,rt,Mv app,1, . . . ,Mv app,Napp

Mv ahg,1, . . . ,Mv ahg,Nahg
,Mapp,Mco2) = 0. (25)

Combining (22) and (23) gives PL
app ≤ Pphg +Pren−Pda,e−

Prt ≤ PU
app, or equivalently

Pphg+Pren−Pda,e−PU
app ≤ Prt ≤ Pphg+Pren−Pda,e−PL

app.
(26)

Similarly, combining (22) and (24) gives Pda,as ≤ Pphg +
Pren − Pda,e − Prt − PL

app, or equivalently

Prt ≤ Pphg + Pren − Pda,e − Pda,as − PL
app. (27)

To ensure that the above constraints (26) and (27) are held
within the entire period of each quarter hour, we have:

Pphg+PU
ren−Pda,e−PU

app ≤ Prt ≤ Pphg+PL
ren−Pda,e−PL

app

(28)
Prt ≤ Pphg + PL

ren − Pda,e − Pda,as − PL
app, (29)

where PU
ren and PL

ren are the maximum and minimum of the
renewable generation within that quarter hour. Furthermore,

Prt ≥ 0. (30)

When the real-time price of electricity is non-positive, none
of the electricity should be sold in RTM. Hence, in this case

Prt = 0. (31)

In summary, the optimization problem for RTM is formu-
lated as:

maximize Jrt as in (21)

subject to (22), (25), (28)− (30)

(31) if πrt ≤ 0

Remark 1: To check the feasibility of this optimization
problem, define

B1 := Pphg + PU
ren − Pda,e − PU

app

B2 := Pphg + PL
ren − Pda,e − PL

app

B3 := Pphg + PL
ren − Pda,e − Pda,as − PL

app.

It can be verified that B2 ≥ B1 and B2 ≥ B3, so the feasible
condition for the above optimization problem is given by:

• When πrt > 0, then it is feasible only if min(B2, B3) ≥
max(0, B1), which in turn requires B3 ≥ max(0, B1).

• When πrt ≤ 0, then it is feasible only if
min(0, B2, B3) ≥ max(0, B1), requiring B1 ≤ 0 ≤ B3.

When it is not feasible, any operations in RTM will violate
either (28) or (29). In this case, a standby ESE is charged
or discharged to ensure energy balance within HES (i.e., the
feasibility of above optimization problem).

V. NUMERICAL RESULTS AND DISCUSSIONS

This section presents numerical results to illustrate the
proposed operations optimizer. A specific HES configuration
taken from [4], [5], termed as HES FEL (hybrid energy system
with flexible electrical load), is utilized here for discussion.
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A. Hybrid Energy System with Flexible Electrical Load

HES FEL includes the following primary components:
• PHG: a nuclear reactor and a steam generator;
• PC: a Rankine cycle consisting of steam generator, tur-

bines, electric generator, condenser, feedwater pumps and
heaters, producing electricity up to 180 MW;

• REN: a solar photovoltaic (PV) station with nominal
capability of up to 30 MW;

• ESE: two electrical batteries, with storage capacities of
52.7 MWh and 10 MWh, respectively;

• AHG: none;
• APP: a reverse osmosis desalination plant (RODP) able

to utilize up to 45 MW electricity and convert saline or
brackish water into fresh water and brine;

• sufficient saline or brackish water and an electric grid
connected to HES FTL at a point of common coupling.

In HES FEL, an RODP is used as APP, requiring electricity
as its energy input (no AHG is present). The production rate
of RODP is varying between PL

app = 15 MW and PU
app =

45 MW, as dictated by the operations optimizer. The variable
O&M cost of RODP is presented by a lump-sum variable cost,
i.e., Napp = 1, with βv app,1 being a lump-sum coefficient.
The equality constraints (13) can be rewritten as2:

Mapp = k0 + k1Papp + k2P
2
app (32)

Mco2 = 0.

B. Simulation setup

The prices for electricity and ancillary service in DAM,
and price of electricity in RTM, all provided by ERCOT3

(Electric Reliability Council of Texas), are used for πda,e,
πda,as and πrt, respectively, as shown in Fig. 3(a) for a
selected period of 14 days. The price of water is based on
the monthly residential price in Phoenix, Arizona4, which is
scaled such that the average of the time series is $0.6 per cubic
meters, corresponding to the cost for purchasing groundwater
or surface water in Arizona [19], as shown in Fig. 3(b).

The predicted and actual renewable generation are synthe-
sized based on reference time series (denoted as refr) com-
puted from solar irradiation measurement data5. For a fixed
prediction error rate pr, the time series of predicted renewable
generation for DAO (denoted as predr) is synthesized so
that it is uniformly distributed within range (1 ± pr)refr.
The time series of actual renewable generation (denoted as
actr) is synthesized so that, with probability of 0.9, it is
uniformly distributed within range (1 ± pr)refr and, with

2The values for k0, k1, and k2 in (32) are determined by simulations of
HES FEL modeling in Modelica, and are given as k0 = 301.77, k1 =
442.20, and k3 = −2.16.

3Downloaded from http://www.ercot.com/mktinfo/prices/index.html on
February 4, 2015. The time series is scaled by 0.75 to reflect the conser-
vativeness of HES in bidding.

4Downloaded from https://www.phoenix.gov/waterservices/customerservices
/rateinfo on February 5, 2015.

5Downloaded from http://www.nrel.gov/midc/ssrp/ on November 21, 2014,
provided by Southwest Solar Research Park dataset maintained by NREL
(National Renewable Energy Laboratory).
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Fig. 3. (a) Prices for electricity and ancillary service for selected 14 days;
(b) Water price for a whole year.

probability of 0.1, it is uniformly distributed within range
([1+pr)refr, (1+2pr)refr]∪ [(1−2pr)refr, (1−pr)refr].
The prediction of real-time electricity price for DAO is carried
out in a similar fashion. For a fixed prediction error rate pm,
the time series of predicted real-time electricity price (denoted
as predm) is synthesized so that it is uniformly distributed with
range (1± pm)refm, where the reference time series refm is
shown in Fig. 3(a). The time series of actual price (denoted
as actm) is synthesized by actm = refm. Table I lists all the
parameter values assumed in the simulations.

C. Numerical results

Fig. 4 presents the optimization results for selected 14 days,
assuming perfect prediction, where Fig. 4(a) shows the optimal
electricity sold in DAM, ancillary service sold in DAM, and
electricity sold in RTM, respectively, and Fig. 4(b) shows
the total electricity delivered to the electric grid and net load
(electrical generation delivered to the electric grid by PHG).
Note that the scenarios in which committed ancillary service
is called for are also simulated and included in Fig. 4(b).

To demonstrate the advantage of proposed operations op-
timizer, a simulation is conducted with constant operations
(i.e., Pda,e is fixed at 165 MW, and both Pda,as and Prt

areassumed to be 0). Table II shows that FCFFR,1 with
operations optimizer increases by 82.38% compared to that
of constant operations mode. Fig. 5 plots NPV as a function
of operations time. The payback period is about 15.29 years,
and the IRR for 30 years of operations is 8.2%, both under
the optimized case.

Furthermore, Fig. 6 shows that the decrease of FCFFR,1

resulted by imperfect prediction monotonically increases as
renewable prediction error (left) or real-time electricity price
prediction error (right) increases, as expected.
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TABLE I
PARAMETER VALUES USED SIMULATION

Component Parameter Value Unit Ref.
Nuclear & αphg 4718 $ kW−1 [20], [21]
Power Cycle βf phg 5.2 % [22]

Nphg 180,000 kW [5]
PV Station αren 5385.98 $ kW−1 [23]

βf ren 1 % [24]
Nren 30,000 kW [5]

Storage αese 81.42 $ kWh−1 [2]
βf ese 3 % [2]
Nese,1 52,700 kWh [5]
Nese,2 10,000 kWh Sec. V-A

RO αapp 32,076.21 $ kg−1s [25]
Desalination βf app 15 % [25]
Plant βv app,1 6.6e−5 $ kg−1 [26]

Napp 15614 kgs−1 [5]
πapp $ kg−1 Fig. 3
k0 301.77 kgs−1 footnote2

k1 442.20 kgs−1MW−1 footnote2

k2 -2.16 kgs−1MW−2 footnote2

Electricity πda,e $ MWh−1 Fig. 3
πda,as $ MWh−1 Fig. 3
πrt $ MWh−1 Fig. 3
pas 0.3 % [27]

Inflation Rate i 3 % Sec. III
Discount Rate rR 5 % Sec. III
(WACC)
DA Rates ρda,k footnote1 % [16]
Tax Rate σ 40 % [28], [29]
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Fig. 4. Optimization result for selected 14 days (HES FEL) assuming perfect
prediction: (a) Optimal electricity and ancillary service sold in each market;
(b) Total electrical generation and net load to PHG.

VI. CONCLUSIONS AND ONGOING EFFORTS

This paper proposed an operations optimizer for hybrid en-
ergy systems (HES) to maximize their economic performance
based on predicted renewable generation and market infor-
mation. The proposed operations optimizer allows systematic
control of energy conversion for maximal economic value,
hence improving the economic attractiveness of HES. Simula-
tion results of a specific HES configuration demonstrated the
advantage of the proposed operations optimizer. Future efforts

TABLE II
REAL DISCOUNTED FCFF FOR THE FIRST YEAR OF OPERATIONS

Economic value Optimal mode Constant mode Gain
Revenue - Electricity $38,256,342 $41,665,881 -8.18%
Revenue - Fresh water $301,385,549 $178,461,804 68.88%
Cost - RODP ($32,775,861) ($19,360,846) 69.29%
FCFF $140,938,245 $77,278,730 82.38%
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Fig. 5. NPV as a function of operations time, assuming perfect prediction.
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Fig. 6. Deviation of first year FCFF as a function of prediction errors.

include: (1) operations optimization under even more complex
market dynamics; (2) model predictive control for operations
to optimize combined technical and economic performance.
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