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Abstract—This paper focuses on probabilistic analysis of hy-
brid energy systems (HES), which integrate multiple energy
inputs and multiple energy outputs for effective management of
variability in renewable energy and grid demand. To characterize
the volatility, a statistical model combining Fourier series and
autoregressive moving average (ARMA) is used to generate
synthetic weather condition (e.g., wind speed) and grid demand
data. Specifically, Fourier series is used to model the seasonal
trends in historical data, while ARMA is applied to characterize
the autocorrelation in residue time series (e.g., measurements
with seasonal trends subtracted). The synthetic data is shown to
have same statistic characteristics with historical measurements,
but possesses different temporal profile. The probabilistic analysis
of a particular HES configuration is then performed, which
consists of nuclear power plant, wind farm, battery storage,
and desalination plant. Requirements on component ramping
rate, and the effects of deploying different sizes of batteries in
smoothing renewable variability, are all investigated.

Index Terms—Hybrid energy systems, renewable energy inte-
gration, synthetic data generation, autoregressive moving average

I. INTRODUCTION

Hybrid energy systems (HES) that consist of multiple en-
ergy generations/utilizations have been proposed in literature
[1]-[7] to address our energy concerns and to enable higher
level of renewable energy utilization. By integrating more
than one energy resources and consumptions, HES can act
as a highly responsive device and can be operated under
flexible operations schedules to accommodate the variability
introduced from renewable generation, modern loads (such
as electric vehicles), and markets [4]-[7]. For example, [7]
shows that by utilizing an operations optimization, HES can
participate in both day ahead and real time electricity markets
as well as ancillary service market. However, these prior
analyses were performed based on historical measurements
on weather condition and electric demand, and hence only
a limited number of measurements database were used. The
objective of this paper is then to study the technical perfor-
mance of HES under synthetic weather and grid load data,
which are statistically conformed to actual measurement and
allows probabilistic analysis of HES.

The synthetic wind speed data generation has been studied
in the literature. For example, [8] uses autoregressive moving
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average (ARMA) model to generate noises, and adds the sam-
pled noises to the historical data, while [9]-[11] use trained
ARMA or AR model, together with sampled white noise, to
generate scenarios. To fulfill the assumption of ARMA that
time series are normally distributed, the measurement data may
need to be transformed into Gaussian distribution before being
used to train the model. Reference [10] further normalizes the
transformed time series with respect to each hour for each
month. Reference [12] uses AR-GARCH (autoregressive gen-
eralized autoregressive conditional heteroskedasticity) model
for wind speed prediction, which allows the regression of
both mean and variance. The prediction outputs, in terms of
the mean and variance of the wind speed/power, can be used
to sample synthetic scenarios. On the other hand, synthetic
electric load data generation has also been investigated in
literature. For example, [13] uses AR model to fit available
sub-hour load data. The linear and Fourier terms are used to
fit the seasonal trend, with remaining irregular load modeled
by a AR model. Reference [14] uses ARMA to fit the
residues that are resulted by detrending with seasonal latent
variables. Reference [15] also decomposes the load data into
deterministic seasonal trend part and irregular part. Both parts
are used to train neural network (NN), one for each, which are
used to generate forecast. Reference [16] combines wavelet
transform with NN approach, while [17] uses Bayesian belief
network to improve available load forecasting.

In this paper, a combined model with Fourier series and
autoregressive moving average is utilized to model the mea-
surement data statistically and to generate synthetic wind
speed and electric load data. In particular, Fourier terms are
used to capture the seasonal trends in yearly measurements and
ARMA is then used to model the autocorrelation in residues
(i.e., measurements with seasonal trends subtracted). After
training the model over historical data by finding optimal
parameters, the combined model can then be used to generate
synthetic data, which consists of generating independent white
noise for each time step, utilizing ARMA model and the
synthesized white noise to compute residues for each time
step, and finally adding the Fourier terms representing seasonal
trends. In order to validate the proposed model, several key
statistics, including mean, variance, and empirical cumulative
distribution function, will be computed for both actual mea-
surements database and synthetic data, to verify the match
between database and synthetic data. The synthetic data for
both renewable and load will in turn be utilized to analyze a
particular HES configuration, which includes a nuclear power
plant, wind farm, battery storage, and desalination plant. In
particular, 3000 synthetic scenarios of wind speed and electric
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demand are generated to simulate the HES configuration, while
various probabilistic analysis are performed to understand the
requirements on component power consumption and ramp-
ing rate in order to accommodate variability introduced by
renewable generation and electric demand. Furthermore, the
effects of employing different sizes of batteries for variability
smoothing will also be investigated.

The rest of this paper is organized as follows. Section II
presents the theoretical foundation of the proposed model. The
HES configuration under study is presented in Section III, and
results on model validation and probabilistic analysis of HES
are given in Section I'V. Finally, Section V concludes the paper.

II. SYNTHETIC DATA GENERATION
A. ARMA Model and Identification

Autoregressive moving average (ARMA) model with orders
p and q, often referred to as ARMA(p,q), is given as [18]:

P q
:Z(ﬁixtfi‘f'at“rzejatfﬁ (D
i—1 =1

where the process variable z is a vector of dimension n, and
parameters ¢; for ¢ = 1,...,p and 0; for j = 1,...,q are
both n by n matrices. The noise term « is usually assumed to
be white noise. Given an ARMA(p,q) model, its parameters
¢;’s and 0;’s can be estimated by the following maximum
likelihood estimator (MLE). Denote the covariance of « to be
3, and

Define the parameters to be estimated as 7 =
(D15 s p.01,...,04,0%,...,0%). Given T number of
measurements of the process variable x, denoted as
r1,T3,...,2T, the the likelihood function over 7 can be

written as:
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where the estimation of the error term at time ¢, i.e., &; can
then be recursively computed as:
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Furthermore, the log-likelihood function, i.e., log L(7), can be
expressed as:

nT T
log L(n) = 5 log(2m) — 9 log [X] —

1 X
3 > &ra.
t=1
The MLE of 7 is then given by
7} := argmax log L(n). 3)

Furthermore, the order p and ¢ are selected by Bayesian
information criterion (BIC), defined as:

log(T')(p + q)

T )
where 62 is the determinant of 7 X. Tt is not hard to see that
the first term on the right hand size captures how the model
fits to the data, while the second term penalizes larger model
to prevent overfitting. For a more detailed treatment of time
series and ARMA model please refer to [18].

BIC(p,q) = log(6?) +

B. Seasonal Trend and Normality Transform

To model the seasonal trends in historical data, the following
Fourier series is used:

F, = Z {ak sin(2m fit) + by, cos(2m fiit)} . 4)
k

The set of frequency {f;} is user-defined parameters, and
the coefficient {ax} and {b;} can be estimated by linear
regression.

In general, renewable source and load profile do not satisfy
the normality assumption, even after seasonal trends being ex-
tracted. To mitigate this problem, the residues are transformed
to have Gaussian property [9], [10], [18] before applying the
MLE of (3). Define a new stochastic process y, which has a
standard normal distribution, as follows:

ye =7 [fa — )], &)

where f is the empirical cumulative distribution function
(CDF) of the residues and ® is the CDF function of the
standard normal distribution. The trained ARMA model can
then be used to simulate process y, which is in turn used
to generate the scenarios by an inverse transformation, as
following:

z = [H@(ye)] + Fr. (6)

III. HES CONFIGURATION

The HES under study is shown in Fig. 1, which includes

the following components:

o a heat generation plant with 180 MW capacity', con-
sisting of a small modular reactor (SMR) and a steam
generator,

« aseries of steam turbines, feedwater systems, and heaters,
paired with an electric generator that converts steam into
electricity,

!For simplicity, all power calculations will be expressed using the electrical
equivalence (in MW) of the particular power stream, assuming fixed thermal-
to-electrical conversion efficiency.
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Fig. 1. Topology of the hybrid energy system configuration considered in
this paper.

« a series of wind turbines as renewable power generation
source with total capacity of 15 MW,

o electrical storage (i.e., a system scale battery set) used
for power smoothing of the electricity generated by wind
turbines,

« a Brackish water reverse osmosis (RO) desalination plant
that converts saline water to fresh water by consuming
electricity between 15 MW and 45 MW,

e electric grid connected to HES at a point of common
coupling and consuming electricity between 150 MW and
165 MW.

In the following, we briefly describe the modeling of wind
power generation unit. For the detailed modeling of the rest
components, please refer to [5]-[7]. The wind farms consist
of 10 wind turbines, each rated at 1.5 MW and located
on a 2 square kilometer site for a maximum of about 15
MW generation at full production. Each wind turbine is then
modeled as a mapping function from wind speed to power
output, as follows.

0 if U <3m/sorU > 25m/s

0.5npU3 =L if 3 m/s < U < 14 m/s
1.5 if 14 m/s < U < 25 m/s

Eren =

(N
where 7 is the conversion efficiency of the wind turbine, p is
the density of the air at the site, U is the wind speed, and d
is the diameter of the turbine blades. In this study the values
used for each parameter in equation (7) are: n = 35%, p =
1.17682 g/m3, d = 58.13 m.

IV. RESULTS AND DISCUSSION

A. Model Characterization and Validation

This section presents the results on model characterization.
The wind speed database® used to train the model for wind
speed data generation is shown in Fig. 2(a), while the seasonal

2Downloaded from the Eastern Wind dataset maintained by NREL (Na-
tional Renewable Energy Laboratory) at http://www.nrel.gov/electricity/trans
mission/eastern_wind_dataset.html on November 21, 2014.
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Fig. 2. Wind speed data used to train the model: (a) Whole year data; (b)
Seasonal trend extracted.
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Fig. 3.  Demand data used to train the model: (a) Whole year data; (b)
Seasonal trend extracted.

trends, modeled as Fourier series of equation (4), is given in
Figure 2(b). Likewise, the demand database’ used to train the
model for load data generation is shown in Fig. 3(a), while
the seasonal trends is given in 3(b).

Fig. 4 plots the synthetic wind speed scenario and the actual
database for selected 7 days, which exhibit similar dynamics
and volatility. Furthermore, Table I compares several key
statistics (mean, standard deviation, etc) between the synthetic
and actual database, while empirical cumulative distribution
functions (CDF) of synthetic wind speed and database are
compared in Fig. 5, suggesting good match between synthetic
wind speed scenarios and database. Likewise, Fig. 6 plots the
synthetic electric demand scenario and the actual database for
selected 7 days, which exhibit similar dynamics and volatility.
Furthermore, Table II compares several key statistics (mean,
standard deviation, etc) between the synthetic and actual
database, while empirical CDF of synthetic electric demand

3Downloaded from Electric Reliability Council of Texas at
http://www.ercot.com/gridinfo/load/load_hist/ on December 11, 2014.
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Fig. 4. Synthetic wind speed scenario and the actual database for selected
7 days.

TABLE I
COMPARISON BETWEEN SYNTHETIC WIND SPEED AND DATABASE

Variable Database | Synthetic
Mean (wind speed) 8.078 8.088
Standard deviation (wind speed) 3.392 3.372

Mean (step to step difference) 0 0
Standard deviation (step to step difference) 0.659 0.642

and database are compared in Fig. 7, suggesting good match
between them.

B. Probabilistic Analysis of HES

To demonstrate the benefit of the synthetic scenarios, Fig.
8 plots the actual wind speed together with 50 synthetic
scenarios, while Fig. 9 plots the actual electric demand with
50 synthetic scenarios, both for 48 hours. As can be seen, for
both wind speed and electric demand, each synthetic scenario
possesses very different temporal profile from the database.
Considering that the synthetic data possesses same statistical
characteristics with database while having different temporal
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Fig. 5. Empirical CDF of synthetic wind speed and actual database.
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Fig. 6. Synthetic electric demand and the actual database for selected 7 days.

TABLE I
COMPARISON BETWEEN SYNTHETIC ELECTRIC DEMAND AND DATABASE

Variable Database | Synthetic
Mean (demand) 1102.3 1103.4
Standard deviation (demand) 222.2 223.8

Mean (step to step difference) 0 0
Standard deviation (step to step difference) 48.4 54.2

profile, they can be used for Monte Carlo simulation and prob-
abilistic analysis of energy integration systems, while avoiding
bias introduced by using the same database. In the rest of
this sections 3000 synthetic wind speed and electric demand
scenarios will be generated to simulate the HES configuration
introduced in Section III. In all of the simulations, the HES is
operated in such a way that the nuclear power plant provides
constant maximum output of 180 MW.

Fig. 10 plots the turbine output, grid demand, and RO
set point for 7 days. As can be seen, in order to follow
the variability in grid demand while absorbing the volatility
in wind turbine output, the RO plant needs to be operated
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Fig. 7. Empirical CDF of synthetic electric demand and actual database.
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Fig. 9. 50 synthetic electric demand scenarios and database for 48 hours.

dynamically (since the SMR is operated in constant full
production mode). Fig. 11 shows the histogram of yearly
average ramping rate of RO for 3000 synthetic scenarios, while
Fig. 12 shows the histogram of hourly fresh water production
for a whole year using database. In particular, it requires RO
to ramp averagely 24 kW/min in order to absorb the volatility.
As discussed in [5]-[7], a battery storage can be used to
smooth the variability of the wind farm production before
sending the renewable power to HES. To analyze the effects
of such battery storage, multiple Monte Carlo simulations
are performed, each with different battery storage capacity,
namely, no battery, 5 MWh, 10 MWh, and 15 MWh. Fig. 13
plots the box plots of maximum yearly rates on RO ramping
up and down, suggesting less RO ramping is needed if larger
battery is employed to smooth renewable generation. Fig. 13
also suggests that, for this particular HES configuration, the
battery has larger effects on relaxing the RO ramping down
requirement than that of ramping up. Finally, Fig. 14 plots the
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Fig. 10. Turbine output, grid demand, and RO set point for 7 days.
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Fig. 11.

Histogram of yearly average RO ramping rate for 3000 synthetic
scenarios.

box plots of RO hourly fresh water production under synthetic
scenario for different battery sizes. Since the hourly production
depends on the total energy consumption within that hour

instead of its volatility, it is only marginally affected by the
battery size.

V. CONCLUSION

This paper proposed a computational model, based on
Fourier series and autoregressive moving average, to generate
synthetic wind speed and electric demand data, which are
shown to possess the same statistical characteristics with
historical measurements. Probabilistic analysis of a particular
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hybrid energy systems configuration was performed based on
synthetic data, to understand the component ramping require-
ment and the effects of using larger battery storage. Such
analysis over synthetic data, which are statistically conformed
to database while possessing different temporal profile, avoids
the bias introduced by using the same database. Future work
include synthetic data generation for other renewable resources
such as solar and hydro power.
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