2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

Reinforcement Learning-based Event-Triggered Model Predictive
Control for Autonomous Vehicle Path Following

Jun Chen, Senior Member, IEEE, Xiangyu Meng, Member, IEEE and Zhaojian Li, Senior Member, IEEE

Abstract— Event-triggered model predictive control (MPC)
has been proposed in literature to alleviate the high computa-
tional requirement of MPC. Compared to conventional time-
triggered MPC, event-triggered MPC solves the optimal control
problem only when an event is triggered. Several event-trigger
policies have been studied in literature, typically requiring
a prior knowledge of the MPC closed-loop system behavior.
This paper addresses such limitation by investigating the use
of model-free reinforcement learning (RL) to trigger MPC.
Specifically, the optimal event-trigger policy is learnt by an RL
agent through interactions with the MPC closed-loop system,
whose dynamical behavior is assumed to be unknown to the RL
agent. A reward function is defined to balance the closed-loop
control performance and event frequency. As an illustrative
example, the autonomous vehicle path following problem is
used to demonstrate the applicability of using RL to learn and
execute trigger policy for event-triggered MPC.

I. INTRODUCTION

Model predictive control (MPC) can be applied to both
linear and nonlinear systems and can handle explicit con-
straints on both inputs and states. Therefore, MPC has been
one of the most popular control methods and has been
applied in various systems [1]-[7]. Despite the advantage
of dealing with system constraints, MPC does require high
computational power, since it solves, at each time step, an
optimal control problem (OCP) in the form of a constrained
optimization. The computation required to solve the OCP
further increases when the system dimension and/or pre-
diction horizon increases. To address this limitation, several
techniques have been investigated to reduce the online com-
putation, such as constraints removal [8], explicit MPC [2],
and warm-started solver [9].

Another promising direction to reduce the MPC computa-
tion without significantly degrading the control performance
is event-triggered MPC, in which MPC is triggered to
formulate and solve the OCP only when it is needed (as
opposed to being time-triggered at a fixed sampling rate).
See for example [10]-[16], and the reference therein. By
performing optimization only when it’s necessary, event-
triggered MPC can reduce the online computation signifi-
cantly. In our prior work, we applied event-triggered MPC

This work is supported in part by SECS Faculty Startup Fund and URC
Faculty Research Fellowship at Oakland University.

Jun Chen is with the Department of Electrical and Computer En-
gineering, Oakland University, Rochester, MI 48309, USA (email:
junchen@oakland.edu).

Xiangyu Meng is with the Division of Electrical and Computer Engi-
neering, Louisiana State University, Baton Rouge, LA 70803, USA (email:
xmeng5 @lsu.edu).

Zhaojian Li is with the Department of Mechanical Engineering,
Michigan State University, East Lansing, MI 48824, USA (email:
lizhaojl @egr.msu.edu).

978-1-6654-5196-3/$31.00 ©2022 AACC

to AV path tracking problem, where the MPC is set to track
the vehicle path in both longitudinal and lateral directions,
with axle driving torque and front steering input as the
control variables [16]. Two formulations of event-triggered
MPC were investigated in [16]. In the first formulation,
the optimal control sequence computed from last event was
shifted to determine the control action when MPC was
not triggered. In the second formulation, the control action
in the absence of an event was determined by a time-
triggered linear parametric varying MPC (LPV-MPC) with
shorter prediction horizon to compensate prediction error and
disturbance. Both formulations employed a threshold-based
event-trigger policy with a carefully selected threshold, i.e.,
an event is triggered if the predicted state trajectory and real-
time feedback diverge beyond a certain threshold. Compared
to time-triggered MPC, benefits of event-triggered MPC on
computation saving were clearly demonstrated in [16].

Though event-triggered MPC has shown success in the
aforementioned works, the event-trigger policy is usually
designed by utilizing domain knowledge on the MPC closed-
loop systems, and the calibration of the event-trigger policy
to achieve optimal balance between control behavior and
event frequency is non-trivial. In this work, we attempt to
address this issue by investigating the use of model-free
reinforcement learning (RL) to trigger MPC. Specifically,
we propose RL-based event-triggered MPC, or RLeMPC,
where an RL agent learns the optimal event-trigger policy
by continuously interacting with the environment, i.e., MPC
closed-loop system, whose dynamical behavior is assumed
to be unknown to the RL agent. At every time step, RL
agent sends an action to the environment to either trigger
or not trigger an event. The environment triggers MPC to
solve a new OCP if an event is triggered by RL agent, or
shifts the previous optimal control sequence in the absence
of an event. The dynamic system evolves accordingly, and
an immediate reward is emitted, which is observed by RL
agent to update the policy. In this case, a reward function
is defined to balance the closed-loop control behavior and
event frequency. In order to save online computation, Q-
learning with linear value function approximation is adopted
for the RL agent. As an illustrative example, the autonomous
vehicle path following problem is used to demonstrate the
applicability of using RL to learn and execute trigger policy
for event-triggered MPC. Comparison with threshold-based
event-trigger mechanism used in [16] is also conducted to
show the advantages of the proposed RLeMPC.

The idea of using RL to trigger control is not new. See
for example [17]-[20] where RL has been investigated in the

3342

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 12,2022 at 12:39:10 UTC from IEEE Xplore. Restrictions apply.

context of event-triggered control. Compared to [17]-[20],
our work is different as the primary objective of using event-
triggered MPC is to save online computation, as opposed to
saving communication in [17]-[20]. Furthermore, in [17]-
[20], zero order hold is applied to control command when
an event is not triggered, while in event-triggered MPC,
the previous optimized control sequence is shifted to obtain
the latest control command. Therefore, the control command
will still be time-varying during the absence of event. Such
differences make it harder for the RL agent to learn the
optimal event-trigger policy.

The rest of this paper is organized as follows. Section
II provides necessary background information on RL, while
Section III presents the main algorithm on RL-based event-
triggered MPC, or RLeMPC. Numerical simulation results
on AV path following is presented in Section IV, and the
paper is concluded in Section V.

II. PRELIMINARIES ON RL

This section provides preliminary on RL. More details can
be found in [21]-[23].

A. Reinforcement Learning and Q-Learning

In the RL literature, at time step ¢, s; denotes the states of
the environment, a; denotes the action that an agent applies
to the environment, r(s¢, a;) is a scalar reward function that
maps state-action pair to a scalar value indicating the im-
mediate reward that the agent receives from the environment
after applying action a; at state s;. The goal of the agent is
to learn an optimal policy 7* : s — a that maximizes the
expected cumulative future rewards

thn] : ()
t=0

where r; = r(s;, a;) and the scalar vy € [0, 1] is the discount
factor that weights more on short-term rewards compared to
delayed rewards. The RL agent learns the optimal policy 7*
through interactions with the environment, during which the
agent applies action a;, observes the system evolution from
s¢ to s;11, and receives immediate reward r;. In general,
the environment can be stochastic, either due to unknown
disturbance or the nature of the system itself.

To measure the value of a state s, a state value function
V7™ (s) can be defined as the value of state s under the policy
m, which is the expected return starting from s following
policy 7. In other words,

G=E;

o0

Z’Ykrwk-

k=0

V7(s) = E,

S = 5] . 2)

Similarly, the state-action value function Q7 (s, a) of a state-
action pair (s,a) can be defined as the expected return
starting from s following by first taking action a and then
the policy 7. In other words,

oo
k
>V ik

k=0

Q7 (s,a) = E,

st:s,at:al .3

Once the optimal Q-function Q*(s,a) = max, Q™(s,a) is
learnt, one can then apply the greedy control to obtain the
optimal policy

7*(s) = argmax Q" (s, a). 4)

Therefore, the goal of learning an optimal policy 7* reduces
to that of learning the optimal Q-function Q*(s, a). This is
called Q-learning, and is a model-free method that works
well on discrete action space. In practice, one usually param-
eterizes the Q-function with certain parameters ¢, denoted as
Q4(s,a), and uses it to approximate the Q-function.

B. Least-Square Temporal Difference Q-learning

Least-square temporal difference Q-learning, or LSTDQ
[23], uses linear function to approximate Q(s,a). Given a
state-action pair (s, a) and a feature vector defined as

X(s,a) = :) ®)
X, (s.a)

one can then represent the Q-function as a linear combination
of features, i.e.,

Q¢(s,a) = X(sva)T¢~ (6)

To learn the parameter ¢ in (6), an experience replay
buffer D can be constructed to collect previously encountered
transitions (sg, az, ¢, s¢+1). Given a sampled experience
(8¢, at, T, St+1) from D, the TD (temporal difference) update
is given by

aj,y = argmax Qy(si41,a) (7
6 =1t +7Qp(st41, a1, 1) — Qg(st,a4) (®)
Agp = adX(st,at), 9

which can be obtained by applying stochastic gradient de-
scent update towards the TD target 7y + 7Qg (5141, a5, 1)-
This update utilizes only one experience from the replay
buffer D. To efficiently use multiple transitions, the LSTDQ
algorithm utilizes a batch of NV samples from D, and solves
for total update to be zero, i.e., A¢ = 0, resulting the
following update:

N -1
¢ = [ZX(% ar) (X (st, ar) = vX (se41, a;+1))T tel
t=1

N
X ZrtX(st,at), (10)
t=1

where the €] was added to ensure the matrix inversion always
exists. The detailed derivation of (10) can be found in [23].

3343

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 12,2022 at 12:39:10 UTC from IEEE Xplore. Restrictions apply.

III. RL-BASED EVENT-TRIGGERED MPC

Before we present our main algorithm on RL-based event-
triggered MPC, or RLeMPC, we first review the event-
triggered MPC problem. Consider the following discrete-
time system dynamics

Cegr = f(Grue), (11)

where (; € R" is the system state at discrete time ¢, u; € R™
is the control input. Given a prediction horizon p, the MPC
aims to find the optimal control sequence U; and optimal
state sequence Z; by solving an optimal control problem
(OCP), defined as:

P
win > (21 U1) (12a)
k=1
st. G =G (12b)
Car = f(Cern—1,ur-1), 1<k<p (120)
Cmin < Gtk < Gnaz, 1<k<p (12d)
Umin < Utk < Umaz, 0<k<p—1 (12¢)
Apin < Uppp — Urp—1 < Dopag,
0<k<p-1, (12f)
where Uy and Z; are defined as Uy = {u¢, g1, ..., Utgp—1}

and Z; = {(+1,8+2,---,Cyp}. For (12b), ¢; denotes
the current state estimation, and for (12f), u;_; denotes
the control action applied at the previous control loop. For
conventional time-triggered MPC, the above OCP is solved
for every sampling time ¢, and the first element of Uy, i.e.,
u; is applied to actuators as control command, while the
remaining of the optimal sequence U; is then abandoned.
Unlike time-triggered MPC, event-triggered MPC solves the
OCP (12) only when an event .y is triggered, i.e., Yey1 = 1.
When 71 = 0, the optimal sequence U;, computed at last
event (at time t;) can be used to determine the control
command [16], i.e.,

_ [Solution of (12) if =1
v= { U, (k+1) Otherwise. (13)
In general, the event-trigger policy can be defined as,
Yot = 7(Ze1, Gil0), (14)

where Z;, is the optimal state sequence computed at last
event and ft is the current state feedback.

It is then trivial to see that it requires careful selection
of the event-trigger policy 7 according to the closed-loop
system dynamics, as well as extensive calibration of the
parameter 6. However, it is usually non-trivial to obtain an
analytical form of the MPC closed-loop systems, especially
for constrained MPC with nonlinear objective function (12a)
and nonlinear prediction model (11). Therefore, the design
of event-trigger policy and its calibrations are usually prob-
lem specific and non-trivial. To address this limitation, we
propose to use an RL agent (more specifically an LSTDQ
agent) to learn the optimal event-trigger policy m(Zy, , gct|0),
without assuming the knowledge of the closed-loop system
dynamics. We start by defining the following key elements.

e Action space: The action space for RL agent is defined
as {0, 1} where 1 indicates a trigger event and 0 means
no trigger event.

e State space: The state space of the environment is
defined to be ((A,C_), where ¢ as mentioned above is
the state estimate of the dynamical system (11) and ¢
is the MPC prediction made at last event.

e Reward function: We design the following immediate
reward function emitted at time ¢:

Ny 1
ry = _Jmpc

dt — pa, (15)

where the first term measures the closed-loop control
performance and the second term encourages less events
to reduce online computation.

Remark 1: In current work, we consider the state space to
be (é ,¢), which includes the MPC prediction ¢ on current
state made at last event. An alternative approach is to include
the whole optimal state sequence Z;, in the state space. This
will be explored as future work.

Remark 2: Note also that the balance between control
performance and event frequency is achieved through p in
the reward function (15), which is deemed as a hyper-
parameter in current study. This allows the designer to di-
rectly specify the compromise between control performance
and MPC computational requirement. In some cases, p can
be treated as part of the environment, and is known to the
RL agent as state. In other words, the compromise between
control performance and MPC computational requirement is
a dynamic nature of the system. Examples of such scenarios
include time-varying availability of microprocessor resources
and variable prices of cloud-based computing. In such case,
the RL agent needs to learn the optimal event-trigger policy
through entire spectrum of p. This potentially more difficult
problem is reserved for future study.

The LSTDQ agent learns parameter ¢ by interacting
with the environment, in our case, the closed-loop dynamic
systems (11) and (13). At each time step, the agent would
send an action a to the environment. The environment then
sets Yewl = a, implements the event-triggered MPC (13),
simulates the dynamic system (11), and emits an immediate
reward (15). The LSTDQ agent then observes the rewards,
update ¢ according to (10), and transitions to next state.
The complete RLeMPC algorithm is shown in Algorithm 1,
where the hyper-parameters include the total number of
episodes M, length T' of each episode, discrete time step
dt, discount factor -y, and batch size N. The output of
Algorithm 1 is the weights ¢ for the linear value function (6).
The RL agent interacts with the environment for M number
of epochs (Lines 2-28). In Lines 5-9, e-greedy is used to
balance exploration and exploitation. Lines 11-17 implement
the event-triggered MPC to compute the control command w,
which is used to simulate the dynamical system (11) at Line
18. After that, the environment emits next state s;;; and
immediate reward r; at Lines 19-20, which is observed by
RL agent at Line 22. The latest experience tuple is then added
into an experience buffer D at Line 23. The RL parameters ¢
is updated at Line 24 using a batch of NV experiences sampled

3344

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 12,2022 at 12:39:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 RL-based Event-Triggered MPC
Input:M, T, dt, v, N
Output: ¢

1: Initialize ¢, D <

2: for j=0to M —1 do

3 Initialize s¢, Z, U, k< 0

4 while ¢t <=T do

5 if explore then

6: Sample a; from {0,1}

7 else

8 as + argmaxg X (s, a:)7 ¢

9 end if

10: <Simulate Environment>

11: if a; = 1 then

12: k <+ 0;

13: (Z,U) «+ Solving OCP (12)

14: else

15: k+—k+1;

16: end if

17: u< U(k);

18: (t+1 < Simulate (11) using u

19: St11 (Ct-‘rlv Z(k’))

20: ry < (15)

21: <End of Environment Simulation>
22: Observe r; and 5441

23: Update D to include (s, as, 74, Sei1)
24: Sample N experiences from D and ¢ < (10)
25: St < St41

26: t—t+dt

27: end while

28: end for

from the experience buffer D. RL agent then moves to next
state at Lines 25-26. After each epoch, RL agent is reset for
the next epoch at Line 3.

Note that Lines 11-20 is part of the environment, whose
computation is unknown to the RL agents. The LSTDQ
agent only observes the environment outputs (next state and
reward) at Line 22.

IV. RLEMPC FOR AV PATH FOLLOWING

In this section we apply the proposed RL-based event-
triggered MPC, or RLeMPC, to nonlinear model predictive
control in autonomous vehicle path tracking problem, as
considered in [16].

A. AV Path Following Problem

o

Lateral Error [m]
=)

S

2 4 6 8 10 12 14 16 18 20
Time [s]
2 T
15
=
2 1
w
051
0
2 4 6 8 10 12 14 16 18 20
Time [s]

Fig. 1. Results for p = 0. Top: Lateral position error. Bottom: Event with
moving average.

(16¢)
(16f)

b=r
1

=7 (2L, ¢ Fy ¢ — 2L, Fy ;) ,
where x, y and v are the vehicle CG longitudinal position,
lateral position, and rotational angle, and v,;, v, and r are the
vehicle longitudinal velocity, lateral velocity, and yaw rate.
Note that x, y, and i are in global inertial frame while v,
vy, and r are in vehicle frame. Furthermore, m is the vehicle
mass, I is the vehicle rotational inertia on yaw dimension,
and finally, L,; and L,, are the distance from CG to the
middle of front and rear axle, respectively. Please refer to
[16] for a detailed computation of the aerodynamic drag force
F, and tire forces F, and F,, where both F, and F, are
functions of steering angle u. One can then dlscretlze (16)
to obtain a discrete-time model of the form (11), with { =
[T, Ve, Yy vy, P, 7).

For AV path following, a path planner generates desired
path, which is then tracked by the MPC. In this paper, we
consider the similar driving maneuver that was investigated
in [5], [16], where the vehicle tracks a sinusoidal trajectory.
More specifically, the lateral position is a function of the
longitudinal position, as given by

27
= =4sin| —z | .
y=g(z) sin (10033)
To simplify the simulation, we only consider front steering
angle as control input, and the longitudinal control is as-

sumed to be done by a separate controller.
The cost function in this case is defined as follows:

a7

For a single track vehicle model, the equations for vehicle (2, U) 4 2m 1 2
center of gravity (CG) and wheel dynamics are given by , Ut) 2 Ceen(3 sin mg}%() 0
T = Uz COS Y — vy Sin (16a) p—1
, 2 . 1 + 5 (luess —upill3,) . (18)
by = vy + o _zf: F,;—gsinog — EFG (16b) o
. . o where the first term penalizes the path tracking error and is
Y = Vg siny + v, cos (16¢) nonlinear. p P g
by = —Vpr + 2 Z Fy; (16d) Similar to [16], the prediction horizon is set to p =
M 10. Finally. the upper bounds and lower bounds for input
3345

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 12,2022 at 12:39:10 UTC from IEEE Xplore. Restrictions apply.

o

Lateral Error [m]
=)

S

FOROO-E-Gro—
N A }

Fig. 2. Results for p = 0.001. Top: Lateral position error. Bottom: Event
with moving average.

Lateral Error [m]

L L L L L L L L L
2 4 6 8 10 12 14 16 18 20

Fig. 3. Results for p = 0.01. Top: Lateral position error. Bottom: Event
with moving average.

constraints are given by

Umaz = 0.54105
Umin = —0.54105

Apae = 0.034907
Apin = —0.034907.

B. Numerical Results

We train the LSTDQ RL agent for 500 episodes, each
with a length of T" = 20 seconds and a sampling time of
dt = 200ms. Discount factor is set to v = 1, and batch size
is N = 32.

Numerical results for p = 0,0.001,0.01, are shown in
Figs. 1-3, where the lateral position error is shown on top
while the event is shown on the bottom. Note the bottom
also plots the average event counts over a moving window
of 2 seconds. When p = 0, there is no penalty on triggering
MPC and, as shown in Fig. 1, the RL agent correctly triggers
MPC for every sampling time, and the path tracking error
is the smallest (also see Fig. 4). When p = 0.001, the RL
agent tends to trigger an event when the tracking error is
large, and keeps silent when the error is and/or going to be
around 0, as shown in Fig. 2. In this case, the average relative
event frequency is around 0.5. Finally, when p = 0.01, the
penalty on event frequency outweighs the other term in (15).
Therefore, the event pattern seems to span the time space

o
@

MPC Cost J
o
o N
o &
T

o
o
T

e

o

L L L L L L L L L
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
P

@ &~ o
T

Event Freq. [Hz]

o = 9 n
T

L L L L L L L L L
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
P

o

o o

=) =)

3 <
T

Tracking Error [m]
o
&
T

o
o
R

L L L L L L L L L
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
P

Fig. 4. Results on different level of p. Top: MPC running cost function
J. Middle: Average event frequency throughout episode. Bottom: Average
lateral position error.

evenly. In other words, the RL agent simply extends the
sampling time by roughly 5 times. Note that this is different
from extending sampling time of a time-triggered MPC, as
in the latter case the control action is held constant during
the extended sample period, while in RLeMPC it is time
varying.

Furthermore, Fig. 4 compares the performance of event-
triggered MPC with RL agents trained by different hyper-
parameter p. When p = 0, RL triggers MPC at every time
step, resulting in an event frequency of 5 Hz (corresponding
to the sampling time of dt = 200ms) and smallest tracking
error. As the value of p increases, the rewards function (15)
penalizes more on triggering MPC, resulting in less frequent
event and higher MPC cost Ji,pc. Note that in prior work [16],
the event frequency is indirectly influenced by the threshold
parameters, whose impact on the event frequency is not
intuitive to understand. In contrast, in the proposed RLeMPC
framework, one can view p as a calibratible parameter that
directly impacts the balancing between control performance
and MPC computational load. Finally, Fig. 4 also plots
the average path tracking error. Note that since MPC cost
function (18) includes penalty term on excessive steering,
the MPC cost Jype as used in (15) is higher than the path
tracking error.

Finally, as comparison, we implemented the threshold-
based event-trigger policy used in [16], where the results
are shown in Fig. 5 and Table I. The threshold-based event-
trigger policy is manually calibrated such that the closed-loop
system achieves an average tracking error that is comparable
to RLeMPC with p = 0.001 as shown in Fig. 2. From Fig. 5,
it is clear that the threshold-based policy is very sensitive to
the lateral error. When the error is high, it triggers event at
almost every sampling time. In contrast, RLeMPC distributes
the event more evenly, such that it triggers event only every

3346

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 12,2022 at 12:39:10 UTC from IEEE Xplore. Restrictions apply.

o
T
L

Lateral Error [m]
=)

01F 4

0 2 4 6 8 10 12 14 16 18 20
Time [s]
4 e o . ; — e
o Y w
B oo i I i
PN Lo o
z RN o L
Sosf I /i N\ i N I
o | I I\ i /! . (A | I
i i [i/ ! AV AN
AV R VAW i P
P/ S o . Lol . J—
0 2 4 6 8 10 12 14 16 18 20
Time [s]

Fig. 5. Results with manually designed threshold-based event-trigger
policy. Top: Lateral position error. Bottom: Event with moving average.

TABLE I
COMPARISON BETWEEN RL-BASED AND THRESHOLD-BASED POLICIES.

Policy RL (p = 0.001) | Threshold-based
Ave Inter-Event Time [ms] 526 417
Ave Tracking Error [m] 0.0509 0.0514
Max Tracking Error 0.0772 0.0863

other sampling time even when the error is high (see Fig. 2).
Key metrics are compared in Table I. Specifically, RLeMPC
clearly outperforms in terms of average event frequency (as
measured by inter-event time) and control performance (as
measured by average and maximum tracking error).

V. CONCLUSION

In this paper, we proposed an algorithm called RLeMPC
to utilize reinforcement learning (RL) to trigger events in the
event-triggered model predictive control (MPC) framework.
More specifically, the optimal event-trigger policy was learnt
by an RL agent through interactions with the MPC closed-
loop system, whose dynamical behavior was assumed to be
unknown to the RL agent. In particular, the least-square
temporal difference Q-learning algorithm was used to train
the RL agent with linear Q-function. The balance between
control performance and event frequency can be specified
through a weighting factor in the immediate reward function.
Compared to existing literature on event-triggered MPC, the
proposed algorithm does not require any knowledge of the
MPC closed-loop system behavior, and provides a direct
calibratible parameter to balance between control perfor-
mance and MPC computation load. Finally, we applied the
proposed RLeMPC to an autonomous vehicle path following
problem as demonstration, where it was shown that RLeMPC
outperformed threshold-based event-trigger mechanism used
in literature. Future work directions include the use of deep
Q-learning to capture the nonlinear event-trigger policy, as
well as training the RL agent that works for all possible
hyper-parameter p.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

3347

REFERENCES

M. Donkers, W. Heemels, D. Bernardini, A. Bemporad, and V. Shneer,
“Stability analysis of stochastic networked control systems,” Automat-
ica, vol. 48, no. 5, pp. 917-925, 2012.

M. Rubagotti, D. Barcelli, and A. Bemporad, “Robust explicit model
predictive control via regular piecewise-affine approximation,” Inter-
national Journal of Control, vol. 87, no. 12, pp. 2583-2593, 2014.
J. Chen, M. Liang, and X. Ma, “Probabilistic analysis of electric
vehicle energy consumption using MPC speed control and nonlinear
battery model,” in 2021 IEEE Green Technologies Conference, Denver,
CO, April 7-9, 2021.

S. Di Cairano, H. E. Tseng, D. Bernardini, and A. Bemporad,
“Vehicle yaw stability control by coordinated active front steering and
differential braking in the tire sideslip angles domain,” IEEE Trans.
Control Syst. Techn., vol. 21, no. 4, pp. 1236-1248, 2012.

J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 2015,
pp. 1094-1099.

J. Chen, A. Behal, and C. Li, “Active cell balancing by model
predictive control for real time range extension,” in 202/ IEEE
Conference on Decision and Control, Austin, TX, USA, December
13-15, 2021.

J. Wurts, J. Dallas, J. L. Stein, and T. Ersal, “Adaptive nonlinear model
predictive control for collision imminent steering with uncertain coef-
ficient of friction,” in 2020 American Control Conference. Denver,
CO, USA, July 2020.

M. Jost, G. Pannocchia, and M. Mdonnigmann, “Online constraint
removal: accelerating MPC with a Lyapunov function,” Automatica,
vol. 57, pp. 164-169, 2015.

D. Liao-McPherson, M. M. Nicotra, A. L. Dontchev, I. V. Kol-
manovsky, and V. Veliov, “Sensitivity-based warmstarting for non-
linear model predictive control with polyhedral state and control
constraints,” IEEE Transactions on Automatic Control, 2019.

S. Huang and J. Chen, “Event-triggered model predictive control for
autonomous vehicle with rear steering,” SAE Technical Paper, no.
2022-01-0877, 2022.

J. Yoo and K. H. Johansson, “Event-triggered model predictive control
with a statistical learning,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 51, no. 4, pp. 2571-2581, 2021.

F. D. Brunner, W. Heemels, and F. Allgower, “Robust event-triggered
MPC with guaranteed asymptotic bound and average sampling rate,”
IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5694—
5709, 2017.

H. Li and Y. Shi, “Event-triggered robust model predictive control of
continuous-time nonlinear systems,” Automatica, vol. 50, no. 5, pp.
1507-1513, 2014.

R. Badawi and J. Chen, “Enhancing enumeration-based model predic-
tive control for dc-dc boost converter with event-triggered control,” in
2022 European Control Conference, London, UK, July 12-15, 2022.
F. D. Brunner, M. Heemels, and F. Allgower, “Robust self-triggered
MPC for constrained linear systems: A tube-based approach,” Auto-
matica, vol. 72, pp. 73-83, 2016.

J. Chen and Z. Yi, “Comparison of event-triggered model predictive
control for autonomous vehicle path tracking,” in 2021 IEEE Con-

ference on Control Technology and Applications (CCTA), San Diego,

CA, August 8-11, 2021.

D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforce-
ment learning for event-triggered control,” in 2018 IEEE Conference
on Decision and Control (CDC), Miami, FL, USA, 2018, pp. 943-950.
D. Baurnann, F. Solowjow, K. H. Johansson, and S. Trimpe, “Event-
triggered pulse control with model learning (if necessary),” in 2019
American Control Conference (ACC). IEEE, 2019, pp. 792-797.

A. H. Hosseinloo and M. A. Dahleh, “Event-triggered reinforcement
learning; an application to buildings’ micro-climate control,” in AAAI
Spring Symposium: MLPS, 2020.

L. Sedghi, Z. Ijaz, K. Witheephanich, D. Pesch et al., “Machine
learning in event-triggered control: Recent advances and open issues,”
arXiv preprint arXiv:2009.12783, 2020.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The
Journal of Machine Learning Research, vol. 4, pp. 1107-1149, 2003.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 12,2022 at 12:39:10 UTC from IEEE Xplore. Restrictions apply.

