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Abstract— To expand the global adoption of electric vehicles
(EVs), improving their driving range is of utmost importance.
One of the major obstacles along the way is the degraded EV
performance in extremely cold or hot environments, where
significant amount of energy is used for cabin and battery
temperature regulation while the battery’s power and energy
capacity are also impeded. To mitigate this issue, we present
an integrated cabin and battery thermal management system
to simultaneously optimize battery and cabin temperatures in
real time. A new nonlinear model predictive control (NMPC)-
based thermal management strategy is developed to simultane-
ously achieve cabin temperature regulation and driving range
maximization. The benefits of the proposed integrated thermal
management (ITM) of battery and cabin are investigated
for cold-temperature driving in various scenarios. Simulation
results identify several important factors that affect the EV
driving range in cold weather, and we show that up to 7-
13% range improvement, relative to the case where only cabin
heating is considered, can be achieved using the proposed
NMPC-based ITM strategy.

I. INTRODUCTION

The future of transportation will involve a significant
proportion of electric vehicles (EVs) on the road, due to
the financial effect of high oil prices, environmental impact
of fossil fuels such as greenhouse gas emissions, growing
interest of public in green and renewable technologies, and
regulation and policies for upcoming fuel economy standards
[1]. However, there are still daunting barriers to realize
EV’s wider adoption, including higher marginal price of EVs
relative to conventional vehicles, limited battery life span,
high cost for battery replacement, limited driving range, and
lower performance in cold or hot environments, to name a
few [1]. In this paper, we study the impact of cold ambient
temperature on EV performance and its mitigation strategies.
EVs are affected by cold climates in three major ways. First,
a considerable portion of battery energy is consumed for reg-
ulating the temperatures of the cabin and the battery. Second,
cold weather itself leads to battery performance degradation
in terms of lower available energy and power capacity as
well as the reduction of battery life. Generally, the poor
performance of lithium-ion batteries in cold weather results
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from the significant increase of battery internal resistance,
which leads to a strong opposing force on a running battery
[2]. Third, the driving range of an EV in cold weather
conditions is also negatively influenced by the restricted
regenerative charging, lower terminal voltage, and reduced
capacity, among others. To this end, a battery hardware-in-
the-loop study conducted at Argonne National Laboratory
indicates that for a plug-in-hybrid EV operating at −7 oC,
the all-electric-range is reduced by 13% as compared to
driving with 0 oC ambient temperature, where nearly 34%
and 12% of this range reduction are due to the restricted
regenerative power and increased thermal resistance, respec-
tively [3]. More extreme conditions and the addition of cabin
temperature regulation pose several more challenges on the
thermal management of the battery and the cabin in cold
climates.

In the literature, the thermal management of battery and/or
cabin, for heating or cooling purposes, has been addressed
from the control engineering perspective using methods
such as nonlinear model predictive control (NMPC) [4]–
[8], fuzzy-logic control [9], and dynamic programming (DP)
[10], [11]. However, most of the works are focused on
cooling controls. For example, [10] proposes an iterative DP-
based battery thermal management strategy for connected
and automated hybrid EVs. Reference [4], [8], [12] are
based on (N)MPC, which aim at minimizing the energy
consumption of the thermal management system while satis-
fying various constraints. In [6], [7], vehicle connectivity is
assumed and multi-layer MPC is developed to improve the
battery energy efficiency.

Different from the aforementioned works, the focus of this
paper is on heating regulation in cold climates, with a specific
focus on the tradeoff between driving range and cabin heating
requirement. In this context, several efforts have been made
to address the battery and cabin thermal management heating
issue [5], [13], [14]. Authors in [5] studied the battery
thermal management of intelligent-connected EVs at low
temperature based on NMPC, where electric heater is used
for battery heating and heat pump (HP) is used for the air
conditioning system. The results in [5] show that with the
developed strategy, the heating duration and energy usage
can be decreased. NMPC is also used for the control of cabin
temperature and air quality in EVs equipped with HP in cold
weathers [13]. Rule-based control of battery external heating
for EVs during driving at low temperatures is also studied in
[14], where the driving range of EVs is compared with the
case where maximum heating power is used as well as with
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the case when battery is not heated. Promising improvements
are reported in [14].

Despite the considerable progresses made in the research
workes described above, the integrated cabin and battery
thermal management for extreme cold condition has not
been well studied in the literature. Furthermore, there is a
lack of specific assessment of the trade-off between driving
range and cabin heating performance, particularly at subzero
temperatures. Even though there are a few prior works that
have similar scope [3], [14], [15], the model and the made
assumptions in these works do not accurately reflect battery
performance in low temperatures. For example, in [14], the
regenerative power loss is not taken into account, which in
fact is one of the major energy loss sources in below-freezing
conditions [3], [15].

In this paper, we present an integrated thermal manage-
ment (ITM) of battery and cabin in cold weather conditions
using NMPC, with the focus on its effect on the driving range
of EVs. Our findings show that there exists an important
compromise between battery performance improvement (due
to the battery temperature rise) and the power consumption of
the thermal management system. In addition, our simulation
results also show that the benefits of EV range improvement
due to battery heating depend on different parameters and
conditions, such as battery characteristics (e.g., open circuit
voltage and internal resistance), ambient temperature, driving
cycle profile and behavior, control strategies, driving time,
initial SOC, etc. Our contributions are summarized as fol-
lows. First, a new NMPC-based ITM strategy for battery and
cabin heating is developed to simultaneously optimize EV
driving range and cabin comfort. Second, for the proposed
ITM system, high-fidelity modeling for each component is
developed with relevant parameters listed as a reference
for future studies. Third, the important factors that heavily
impact the energy loss of the battery in cold weathers are
identified through extensive simulations. To the best of the
authors’ knowledge, this is the first study that focuses on a
comprehensive investigation of the impacting factors on the
EV driving range in cold weather.

The rest of the paper is structured as follows. In Section II,
the proposed ITM system for battery and cabin heating and
its modeling are introduced. The NMPC formulation of the
ITM problem is presented in Section III, whereas in Section
IV simulation results are presented with discussions. Section
V concludes the paper.

II. DESIGN & MODELING

We begin this section with a description of the opera-
tion conditions considered in the proposed ITM, followed
by detailed model derivations of each thermal component.
Specifically, Fig. 1 shows the coolant cycle of the integrated
battery and cabin thermal management (heating) system
under consideration. Firstly, the coolant with flow rate ṁ
and temperature T4 is heated to temperature T1 by a heat
pump (HP). The heated coolant then arrives at the 3-way
valve, where the coolant flow rate for the cabin and battery
branch is regulated by the controller. The coolant flow for the
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Fig. 1: Schematics of the integrated battery and cabin thermal
management (heating) system.

cabin heating passes the heat exchanger (HX) and indirectly
heats the inlet air to the cabin and becomes cooled, the rate
of which is denoted by ṁc. The inlet air to the cabin heats
the cabin air and then goes back to the HX to complete
the cycle. On the battery side, the battery is heated by
the coolant flowing in the battery branch, denoted by ṁb.
Then, the coolant flow for cabin and battery are mixed to
reach temperature T4 and pumped towards the HP, which
completes the coolant cycle. In the following, we elaborate
more on each component of the proposed integrated battery
and cabin thermal management system.

A. Heat pump model

As shown in Fig. 1, the coolant with low temperature T4 is
heated by a separate Heat Pump (HP), the heat rate of which
is denoted by Q̇HP , and it reaches a higher temperature T1

that is necessary for further circulation of the coolant to heat
the cabin and the battery as will be shown in subsequent
texts. The governing equations for this heat exchange are:

C1Ṫ1 = Q̇HP + ṁcc(T4 − T1), (1a)
ṁ = ṁb + ṁc, (1b)

where C1 = mclntcc is the thermal inertia of the heated
coolant, mclnt is the total mass of the coolant in the cycle,
cc is the specific heat capacity of the coolant, and ṁ is the
total coolant flow rate. The coolant liquid is G-48 ethylene-
glycol which is a common choice for vehicles thermal loop.
The use of HP instead of PTC heater has advantages such
as achieving coefficient of performance (COP) higher than
one, thus improving the mileage of EVs. Note that HP
has already been deployed by EV makers such as Tesla
(e.g., Tesla Model Y) and Nissan (e.g., Nissan Leaf) [16],
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[17]. More details on HP components and its modeling
are omitted here due to space limit. The experimental data
studied in [18] can be utilized to calculate the HP’s electrical
power consumption. In [18] the performance of an EV’s
HP is evaluated experimentally in cold climate conditions
and in this paper, the heating capacity and the COP of the
HP follow from their experimental studies. According to
the findings of [18], at a fixed ambient temperature, fixed
indoor air recirculated percentage, fixed outdoor air velocity
(i.e. ram-air) and fixed inlet air flow rate, COP and heat
capacity change linearly w.r.t compressor speed so one can
easily interpolate the performance of the HP based on the
experimental data. Interested readers are referred to [18]
for more details on the experiments resulting in quantifying
the HP performance. In this regard, by only considering
ambient temperatures and compressor speeds as variables
and assuming fixed indoor air recirculated percentage, fixed
outdoor air velocity and inlet air flow rate, the heat provided
by HP follows from the definition of the COP, i.e.,

COPHP (Tamb, ncomp) =
Q̇HP (Tamb, ncomp)

Pelec
, (2)

where COPHP stands for the coefficient of performance
of the HP cycle, Q̇HP is the heat capacity, and Pelec is
the electric power consumption of the HP mostly from
compressor. In this regard, we take the compressor speed,
ncomp, into consideration as another control variable. Once
ncomp is chosen and Tamb is known, the experimental data
study in [18] can be used to determine the amount of
electricity used by the HP.

B. Cabin heat exchanger (HX) and cabin dynamics

Modeling a car cabin from a thermal perspective is chal-
lenging, particularly when it includes an HVAC system, since
there are several components and a lot of influences should
be considered [13]. Moreover, for real-time implementation
of NMPC, a non-complex model is needed for tractable
real-time computations. This model should also be detailed
enough to accurately predict the thermal behaviors of the
cabin. In this regard, we follow the developments in [13],
[19] for modeling the inlet air to cabin heat exchange as
well as the cabin air dynamics. The models proposed therein
are straightforward with accurate representations of real
dynamics, and the parameters are determined or estimated
based on actual experimental data. As previously mentioned,
the coolant flow rate for the cabin branch, ṁc, is determined
by the model predictive controller. This flow with high
temperature T1 passes through a HX that heats the inlet air to
cabin and exits that with low temperature T3. The heated inlet
air with high temperature T6 enters the cabin with flow rate
ṁa, heats the cabin air with temperature Tca and reaches the
cabin temperature, and then exits the cabin. Accordingly, the
heat exchange between coolant and the cabin inlet air loop
can be modeled by the following two equations:

C3Ṫ3 = ṁccc(T1 − T3)−GHX(T3 − T6), (3a)

C6Ṫ6 = caṁa(Tca − T6) +GHX(T3 − T6), (3b)

where (3a) characterizes the heat exchange for the cabin
branch coolant mass in the HX and (3b) formulates the
heat exchange for the inlet air to cabin mass. In these two
equations, C3 = mclnt,ccc is the thermal inertia of the
coolant in the cabin branch, mclnt,c stands for the cabin
branch coolant mass, C6 = maca is the thermal inertia of the
inlet air to cabin, ma is the inlet air mass, ca is the specific
heat capacity of air, and GHX is the heat transfer coefficient
between the inlet air and the coolant.

For modeling the various elements of cabin components,
it should be noted that the cabin air – the most important
element for the thermal management task – has interaction
with the inlet air to the cabin, the cabin body, cabin shell and
interior, the passengers, solar radiation, etc. The inlet air to
the cabin serves as the primary heating element of the cabin
components. For modeling the cabin dynamics, we consider
the following second order model [19], [20] which considers
the cabin air and cabin body as state variables:

CcaṪca = ṁaca(T6 − Tca) + Q̇met + αcbAcb(Tcb − Tca),
(4a)

CcbṪcb = −αcbAcb(Tcb − Tca) + Q̇sol + αabAab(Ta − Tcb),
(4b)

where Equation 4a represents the cabin air temperature dy-
namics, and Equation 4b represents the vehicle body temper-
ature dynamics. Equation 4a summarizes the most important
factors that affect the cabin air temperature, including the
inlet air to cabin (the first term on the right), Q̇met that
accounts for the metabolic heat from the passengers, and the
heat exchange with other components such as cabin shell,
window, wall as represented by the last term and denoted by
heat exchange with cabin body. In Equation 4a, αcb is the
lumped heat transfer coefficient per unit area, Acb is the heat
transfer surface area between the cabin air and cabin body,
Tcb is the cabin body temperature, and lastly Cca = mcaca is
the cabin air thermal inertia with mca is the cabin air mass.
In Equation 4b, the first term on the right side accounts for
the heat transfer from cabin air to the cabin body; the second
term accounts for the heat absorbed by the sun; and the last
term accounts for the heat transfer between the ambient air
and the cabin body. Here Ccb = mcbccb is the cabin body
thermal inertia with mcb being the cabin body mass and ccb
being the specific heat capacity of the cabin body.

C. Pump model

As shown in Fig. 1, the pump is placed after the 3-way-
valve that mixes the coolant flow from battery and cabin
before reaching HP. The mixing temperatures of the fluid
can be established as

T4 =
1

ṁ
(ṁbT2 + ṁcT3). (5)

The pump task is to maintain the desired flow rate by
performing mechanical work to the coolant. The power
consumption of the pump is represented by:

Ppump =
Ppump,m

ηm
=

1

ηm
· ∆ppumpṁ

ρc
, (6)
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Fig. 2: RC

where Ppump,m is the mechanical power, ηm is the power
conversion rate of the pump, ρc is the coolant density,
∆ppump is the pressure drop of the pump, which is related
to the mass flow rate of the coolant and takes the following
form [5]:

∆ppump = 0.927ṁ2 + 0.586ṁ− 0.143. (7)

D. Electrothermal battery model and battery pack

The battery cell used to construct the battery pack is
modeled using the popular Equivalent Circuit Model (ECM)
[2], [21], [22]. As shown in Fig. 2, Voc denotes the open-
circuit voltage of the cell; Ro is the ohmic resistance;
Rp and Cp are the polarization resistance and capacitance
respectively. Furthermore, i is the current with positive value
for discharge and V denotes the output voltage (or terminal
voltage) of the cell. Vo is the voltage drop on Ro and Vp is
the polarization voltage on Rp. The dynamics of the R−C
pair can be represented by:

V̇p = − Vp

RpCp
+

i

Cp
, (8)

and the terminal voltage of the battery is

Voc − iRo − Vp − V = 0. (9)

In order to maintain the model’s accuracy, it is crucial to
take into account the variation of the open circuit voltage Voc

with respect to state-of-charge (SOC). Similarly, the ohmic
resistance, polarization resistance and capacitance’s variation
with both battery temperature and SOC, is considered as
discussed in [2]. The battery cell SOC dynamics is specified
by

˙SOCcell,i = − i

3600× Ccell
, (10)

where Ccell is the cell capacity in Ah.
We assume that the battery pack is grouped by identical

cells with similar initial SOC in our simulations, through S
in series and P in parallel. Since the dynamic response of the
RC circuit has almost reached steady state after a brief period
of time, it can be assumed that the current flowing through
the polarization resistor is equal to the overall current [14].
Hence one can write

Rpack = S(Ro +Rp), (11a)
ipack = Pi, (11b)

Voc,pack = SVoc, (11c)
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Fig. 3: Open circuit voltage values with respect to SOC.

Fig. 4: Internal resistance of the battery pack with respect to
SOC and battery temperature.

where Rpack, ipack and Voc,pack are the overall ohmic resis-
tance of the battery pack, current of the battery pack and
open circuit voltage of the battery pack, respectively. The
internal resistance of the battery pack and the open circuit
voltage of the battery cell used in our simulations correspond
to the behaviors depicted in Figs. 3 and 4.Furthermore, the
battery pack SOC is the averaged SOC across the battery
cells, which equals to, with the identical cell assumption,
each battery cell’s SOC:

SOC =
SOCcell,1 + SOCcell,2,+ · · ·+ SOCcell,NP

NP

= SOCcell,i = − ipack
3600× Cpack

.

(12)
According to [1], [3], [15], the battery capacity is also
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dependent on the battery temperature, and we use the data
from [1] to quantify the available percentage of battery
capacity relative to the capacity at 25oC versus battery
temperature. This is shown in Fig. 5.

For modeling the thermal behavior of the battery, the
battery pack is considered as a lumped mass with specific
heat capacity cb, mass of mb and temperature Tb. The coolant
flow rate for the battery, ṁb, is determined via the model
predictive controller, and the battery is heated by the coolant
which enters the battery from one side with high temperature
T1 (see Fig. 1), circulates around the battery and exits from
the other side of the battery with cooled temperature T2.
Based on this, one can write the differential equation for the
battery temperature as:

CbṪb = Rpacki
2
pack + ṁbcc(T1 − T2)− ha(Ta − Tb). (13)

Here Cb = cbmb is the thermal inertia of the battery, and the
first term on the right considers the internal heat generation
of the battery. The second term in (13) accounts for the heat
from the coolant to the battery, the third term is the heat
transfer rate between battery and the ambient air where Ta is
the ambient air and ha is the heat transfer coefficient between
the ambient air and the battery pack. Accordingly, we write
the energy balance equation for the coolant, which expresses
the heat exchange between coolant and battery as:

C2Ṫ2 = ṁbcc(T1 − T2)− hbAb(T2 − Tb). (14)

In this equation, C2 = mclnt,bcc with mclnt,b being the
coolant mass that heats the battery. The first term on the right
hand side characterizes the energy balance of the coolant and
the second term accounts for the heat loss of the coolant
when it does the heat transfer with the battery with the heat
transfer coefficient per unit area hb and the heat transfer
surface area Ab .

E. Battery power demand

The traction power demand for vehicle’s movement can
be written as [7]:

Ptrac = Vveh

(
Fr + Fa +MV̇veh

)
, (15)

where Vveh, V̇veh, M , are vehicle speed, vehicle acceleration,
and vehicle mass, respectively. The following formulas are
used to compute the rolling (Fr) and aerodynamic (Fd)
resistance forces:

Fr = CrMg, (16a)

Fa = 0.5ρaAfCdV
2
veh, (16b)

where Cr and Cd are, respectively, the rolling resistance and
aerodynamic drag coefficients, Af is the vehicle frontal area,
and ρa is the air density. Combining the HP consumed power
and electric pump power (6), the total thermal power required
is

PTM = Pelec + Ppump. (17)

Therefore, the total battery power can be denoted as

Ptot = PTM + Ptrac, (18)

and the battery pack current can be subsequently calculated
by

ipack =
Voc,pack −

√
V 2
oc,pack − 4RpackPtot

2Rpack
. (19)

Remark II.1. Maximizing the driving range is equivalent
to minimizing the current ipack drawn from the battery.
According to (12), (18) and (19), short-term battery current
minimization can be achieved by the following: 1) enabling
battery charging from regenerative power by increasing
battery temperature to charge-permitted value; 2) decreasing
Rpack by increasing battery temperature to optimal value;
3) increasing battery capacity Cpack by increasing battery
temperature to optimal value; and 4) decreasing Ptot by de-
creasing PTM . Therefore, to maximize EV range for a short-
term horizon, one can either increase battery temperature
to optimal value, and/or decrease the thermal management
power PTM .

III. NONLINEAR MPC FORMULATION

In this section we introduce the ingredients of the NMPC
problem for the proposed ITM of battery and cabin heating.
The governing equations of the ITM system are described
in the previous section. Herein, we directly denote the
continuous-time nonlinear dynamics of the ITM system as
follows

ẋ = fc(x, u, p), (20)

where the state vector, the control inputs, and the parameter
are defined as follows

x = [SOC, Tb, T3, T1, T2, T6, Tca, Tcb]
T ,

u = [ṁc, ṁb, ncomp]
T , p = Ptrac,

(21)
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and the nonlinear continuous function fc(.) is the equations
defined as (1)-(19). The main goal for using NMPC to
regulate the temperatures of the passenger cabin and battery
is to simultaneously improve the EV range and satisfy the
cabin heating requirements, by indirectly controlling the
energy consumption of the integrated thermal management
system (we will elaborate more on our usage of “indirect
control” after defining the stage cost). In this regard we
define the stage cost of the NMPC as follows:

l(x, u) = α(Tca − Tca,sp)
2 + (Tb − Tb,sp)

2, (22)

where the first and second terms penalize the deviation of
the cabin and battery temperatures from their set points,
respectively; and α is the corresponding weight to express the
trade-off between each cost terms. Consequently, the finite
receding-horizon optimal control problem at each time step
is defined as follows:

V 0
N (x0) = min

u(0),...,u(N−1)
V (x0, u) =

N−1∑
k=0

l(x(k), u(k))

s.t. x(0) = x0, x(k + 1) = fd(x(k), u(k))

xmin ≤ x(k) ≤ xmax, k = 0, . . . , N

gmin ≤ g(u(k)) ≤ gmax, k = 0, . . . , N − 1.
(23)

In the above constrained optimal control problem, N is
the prediction horizon, x0 is the initial state, fd(.) is the
discretized version of fc(.) with proper sampling time Ts,
xmin and xmax are the lower and upper bound values of the
states and gmin and gmax are the lower and upper bound
values of the constraint function for control inputs. The
values for the lower and upper bounds of state variables and
the constraint function for control inputs will be specified in
the next section.

Remark III.1. We refer to the stage cost (22) as “indirect”
approach, since it includes battery temperature tracking
as opposed to battery current minimization. A more direct
approach to formulate NMPC (23) is then to include a power
consumption term (e.g., P 2

TM , similar to work [5]) or a
current term ipack in the cost function, as this directly relates
to EV driving range and would lead to battery temperature
optimization. See Remark II.1. However, through simulation
it was discovered that for such direct NMPC formulation,
the positive impact of increasing battery temperature cannot
be predicted even with a long prediction horizon of 300
seconds. Instead, the controller would completely shut off
battery heating to minimize the short-term battery current.
Further investigation on this issue and devising novel control
strategies to enable a long horizon forecast is the subject of
our future work.

During the implementation of the NMPC, the following
considerations are incorporated to preserve battery safety
and longevity. First, the lithium-ion cell’s terminal voltage
must be kept within a particular range during charge and
discharge, denoted by the symbols Vcut,ch and Vcut,disch,
respectively, which can be temperature-dependent as well.
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Fig. 6: Different trade-off between range and cabin set point
violation by varying α in the stage cost (22).

Second, during the EV operation, charging the battery by
the regenerative power is forbidden below a specific battery
temperature (usually 0o C) to prevent battery degradation
and decrease plating. Lastly, when allocating battery power
among various vehicle components, priority should be given
to the traction power demand. In other words, if the above
mentioned factors impose limit on the power output of the
battery, resulting in a compromise between addressing the
thermal management power demand and the traction power
demand, then a separate controller overrides the NMPC
control strategy and prioritizes the traction power, and the
remaining power is assigned to the thermal management.

IV. SIMULATION RESULTS

In this section, the simulation results of the proposed
ITM system for battery and cabin heating are presented. We
next introduce the detailed simulation setup. Specifically, the
lower and upper bounds of the states in (23) are defined as:

xmin = [0, Ta, Ta, Ta, Ta, Ta, Ta, Ta]
T ,

xmax = [1, 25, 70, 70, 70, 70, 25, 25]T ,
(24)

where Ta presents the ambient temperature and all the
temperatures are in Celsius degrees. The input constraints are
defined by gmin ≤ g(u) = [u(1), u(2), u(3), u(1)+u(2)]T ≤
gmax, where gmin and gmax are defined as:

gmin = [0, 0, 0, 0]T , gmax = [0.2, 0.2, 6000, 0.2]T , (25)

where the mass flow rate unit is kg/s and the compressor
speed unit is rpm. A complete list of simulation parameters
are shown in Table I. The traction power parameters in
Equation 16 are adopted from [6]. In the prediction horizon
the values for the traction power (which depends on the
future velocity and acceleration profiles and may not be
known in advance) is assumed constant and equal to the
current time power traction demand.

Three different control strategies are implemented and
compared. In the first strategy, we set α = 1 in the stage
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TABLE I: Simulation parameters

Ts[s] N Vcut,disch[V ] Vcut,ch[V ] cc[
J

kgK ] Cnom
pack [Ah] Ab[m

2] hb[
W

m2K ] ha[
W
K ] mclnt[kg]

0.5 20 2.5 4.25 2433 185 3 500 15 15

mb[kg] cb[
J

kgK ] ηpump ρc[
kg
m3 ] mclnt,b[kg] mclnt,c[kg] GHX [WK ] ca

J
kgK S, P ma[kg]

250 1130 0.95 1114 11.75 3.25 400 1008 96, 3 0.129

ṁa[
kg
s ] mca[kg] Q̇met[W ] Q̇sol[W ] αcb[

W
m2K ] αab[

W
m2K ] Acb[m

2] Aab[m
2] mcb[kg] ccb[

J
kgK ]
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Fig. 7: SOC, cabin temperature and battery temperature v.s.
time for HWFET using 3 different control strategies.

cost (22), representing a same weight for the cabin and
battery set point regulation. The second strategy aims at
finding a proper trade-off between the driving range and the
normalized cumulative cabin set point violation term defined
as Σt10

−4(Tca,sp−Tca)
2. In this regard, by varying α in the

range of (1, 100] and plotting the Pareto optimal points, the
α value that offers a good trade-off is found to be α = 50
(see Fig. 6). The third strategy is to perform cabin heating
only by setting α = 0 in the stage cost.

Our simulation results show that there exists an important
trade-off between battery performance improvement due to
the battery temperature rise and the power consumption of
the thermal management system. This compromising issue
is of paramount importance and the benefits of EV range
saving by battery heating depend on different parameters
and conditions such as temperature and SOC-dependent
battery’s characteristic (e.g., open circuit voltage and internal
resistance), ambient temperature, driving cycle profile and
behavior, different control strategies, driving time, initial
SOC, among others.
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Fig. 8: Range and cabin set point violations under various
impacting conditions

To this end, the first set of results consider the ambi-
ent temperature Ta = −20oC and use repeated HWFET
driving cycle as a relatively intensive driving behavior.
The state initial condition vector is considered as x0 =
[0.9,−20,−20,−20,−20,−20,−20,−20]T with a nearly
full initial SOC. The simulation is terminated whenever the
battery pack SOC drops below 0.1. The battery and cabin set
point temperatures are set to 15oC and 20oC, respectively.
The plot in Fig. 7(a) shows that the first strategy offers the
best range with an increase of more than 20 min driving
time compared to the other two strategies. However, it can
be seen from Fig. 7(b) that the first strategy takes the
longest time for cabin to reach the set point among three
strategies. In this regard, as we mentioned above, the second
strategy was proposed to achieve best trade-off between
range improvement and cabin comfort. It is clear that with
the second strategy the cabin temperature reaches to its set
point sooner. Finally, although the third strategy can regulate
the cabin temperature reach to the set point rather quickly, the
driving range is substantially less, e.g., by 33 mins compared
to the second strategy and 48 mins compared to the first
strategy.

In Fig. 8, we repeated the same study by considering
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two more initial SOCs, i.e., 0.5, and 0.3 and with another
ambient temperature of Ta = −10oC. The results show that
in all cases the proposed ITM heating strategy improves
the EV range. With Ta = −20oC, and with SOC(0) =
0.9, 0.5, 0.3 the range is improved by 12%, 11%, 7%, re-
spectively, relative to the case with only cabin heating. For
Ta = −10oC these corresponding values are 9%, 12%, 13%.
It is worth noting that higher ambient temperature (i.e.,
Ta = −10) improves the EV range by making the HP
more efficient, i.e., it uses less electric power to create
the same quantity of heat when the ambient temperature is
higher. Also, it makes the battery to reach to the permitted-
charge temperature sooner. However Ta = −10 reduces
the generated self-heat of the battery by decreasing the
internal resistance (Rpack). Additionally, with lower SOCs,
the battery pack can also use more of the regenerative power
due to reduced battery voltage w.r.t. higher SOCs. The overall
effect of these phenomena will result in a rise in the range
improvement percentage by the decrease of the initial SOC,
when the ambient temperature is changed from Ta = −20oC
to Ta = −10oC.

V. CONCLUSION

In this paper, we considered the problem of integrated
battery and cabin heating for electric vehicles (EV) in
cold conditions. A novel NMPC-based integrated thermal
management (ITM) strategy for battery and cabin is proposed
to simultaneously optimize EV driving range and cabin
comfort. High-fidelity models of different components of
the ITM system are developed, together with an indirect
approach defining the cost function to achieve the optimal
energy saving and cabin set point regulation. To analyze
the compromise between battery performance improvement
and the power consumption of the thermal management
system, extensive simulations are performed and our results
show that up to 13% driving range improvement can be
achieved by the proposed NMPC-based ITM system while
the violation of the cabin set point temperature is also mini-
mized. Our results also identified important factors affecting
the EV driving range, i.e. temperature and SOC-dependent
battery’s characteristic (e.g., open circuit voltage and internal
resistance), ambient temperature, driving cycle profile and
behavior, different control strategies, driving time, initial
SOC, etc. Future work will focus on improving the NMPC-
based control strategies, e.g. by incorporating practical ways
for having longer prediction horizons. Comparison with other
benchmark control approaches will also be included in our
future work.
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