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INTRODUCTION 

The energy market supply is under pressure to achieve 
competing goals, such as minimizing the cost of electricity 
and greenhouse gas emissions while achieving grid 
resilience and reliability and meeting regulatory 
requirements. To study different scenarios for possible 
evolutions of the energy market that assume a certain 
renewable penetration and the possible introduction of 
hybrid nuclear reactors, the HYBRID modeling and 
simulation project has been initiated by INL [1]. The term 
hybrid nuclear reactor here refers to nuclear power plants 
that not only produce electricity, but can also sell heat to an 
industrial process, like a hydrogen generation or water 
desalination plant. 

The RAVEN (Risk Analysis Virtual ENvironment) 
code developed at INL [2] together with the modeling 
language Modelica [3] (the Dymola compiler is used) have 
been selected as the main modeling tools for the HYBRID 
modeling and simulation project. This summary outlines the 
challenge, presents an overview of the developments in the 
RAVEN code needed to solve it and shows an illustrative 
example calculation. 

The HYBRID modeling and simulation project is a 
multi laboratory effort, involving research teams from three 
different U.S. national laboratories, led by the Idaho 
National Laboratory (INL) and supported by the Argonne 
National Laboratory (ANL) and the Oak Ridge National 
Laboratory (ORNL). 

 
BACKGROUND 

One of the goals of the HYBRID modeling and 
simulation project is to assess the economic viability of 
hybrid systems in a market that contains renewable energy 
sources like wind. The Nuclear Hybrid Energy System 
(NHES) would include a nuclear reactor that not only 
generates electricity, but also produces by-products utilizing 
excess heat/electricity, like hydrogen or desalinated water. 
The idea is that the possibility of selling non-electric energy 
provides cushion to the volatility introduced by the 
renewable energy sources [4]. 

The problem to solve is to find the optimal 
configuration of an NHES that will minimize the cost of 
electricity, while accounting for defined constraints on the 
capability of the NHES to meet demand. These constraints 
have a fundamental role in enabling the economic 
evaluation framework by monetizing the ability of the 

NHES being analyzed to better cope with electricity demand 
volatility. The introduction of such constraints leads to the 
calculation of an effective cost of electricity that differs 
from the levelized cost of electricity (LCOE) since the cost 
of electricity is computed a posteriori to account for the 
effective utilization of each subsystem.  

The system that is studied is modular and made of an 
assembly of components. For example, a system could 
contain a nuclear reactor, a gas turbine, a battery, a by-
product production subsystem and, possibly, renewables. 
This system could correspond to the size of a balance area, 
but in theory any size of system is imaginable. The system 
is modeled in the ‘Modelica’ language. 

To assess the economics of the system, an optimization 
procedure will be performed to obtain a set of parameters, 
which defines the configuration of the NHES to find the 
minimal cost of electricity. Fig. 1 shows a diagram of the 
software framework for the NHES modeling and 
optimization. As one can see, the statistics and optimization 
code RAVEN is used as a driver for the whole problem. 
RAVEN is running the optimization, i.e. RAVEN changes 
the input parameters in the system model, provides the 
needed time histories for demand, wind, etc., runs the 
Dymola system model, collects output from Dymola and 
assesses the next optimization step. As mentioned, the 
figure of merit for the optimization is the cost of electricity. 
The Dymola output is used in a simple cash flow analysis 
that will reveal the cost of electricity. 

The optimization routine seeks various combinations of 
input variables (according to a defined optimization 
algorithm) to find the minimum cost of electricity while the 
system is requested to cope with random synthetic time 
histories of electricity demand and renewable supply. The 
analysis does not rely on bidding on marginal cost for every 
hour, but tries to find the minimal cost to produce a certain 
amount of electricity with a given time profile, e.g. for a 
representative week or year. This means that the number of 
parameters to optimize is high. In addition to the mean 
demand and the component capacities, the utilization factor 
for every hour for every component is also an optimization 
parameter. The number of optimization parameters for a 
one-month optimization with a three-component system 
would be 2164: 

 
 
 



1 for the mean demand. 
1 for the renewable supply (this defines the 

renewable capacity). 
2 for the nominal capacities of the 2 components 

additional to the renewable in the system. 
3*720  for the number of utilization factors (3 

components, 720 hours/month). 
 

 
Fig. 1.  HYBRID system modeling and optimization 
framework. 
 
NEEDED RAVEN CAPABILITIES 

As one can see from Fig. 1, for the HYBRID modeling 
and simulation problem, different capabilities inside 
RAVEN are needed. The following subsections will detail 
the different capabilities and associated RAVEN 
developments. 

 
“Ensemble model” 

As one can see from Fig. 1, multiple “models” are 
involved in the solution of the problem, e.g. the synthetic 
time history generation, the code interface to the Dymola 
code, the cash flow calculation as well as a few pre- and 
postprocessors to convert and process the data that are not 
shown in the figure. A capability in RAVEN has been 
developed that is able to manage the data flow between 
these models called “Ensemble Model” [5]. The user can 
input the needed inputs and provided outputs for each 
“model” and RAVEN will connect the models based on 
their Input/Output relations and decide in which order they 
have to be executed. The “Ensemble Model” framework in 
RAVEN can deal with different complexities, from simple 
sequential execution of the involved models, to non-linear 
systems that need iteration of a model or a set of models. 

 
Alias System 

The different “models” involved in an “Ensemble 
Model” can have different variable names for the same 
quantity. For example, the nominal capacity of the 
renewable energy may be called “cap_ren” in Dymola, 
“renewable_capacity” in the cash flow model and “C_ren” 
in the RAVEN input. An alias system has been created 
inside RAVEN that allows to alias any model input or 
output variable to a RAVEN variable. In the above example, 
in the RAVEN input C_ren will be aliased to cap_ren in the 
Dymola code interface model and C_ren will be aliased to 

renewable_capacity in the external model interface for the 
cash flow model. 

 
Synthetic time history generation 

Another new RAVEN capability is the synthetic time 
history generator. This capability is needed to generate 
synthetic scenarios for renewable generations and grid 
loads. The generated time series are prepared to statistically 
conform to the actual measurement but possess different 
temporal profiles. In particular, a combined model with 
Fourier series and autoregressive moving average (ARMA) 
[6] is utilized to de-trend the yearly measurements and to 
characterize the autocorrelation of the residues. In RAVEN, 
the model can be trained with a database of any number of 
data points. The trained model is then able to generate 
synthetic time series. The synthetic data generation consists 
of generating independent white noise for each time step, 
utilizing the ARMA model to compute residues for each 
time step, and finally adding the Fourier series representing 
seasonal trends. The user can ask the model to produce 
synthetic data for any representative time period, e.g. a 
week or a month as well as a desired time discretization, e.g. 
hourly. By using multiple synthetic histories, one can claim 
to do an optimization for a given scenario taking into 
account the stochastic nature of the problem, instead of 
optimizing for just one historic data set (which is equivalent 
of optimizing the problem assuming perfect knowledge of 
the future). Fig. 2 and Table 1 show an example of synthetic 
electricity demand generation. 
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Fig. 2. Synthetic load scenario and the actual database for 
selected 7 days. 
 
Code interface to Modelica/Dymola 

In order for RAVEN to communicate with Dymola, a 
code interface has been developed. When a Dymola model, 
e.g., the NHES model, is implemented, platform dependent 
C-code and the corresponding executable are generated for 
simulation. After the executable is generated, it may be run 
multiple times (with Dymola license). Furthermore, separate 
text files containing model parameters and initial conditions 



are also generated as part of the build process. The RAVEN 
Dymola interface modifies input parameters by changing 
copies of these files. RAVEN can then run the Dymola 
executable with these changed files. Dymola generates a 
.mat file containing the requested outputs. The Dymola code 
interface can read this output file and extract the variables 
needed by RAVEN. 
 
Table I. Comparison between Synthetic and Actual Data 
Statistics Database Synthetic 
Mean (load) 1102.3	
   1103.4	
  

Standard deviation (load) 222.2	
   223.8	
  

Mean (step to step diff.) 0	
   0	
  

(step to step difference) 48.4	
   54.2	
  
 

 
Cash flow analysis 

As mentioned, the optimization of the NHES tries to 
minimize the cost of electricity. In order to compute the cost 
of electricity, a cash flow analysis is performed. The cash 
flow analysis is used to determine the cost of the electricity 
that would make the Net Present Value (NPV) equal to zero, 
enforcing therefore a fair economical profit for the NHES in 
its whole. The cash flow analysis is implemented in an 
“external model” written in Python in RAVEN. The 
“Ensemble Model” framework in RAVEN has access to this 
model. 

 
Stochastic optimization 

The NHES optimization problem described above is 
stochastic, i.e. every time RAVEN generates a set of input 
data for Dymola, the synthetic time history generator will 
provide a different history. For example, if RAVEN asks for 
the same mean electricity demand twice, the temporal 
profiles will be different. To optimize such stochastic 
problems, the stochastic optimization algorithm 
Simultaneous Perturbation Stochastic Approximation 
(SPSA) [7] has ben implemented in RAVEN. Conventional 
gradient-based algorithms assume that the gradient can be 
evaluated for every point of the function to be optimized 
(loss function), which may be difficult for high dimensional 
problems and stochastic problems. The SPAS algorithm 
does not have this requirement, but estimates the gradient of 
the loss function and follows this gradient to the functions 
minimum. Since the Dymola model of the NHES and the 
associated cash flow model consists of hundreds of 
optimization variables and require minutes or even hours to 
perform one evaluation, SPSA is chosen as the optimization 
engine in this project. The user can also input constraint 
functions for the input space (see Fig. 3), i.e. upper bound 
and lower bound for each optimization parameter as well, as 
well as more complex constraints like f(a,b)<c. Constraints 

on the outputs can be handled implicitly by adding a penalty 
to the loss function. 

 

 
Fig. 3. RAVEN optimization workflow. 

 
PROOF OF INFRASTRUCTURE FUNCTIONING 

To test the new developed models and RAVEN 
capabilities in an integrated way, an example has been 
calculated. The goal of this example is to demonstrate the 
correct data flow between the RAVEN external models, in 
particular: 

• The “synthetic time series” 
• A simple system model (to be replaced with 

Dymola model)  
• The cash flow model 
• The optimization 

 
The “Ensemble Model” and data flow of the example is 

shown in Fig. 4. First, RAVEN samples the mean demand 
and the installed capacities for all components except the 
nuclear reactor, which is supposed to have a fixed capacity. 
RAVEN then passes one sample of the mean demand and 
the installed wind capacity to the “Synthetic time series 
generation” model. This model generates time series for the 
demand and available wind capacity. Values of the demand 
and the available wind for every hour of a year are passed 
back to RAVEN. RAVEN passes these data together with 
the sampled installed capacities for all components to the 
“Simple system model”. This external model computes the 
electricity produced, fuel consumed and CO2 produced for 
each component in order to satisfy the demand curve. In this 
example, the “simple system model” contains dispatch rules 
for the different components and the utilization factors (as 
mentioned in the Background above) are not part of the 
optimization parameters. The production, fuel consumption 
and CO2 production are then passed back to RAVEN. 
RAVEN passes these data together with the sampled 
installed capacities for all components to the cash flow 
model. This model computes and passes back to RAVEN 
the cost of electricity for this configuration of the system. 
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Fig. 4. Data flow for example calculation. 

 
It is worth mentioning that with this methodology, the 

optimization does not know exactly the demand of the 
future, even though the optimization is done over the whole 
year. Since a new synthetic time history is generated for 
each sample passed by RAVEN, the optimization can be 
considered for a given mean demand only, not for a given 
(known) demand history. 

The simple example includes a nuclear reactor, wind 
farm, gas turbine and battery storage. RAVEN has been 
asked to sample the four variables mean demand and 
renewable, gas turbine and battery storage capacity between 
100MW to 1,000MW while the reactor capacity is constant 
at 300MW. The optimizer has computed 250 iterations of 
the optimization using a carefully chosen set of optimizer 
parameters. Fig. 5 shows the optimization path for the three 
dimensions mean demand, renewable and gas turbine 
capacity while Fig. 6 indicates how these dimensions 
converge. It can be seen that the algorithm converges to a 
minimum cost of electricity of $0.016/kW. It should be 
mentioned, these numbers are just to illustrate the proper 
working of the integrated example with the optimizer and do 
not reflect a real minimum cost of electricity for a NHES. 

 

 
Fig. 5. Optimizer path for cost of electricity. 

 
 

 
Fig. 6. Iteration of optimization variables and cost of 
electricity. 
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