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Abstract—The rapid deployment of autonomous ground ve-
hicles (AGVs) across critical domains has heightened concerns
regarding their susceptibility to cyber—physical threats. In par-
ticular, adversarial obstacle injection, whereby false objects are
maliciously introduced into sensor data, poses a severe risk to
navigation safety and reliability. To address this challenge, a
cyber-resilient reinforcement learning framework is developed
based on the proposed Enhanced Deep Deterministic Policy Gra-
dient (EDDPG) algorithm. The framework unifies path planning
and control through continuous action outputs and incorporates
an adversarial training strategy in which the agent is deliberately
exposed to deceptive sensor inputs during training. By learning to
differentiate between legitimate hazards and falsified obstacles,
the trained policy acquires resilience to sensor manipulation
while maintaining efficient and safe navigation. Comparative
studies against conventional planners and baseline reinforcement
learning models indicate that the adversarially trained EDDPG
agent consistently achieves more robust trajectory performance
under attack conditions. This work demonstrates that resilience
in autonomous navigation must be explicitly engineered and
provides a practical methodology for constructing secure and
trustworthy AGV navigation systems.

Index Terms—Reinforcement Learning, Autonomous Systems,
Path Planning, Obstacle Avoidance, Adversarial Obstacle Injec-
tion, Man-in-the-Middle.

I. INTRODUCTION

HE deployment of Autonomous Ground Vehicles (AGVs)
is rapidly expanding across critical sectors, including
logistics, public transportation, and agriculture. The ability
of these vehicles to navigate complex environments without
human intervention is crucial for their successful operation
[1]-[4]. However, the increasing reliance on sensor data from
sources like LiDAR and cameras introduces significant cy-
bersecurity vulnerabilities [5]-[7]. This paper addresses the
pressing challenge of ensuring navigational resilience against
adversarial sensor attacks, where malicious data manipulation
can compromise vehicle safety and mission success.
Traditional path planning algorithms have been extensively
utilized in autonomous navigation tasks, including graph-based
frameworks, swarm intelligence techniques, tree-based mod-
els, and neural networks [8]-[13]. In graph-based methods, re-
searchers have proposed bio-inspired approaches that integrate
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optimal routing in cluttered environments [14], while others
have developed node-selection algorithms using Voronoi di-
agrams to ensure safety-aware navigation [15]. Bio-inspired
algorithms have also been popular, with hybrid bat-pigeon-
inspired models designed for vehicle navigation [16] and
bat algorithms applied to image-based path planning [17].
Furthermore, advanced frameworks have utilized brainstorm
optimization for multi-objective navigation [18] and informed
sampling strategies to improve exploration efficiency [19].

Although these methods can effectively generate collision-
free trajectories in predictable settings, they fundamentally
assume the integrity of the sensory input they receive [20].
This makes them highly susceptible to deception; an attacker
can introduce false obstacles into the vehicle’s perception data,
causing these algorithms to generate inefficient or dangerously
diverted trajectories. Additionally, many of these approaches
decouple the planning and control processes, posing challenges
for real-time, integrated navigation in dynamic domains. This
kind of an attack is known as Adversarial Obstacle Injection
(AOI) [21]. While there have been efforts to mitigate this type
of attack [22], [23], our proposed method can inherently resist
such attacks through proper training.

In recent years, deep reinforcement learning (DRL) has
emerged as a promising alternative for creating integrated
navigation and control systems [24]. DRL enables an agent to
learn optimal control policies by interacting directly with its
environment, unifying perception, decision-making, and con-
trol within a single framework. In the context of autonomous
vehicles, DRL has been applied successfully to path planning
under environmental disturbances [25] and for robust obstacle
avoidance under partially observable conditions [26]. While
these DRL approaches demonstrate strong adaptability, a con-
ventionally trained agent remains vulnerable to adversarial
attacks. If not explicitly trained to handle data manipulation,
it will treat a malicious non-existent obstacle as a legitimate
one, compromising its mission just as a traditional algorithm
would. The core problem, therefore, is not just creating an
intelligent navigation agent, but creating one that is inherently
resilient to deception.

To overcome this limitation, this study introduces an En-
hanced Deep Deterministic Policy Gradient (EDDPG) frame-
work that achieves cyber-resilience through adversarial train-
ing. The EDDPG algorithm is well-suited for AGV control as
it directly outputs continuous steering and throttle commands,
enabling smooth and precise vehicle motion. The central
innovation is a training regimen where the DRL agent is
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intentionally exposed to simulated Adversive Obstacle Injec-

tion attacks. By learning in an environment where its senses

cannot always be trusted, the agent develops a robust policy
that can differentiate between legitimate hazards and malicious
artifacts. The key contributions of this work are as follows:

(1) An EDDPG model tailored for real-time AGV naviga-
tion that unifies path planning and control by directly
outputting continuous throttle and steering commands.

(2) The integration of an adversarial training paradigm to
build resilience against AOI attacks, enhancing the se-
curity of the navigation system.

(3) A comparative analysis demonstrating that the adversari-
ally trained agent maintains superior mission performance
and trajectory efficiency when under attack compared to
conventionally trained agents.

II. PROBLEM FORMULATION: AGV NAVIGATION
FRAMEWORK

This study addresses the critical cyber-physical security
vulnerabilities inherent in autonomous vehicle navigation as
shown in Fig. 1. The core problem is framed as securing
an AGV against malicious data manipulation designed to
compromise its mission. To this end, we define the navigation
task within a reinforcement learning context, detailing the
specific threat model, the system under attack, and the physical
dynamics that an adversary seeks to exploit.
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Fig. 1. Illustration of the AGV navigation problem in a dynamic environment.
The AGV is controlled via continuous throttle (acceleration) and steering
(direction) commands while subject to spoofed obstacles. Both static and
dynamic obstacles are present, and only the five closest obstacles are explicitly
considered in the state representation. AOI adds unidentified and non-existent
obstacles into the environment.

A. Cybersecurity Threat Modeling

S

The increasing reliance of AGVs on sensor data from
sources like LiDAR and cameras creates a significant attack
surface. Our threat model is built on the premise that a
malicious actor can compromise the data link between the
AGV’s perception sensors and its navigation module. This
vulnerability is exploited through a Man-in-the-Middle (MitM)
attack, which allows the adversary to intercept and alter the
data stream without the agent’s knowledge.

The specific attack vector we focus on is Adversarial Obsta-
cle Injection (AOI), a form of data integrity corruption. In an
AOI attack, the adversary’s objective is not to cause a catas-
trophic system failure, which would be easily detected, but
rather to subtly degrade mission performance. This is achieved
by injecting the coordinates of non-existent virtual obstacles

into the vehicle’s state representation, S;. These malicious
obstacles are strategically placed along the AGV’s optimal
path, forcing the navigation agent to compute inefficient and
diverted trajectories as it performs evasive maneuvers. By con-
tinuously manipulating the perceived environment, the attacker
can effectively control the AGV’s path, increasing travel time
and energy consumption, and ultimately undermining mission
success. The operational area of the environment contains
static rectangular obstacles with side lengths Lj; sampled
uniformly within

Lki = rand(07 1) : (Smax obs — Smin obs) + Smin obs s (1)

where Spmin obs = 0.5 m and Spax obs = 3.0 m. Obstacle
positions are randomized at the beginning of each episode,
ensuring variability in difficulty and preventing overfitting to
specific layouts. The navigation objective is defined by a target
coordinate (Ziarget; Ytarget), With successful arrival declared if
the AGV enters a tolerance radius 7yge;. An episode terminates
if the AGV reaches the target, collides with an obstacle,
exits the operational domain, or becomes trapped in a cyclic
trajectory. These termination conditions collectively enforce
mission feasibility and ensure that the learned policy remains
robust across diverse and dynamic scenarios. The episode
does not end if the agent collides with a spoofed obstacle.
It continues on as though the obstacle does not exist.

B. Markov Decision Process Formulation

The AGV navigation problem is modeled as an MDP
defined by the tuple (S, A, P,R,7), where S is the state
space, A is the action space, P(S;4+1 | Si, A;) denotes the
transition dynamics, R(S;, A, S¢+1) defines the task rewards,
and v € (0,1] discounts future returns. The objective is to
learn a policy m : & — A that maximizes the expected
discounted return,

oo
7™ = argmax E YRyl 2)
thereby unifying perception, decision-making, and low-level
actuation within a single optimization framework appropriate
for real-time control in uncertain, dynamic conditions.

At each decision epoch, the environment provides a state
vector S; that encapsulates environmental context and vehicle
kinematics. The environmental component encodes the global
coordinates (Zedge, Yedge) Of the five closest obstacle edge
points relative to the AGYV, together with the target location
(@target> Yrarger) s shown in Fig 1. The kinematic component
comprises the AGV’s position (2, y;), heading h; and linear
speed v;. All quantities are concatenated and flattened into a
single vector, yielding a compact yet informative representa-
tion that supports stable policy learning and efficient infer-
ence. The action space is continuous and two-dimensional,
A = [athrottle> Qsteering ]T with Qthrottle s Asteering € [_17 1] The
throttle command regulates forward or reverse acceleration,
where agroie = 1 indicates maximum forward acceleration
and agproyre = —1 indicates maximum reverse. The steering
command modulates turning, with ageering = %1 correspond-
ing to maximum rates in opposite directions. This continuous
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parameterization enables learning smooth, fine-grained control
policies that are better aligned with continuous actuation than
discretized action sets.

C. AGYV Kinematic and Dynamic Model

The AGV motion model captures both translational and
rotational dynamics under bounded actuation. The AGV’s state
is represented by its global position (x,y;), forward velocity
v, heading hy, and angular velocity w;. The throttle input
amrote € [—1,1] determines the linear acceleration, scaled
by a maximum A,.. = 0.8 m/sz. The resulting effective
acceleration is given by a; = aurowe - Amax. The velocity
update follows v;,, = v; + a;At, and is then clipped to the
admissible operational range: v;+1 = clip(vi, 1, Vmin; Umax)s
with vy = 0.3 m/s and vy, = 1.0 m/s. The steering input
steering € [—1,1] modulates angular velocity.

(%7
W{H—l = Z tan(asleering~57rLax)7 3)

where L is the length of the wheelbase of the AGV and 0,4,
is the maximum steering angle allowed on the vehicle. §,,4,
reduces with increased speed. Heading is updated using the
trapezoidal integration rule to reduce numerical error,

Wt + Wig1
2

and the position is propagated based on the average velocity
and heading across the time interval. This formulation pro-
vides a physics-consistent representation of AGV dynamics,
ensuring that learning-based control policies respect realistic
maneuverability and actuation constraints. The control systems
also do not have the ability to differentiate between spoofed
and real obstacles.

ht+1 = (ht + At) mod 3607 (4)

III. CYBER-RESILIENT EDDPG FRAMEWORK

To counter the threat of AOI, we have developed a special-
ized defensive architecture based on an EDDPG framework.
This framework is engineered not just for efficient naviga-
tion but for robust operation within a compromised sensory
environment. Its core purpose is to train a control policy
that can withstand malicious data manipulation. Built upon
the actor-critic architecture of DDPG, the framework directly
outputs continuous throttle and steering commands, enabling
smooth, real time trajectory execution without the need for a
separate low-level controller. The enhancement over standard
DDPG lies in the integration of OU noise for exploration-
stabilized learning, coupled with a high-fidelity environment
model that captures real and spoofed obstacle interactions.
The architecture, shown in Fig. 2, integrates a secure control
mechanism with a specialized adversarial training regimen to
produce an agent that is inherently resilient to deception.

The EDDPG framework employs two neural networks: an
actor p(S|0*) that deterministically maps a state vector to a
continuous action, and a critic Q(S, A|§%) that estimates the
state-action value function. Both networks are accompanied
by target networks p/ and ', which are updated using a
soft-update mechanism with rate 7 < 1 to improve training

stability. The actor learns a deterministic policy that maximizes
the critic’s estimated return, while the critic is trained to
minimize the temporal-difference error using the Bellman
equation. The deterministic formulation eliminates the stochas-
tic sampling variance associated with policy-gradient methods
in continuous spaces, allowing for more precise control outputs
that are critical for marine vehicle actuation. As illustrated
in Fig. 2, the EDDPG framework employs both online and
target networks for the actor and critic, ensuring stable updates
through soft target updates.
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Fig. 2. Architecture of the proposed EDDPG framework for AGV naviga-
tion. The framework follows an actor-critic structure with online and target
networks for both actor and critic. The online actor generates continuous
control actions (steering and throttle) based on the observed state, while the
online critic evaluates their expected returns. Target networks are updated via
soft updates to stabilize training. A replay buffer stores past transitions, from
which mini-batches are sampled for training. Gradient updates are applied
separately to the actor and critic through their respective optimizers.

Effective exploration in continuous action spaces requires
temporally correlated perturbations that reflect the inertia and
persistence of physical control signals. To achieve this, the
EDDPG framework adds OU noise N°Y to the actor’s actions
during training. The OU process is defined as:

Ng-UAt = NtOU + H(Mnoise - NtOU)At + Onoise V At Wy, ()

where 6 controls the mean reversion speed, fipoise 1S the mean
value, opoise is the volatility, and W; ~ N(0,1) is Gaussian
noise. This formulation produces smooth, correlated explo-
ration that accelerates convergence and yields more stable
post-convergence performance, particularly in environments
with continuous actuation like throttle and steering control.
This also means the perturbations are smooth and persistent
over time, effectively mimicking an adversary who is contin-
uously updating a phantom obstacle’s position relative to the
AGV. By forcing the agent to train against these correlated
adversarial signals, we build a policy that learns to distinguish
between the persistent patterns of a malicious injection and the
characteristics of a true physical obstacle, making it far more
robust than an agent trained with simple random exploration.

The framework maintains an experience replay buffer M
containing tuples (S, Ay, Ry, St+1,d:), where d; is a terminal
flag. To improve sample efficiency, the EDDPG implementa-
tion optionally employs Prioritized Experience Replay (PER),
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in which transitions with higher temporal-difference errors are
sampled with greater probability. This prioritization focuses
updates on informative experiences, speeding up convergence
while retaining sufficient diversity to prevent overfitting to a
narrow subset of trajectories.

Algorithm 1 Proposed EDDPG Algorithm

Initialize critic Q(S, A|9<), actor w(S|6™); targets Q’, 7’ with
0@ «— 69,07 « o™,
Initialize replay buffer M (capacity Ny, ¢); noise Noy; hyperparameters:
batch size K,~, T
for episode = 1 to0 Mepisodes do
Reset Noy process
Get initial state Sy
for t = 1 to Tinas_steps do /I Loop through current episode
Select action with NoiseA¢ = 7(S¢|0™) + Nou (¢)
Execute A;; observe reward Ry, next state Si41, done flag d;
Store transition (St, A¢, Rt, St4+1,dt) in B
if |B| > K then
Sample random mini-batch of size K from B:
(Si, Ai, Ry, Siq1,d;
Afy =7 (Si41107) /I Expected a/ction using target Actor
Qi = Ri +7(1 — di)Q'(Siy1, A} 1109
/I Expected Q value using target Critic

1
L(6%9) = e Z(Qi —Q(Si, A;169))2.
¢ /I Critic Loss

/I Loop through training episodes

A%y = 7(S;]67)
VorJ = e > [VA*Q(Si,A*iWQ) : VeﬂW(SiW”)]

7

/I Calculate Actor Gradients
/I Update Target Critic
/l Update Target Actor

09 « 709 + (1 — 7)o@’
07"« 107 + (1 — 1)oH

end if

St < St+1

if d; then
Break

end if

end for
end for

// Update current state

/I Stop episode if done

At each update step, the critic parameters A% are optimized
to minimize the mean-squared temporal-difference error:

1 K
£0%) = 2 — QS Al69) . ©
where
yi = Ri + (1 — d) Q' (Sis1, 1/ (Si110°)169). ()

The actor parameters 6% are updated by ascending the
sampled policy gradient:

K
Voud = % 2 VaQ(Si, Al09)| 4 _ s, Voru(Sil6"). (®)
By combining continuous-control learning with OU noise-

driven exploration and prioritized replay, the EDDPG frame-

work produces a control policy that is not only efficient
but fundamentally resilient to the threat of adversarial data
manipulation. It also achieves faster convergence, reduced
post-convergence variance, and improved obstacle avoidance
capability compared to standard DDPG. Furthermore, the
direct output of control commands eliminates the need for
additional trajectory-to-actuation conversion layers, enabling

integrated planning and control that is both computationally
efficient and operationally robust in dynamic environments.
The proposed EDDPG is summarized in Algorithm 1.

IV. REWARD FUNCTION DESIGN

The reward function is the central component of our defen-
sive framework; it acts as the agent’s security policy, teaching
it how to behave in an adversarially compromised environ-
ment. Its design is critical for shaping a policy that is not
only efficient but inherently resilient to deception. The primary
challenge is to balance the core mission objective, reaching the
target, with the critical security task of identifying and ignoring
malicious sensory data. Thus, the reward is formulated as a
weighted sum of physically interpretable terms:

©))

R = wiriy + warar + warsy + warar + WsTse,

where w; denotes the weight of each reward component.

The design of R, follows three principles: (1) provide dense
and continuous feedback to accelerate convergence, (2) encode
safety constraints directly into the reward to avoid unsafe
exploration, and (3) balance short-term control stability with
long-term goal achievement. Each component is derived from
measurable quantities in the state vector, ensuring that the
reward is grounded in observable and physically features.
Target Acquisition Reward: A large terminal reward encour-
ages the agent to reach the target:

Rgoala if ||($t7 yt) - (xlargeta ytargel)” < T'target (10)

it = .
0, otherwise,

where Rgoa > 0.

Obstacle Avoidance Penalty: To discourage proximity to
obstacles, a continuous penalty inversely proportional to the
minimum distance is applied:

) 1
ot = clip ( min(Doy) "2 0) ;
where D, denotes the set of distances to the closest obstacles
and 72 min bounds the penalty to avoid reward explosion.
This penalty is not applied to the adversarial obstacles since
they do not actually exist. Doing this allows the RL agent to
learn to differentiate between real and injected obstacles.
Progress Reward: Forward progress toward the target is
incentivized via:

(1)

DistToTarget,

—K3—— 12
s DistToTarget,_’ (12)

3t =
which is scale-invariant across different start-goal configura-
tions.
Boundary Violation Penalty: Leaving the operational domain
incurs a large negative penalty:

— Rpound, if out_of_bounds,

1
0. 13)

Tat = .
otherwise.

Heading Alignment Reward: Efficient navigation is promoted
by aligning the ’s heading with the target direction:

r5¢ = k5 cos (2 Ahy), (14)
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where Ah,; is the angular difference between the current
heading and the desired heading toward the target.

V. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of our
proposed cyber-resilient EDDPG framework. The primary
objective is to assess its effectiveness in maintaining mission
integrity while under a simulated AOI attack. We compare its
performance against baseline DDPG using Gaussian noise [27]
and Artificial Potential Field (APF) navigation algorithm [28].
The analysis focuses on training stability, trajectory efficiency
under attack, and overall mission success rates.

The simulation environment was configured as a 100 x 100
m populated with randomly placed static obstacles. For the
attack scenarios, a single phantom obstacle was strategically
injected into the AGV’s perception data, continuously posi-
tioned along its optimal path to the target. RL algorithms
were trained for 10,000 episodes, each capped at 500 steps,
across diverse obstacle layouts to ensure robustness. APF was
executed in real time without pre-training.

Gaussian DDPG Training Rewards Proposed EDDPG Training Rewards
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Fig. 3. Training performance of reinforcement learning algorithms. The
progression of cumulative reward over 10,000 training episodes is shown for
baseline DDPG with Gaussian noise, and the proposed EDDPG with OU
noise. Gaussian DDPG converged but at a lower value than expected. The
proposed EDDPG model successfully explored the environment and converged
at a higher reward but with a higher variance. The higher variance is expected
since the EDDPG agent was trained in an adversarial environment.

The reward evolution during training is shown in Fig. 3.
baseline DDPG with Gaussian noise converged successfully,
requiring about 10 hours of training. It achieved reliable
navigation in most runs. The Agent converged to a lower
reward than expected, which can be interpreted as unsuc-
cessful complete exploration of the environment. It was also
successfully deceived by the AOI attacks. Having never been
exposed to malicious data during its training, it learned to
treat all obstacles as legitimate threats. Consequently, when
the malicious obstacle was injected, the agent diligently ma-
neuvered to avoid it, resulting in a significantly diverted and
suboptimal trajectory. This finding underscores a key insight:
intelligence alone is insufficient for security. An agent is only
as trustworthy as the data it is trained on.

Our adversarially trained EDDPG agent demonstrated re-
markable resilience. Having learned to distinguish between
real and malicious obstacle data via its security-aware reward
function, the agent correctly identified the malicious obstacle
as not a threat. It proceeded to largely ignore the injected
data, maintaining a trajectory that was direct, efficient, and
closely aligned with the optimal path. While minor deviations
were sometimes observed as the agent evaluated the perceived

threat, its ability to prioritize the true mission objective show-
cases the success of our adversarial training regimen.
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Fig. 4. Comparative trajectory results across different algorithms in an adver-
sarial attack environment. Each column corresponds to a navigation method:
APF, Gaussian DDPG, and the proposed EDDPG. Each row showcases the
progress of the agent through the environment. Obstacles are shown as static
rectangular blocks. Gaussian DDPG learned to avoid obstacles but was unable
to distinguish between real and spoofed obstacles; APF became trapped in
local minima behind the spoofed obstacle; and the proposed EDDPG achieved
smooth, efficient, and collision-free trajectories ignoring the spoofed obstacle.

Traditional planners operate without pre-training, instead
computing feasible paths online at each timestep. APF is
prone to local minima and yielded geometric paths that require
integration with a separate low-level controller to translate into
throttle and steering commands. This distinction underscores
the practical advantage of RL-based approaches, which di-
rectly output continuous control actions. The agent also proved
extremely vulnerable to the AOI attack. As a purely reactive
method that treats all perceived obstacles as repulsive forces,
it had no mechanism to question the integrity of its sensory
input. The malicious obstacles created a persistent repulsive
field that easily diverted the AGYV, often trapping it in local
minima or forcing it onto extremely inefficient, circuitous
paths. This demonstrates the inherent brittleness of traditional
planners against deceptive data manipulation. Fig. 4 com-
pares representative trajectories across all algorithms. Gaussian
DDPG produced feasible but occasionally erratic paths and
APF frequently became stuck in local minima. By contrast,
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the proposed EDDPG consistently produced smooth, efficient,
and collision-free trajectories, even under varying conditions.

Table I summarizes the estimated performance metrics. Both
the traditional DDPG and traditional path planning algorithms
were not successful in avoiding the obstacles while being
resilient to adversarial attacks. The simulation studies highlight
three insights: (i) RL methods significantly reduce online
computation compared to traditional planners; (ii) Gaussian
DDPG suffers from unstable policies; (iii) the proposed ED-
DPG achieves superior convergence stability, path efficiency,
and adaptability to adversarial attack environments.

TABLE 1
COMPARATIVE PERFORMANCE OF NAVIGATION ALGORITHMS

Algorithm Success Rate Avg. Steps to Target Convergence Stability

APF 30% High (>450 steps) Sensitive to local minima
Gaussian DDPG 85% Medium (~150 steps) Converged, No Adversarial Training
Proposed EDDPG 98% Low (~100 steps) Stable, Adversarial Training

VI. CONCLUSION

This study addressed the vulnerability of autonomous
ground vehicle navigation to adversarial obstacle injection
by developing a cyber-resilient reinforcement learning frame-
work. Through the integration of adversarial training within
the proposed EDDPG algorithm, a navigation policy was
obtained that remains effective even under deceptive sensing
conditions. The findings confirm that resilience is not an
emergent property of intelligence, but rather a feature that
must be deliberately engineered into learning-based control
systems. The proposed approach provides a practical pathway
toward secure and trustworthy autonomous navigation, with
future work directed toward extending resilience across multi-
sensor fusion and real-world deployments.
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