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Abstract— This paper proposes two different event-triggered
nonlinear model predictive controls (NMPC) for autonomous
vehicle path tracking. The difference between the two event-
triggered NMPCs is the determination of control action when
an event is not triggered. In the first formulation, the optimal
control sequence computed from last triggering event is shifted
to determine control action when NMPC is not triggered, while
in the second formulation, a time-triggered linear parametric
varying MPC (LPV-MPC) with shorter prediction horizon is
formulated and solved in between NMPC triggering events
to compensate prediction error and disturbance. These two
event-triggered NMPCs, together with a time-triggered LPV-
MPC and a time-triggered NMPC serving as benchmark, are
implemented to track the vehicle path in both longitudinal
and lateral directions, with axle driving torque and front
steering input as the control variables. Control performance
and throughput requirements of different MPCs are then mea-
sured and compared, where the advantage of event-triggered
formulation is clearly demonstrated.

I. INTRODUCTION

Model predictive control (MPC) can deal with both linear
and nonlinear systems subject to constraints, and has been
one of the most popular control methods [1]. MPC solves,
for every control loop, a constrained optimization problem
incorporating finite horizon predictions based on a dynamical
model and the current state estimation. MPC has been exten-
sively studied and many results have been obtained regarding
the stability, robustness, and feasibility [2]–[4]. Due to its
capability to deal with constraints on both states and inputs,
MPC has been widely studied for many applications, such
as vehicle systems [5], [6], smart grids [7], and electric
motors [8], etc. Recent research and development has been
focused on adopting MPC in embedded automotive systems,
in order to improve the fuel economy and ride comfort.
For example, [9], [10] applied MPC for autonomous vehicle
(AV) control, while [11], [12] applied MPC in electric
vehicle (EV) for energy optimization. As a real-time optimal
control technique, MPC is very suitable for integrated vehicle
control, where the control commands of multiple actuators
are simultaneously optimized [13], [14]. MPC has also been
investigated for possible usage in active safety [15].

Despite the advantage of dealing with system constraints,
MPC does require high computation power, which further
increases when the system dimension or prediction horizon

This work is supported in part by SECS Faculty Startup Fund and URC
Faculty Research Fellowship at Oakland University.

Jun Chen is with the Department of Electrical and Computer En-
gineering, Oakland University, Rochester, MI 48309, USA (email:
junchen@oakland.edu).

Zonggen Yi is with Idaho National Laboratory, Idaho Falls, ID 83415,
USA (email: zonggen.yi@inl.gov).

increases. One way to improve the MPC computational effi-
ciency without degrading the control performance is event-
triggered MPC, in which MPC is triggered to formulate and
solve the OCP only when it is needed, as opposed to being
time-triggered at fixed sampling rate. See for example [16]–
[21], and the reference therein. By allowing optimization
updates only when it’s necessary, the event-triggered MPC
can significantly reduce the throughput. Different event-
trigger mechanisms have been proposed in literature. For
example, an event can be triggered if the deviation of the
actual system states from the prediction exceeds a certain
threshold, where the prediction is computed when MPC
solves the OCP at the last event, [18], [19]. This approach
is also called emulation-based event-triggered MPC, and
is very advantageous for linear MPC, in which the event-
triggering condition can be then translated to conditions on
error dynamics, and often can result in guaranteed robustness
when the maximum disturbance is assumed to be known.
Another widely used method to define the event-triggering
mechanism is based on the cost function of the OCP [22],
[23], where an event is triggered if the decreasing of cost
function is not guaranteed. Finally, an event can also be self-
triggered [24], [25]. In this approach the timing of next event
is determined when the current event is triggered.

In this paper, we propose two formulations of event-
triggered NMPC for AV path tracking, whose difference
lies in the determination of control action when an event
is not triggered. In the first formulation, the optimal control
sequence computed from last triggering event is shifted to
determine control action when NMPC is not triggered, while
in the second formulation, a time-triggered linear parametric
varying MPC (LPV-MPC) with shorter prediction horizon is
formulated and solved in between NMPC triggering events
to compensate prediction error and disturbance. To compare
the aforementioned event-triggered NMPCs, together with a
time-triggered LPV-MPC and a time-triggered NMPC serv-
ing as benchmark, an AV path tracking problem similar to
that of [9] is formulated. In other words, the optimal control
problem is formulated to track the vehicle path in both
longitudinal and lateral directions, with axle driving torque
and front steering input as the control variables. Control
performance and throughput requirements of different MPC
setups are then measured and compared. The contribution of
this paper is two folds: (1) we apply event-triggered NMPC
in AV path tracking problem, where the prior work focused
on time-triggered MPC; and (2) we propose and investigate
the use of time-triggered LPV-MPC in between two NMPC
triggering events to allow fast control correction and reduced
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NMPC triggering frequency.
The rest of this paper is organized as follows. Section II

presents the event-triggering NMPC formulations together
with other MPC setups, while Section III introduces the AV
path tracking problem. Section IV presents numerical results
and the paper is concluded in Section V.

II. TIME-TRIGGERED AND EVENT-TRIGGERED MPC

Consider the following discrete-time system dynamics

ζt+1 = f(ζt, ut), (1)

where ζt ∈ Rn is the system state at discrete time t,
ut ∈ Rm is the control input. Given a prediction horizon
p, the MPC aims to find the optimal control sequence Ut

and optimal state sequence Zt by solving an optimal control
problem (OCP), where Ut and Zt are defined as Ut =
{ut, ut+1, . . . , ut+p−1} and Zt = {ζt+1, ζt+2, . . . , ζt+p}.

A. Time-triggered NMPC

At each sampling time t, the conventional time-triggered
NMPC solves the following OCP:

min
Zt,Ut

J(Zt, Ut) (2a)

s.t. ζt = ζ̂t (2b)
ζt+k = f(ζt+k−1, ut+k−1), 1 ≤ k ≤ p (2c)
ζmin ≤ ζt+k ≤ ζmax, 1 ≤ k ≤ p (2d)
umin ≤ ut+k ≤ umax, 0 ≤ k ≤ p− 1 (2e)
∆min ≤ ut+k − ut+k−1 ≤ ∆max,

0 ≤ k ≤ p− 1, (2f)

where for (2b), ζ̂t denotes the current state estimation, and
for (2f), ut−1 denotes the control action applied at previous
loop. For NMPC, the cost function J in (2a) can be any
nonlinear function defined over Ut and Zt. The above OCP
is solved for every sampling time t, and the first element of
Ut, i.e., ut is then applied to actuators as control action, while
the remaining of the optimal sequence Ut is abandoned.

B. Time-triggered LPV-MPC

At each sampling time t, one can linearized and discretize
(1) around the nominal operating point (u0, ζ0) = (ut−1, ζ̂t)
to obtain a discrete-time LPV model, as follows:

δζt+1 = f0 +Atδζt +Btδut. (3)

The time-triggered LPV-MPC solves the following OCP:

min
Zt,Ut

J(Zt, Ut) =

p∑
k=1

||ζt+k − ζrt+k||2Qζ

+

p−1∑
k=0

(
||ut+k − urt+k||2Qu + ||ut+k − ut+k−1||2Qd

)
(4a)

s.t. δζt = 0 (4b)
δζt+k = f0 +Atδζt+k−1 +Btδut+k−1,

1 ≤ k ≤ p (4c)

Algorithm 1 Event-Triggered NMPC

1: procedure ENMPC(ζ̂t, k, Ut1 , Zt1 )
2: k ← k + 1;
3: e← computing (5);
4: if e = 1 then
5: k ← 0;
6: (Zt, Ut)← Solving OCP (2);
7: u← Ut(1);
8: Ut1 ← Ut;
9: Zt1 ← Zt;

10: else
11: u← Ut1(k + 1);
12: end if
13: return u, k, Ut1 , Zt1

14: end procedure

ζt+k = ζ0 + δζt+k, 1 ≤ k ≤ p (4d)
ut+k = u0 + δut+k, 0 ≤ k ≤ p− 1 (4e)
ζmin ≤ ζt+k ≤ ζmax, 1 ≤ k ≤ p (4f)
umin ≤ ut+k ≤ umax, 0 ≤ k ≤ p− 1 (4g)
∆min ≤ ut+k − ut+k−1 ≤ ∆max,

0 ≤ k ≤ p− 1, (4h)

where Zr
t = {ζrt+1, . . . , ζ

r
t+p} and urt = {urt , . . . , urt+p−1}

are the state and input reference for tracking. It is trivial
to see that the above OCP can be translated into linearly
constrained quadratic programming (QP) problems, and can
be solved in real-time by embedded devices [5], [26], [27].

C. Event-triggered NMPC

Unlike time-triggered MPCs presented in previous sec-
tions, which solve the OCP at every sampling time, the
event-triggered NMPC solves the OCP (2) only when an
event is triggered. In this paper, we consider the following
event-triggering mechanism, which is adopted from [18]. At
sampling time t, given the optimal sequence Zt1 computed
at last event (at time t1) and the current state estimation ζ̂t,
an event e is defined by

e =

{
1 if ||Zt1(k)− ζ̂t||∞Q > σ or k > kmax

0 Otherwise
, (5)

where k is such that t = t1 + kTs with Ts being the
sampling time, and σ and kmax are calibration parameters
that influence the frequency of event-triggering. In other
words, an event-triggered NMPC solves the OCP (2) only
when e = 1. When e = 0, the control action can be
determined using the optimal sequence Ut1 computed at last
event [16], i.e.,

u =

{
Solution of (2) if e = 1
Ut1(k + 1) Otherwise . (6)

Furthermore, it is trivial to see that kmax < p, and otherwise
(6) can be undefined. Algorithm 1 summarizes the event-
triggered NMPC for each sampling time t.
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Algorithm 2 Event-Triggered NMPC w. LPV Compensation

1: procedure EMPC LPV(ζ̂t, k, Ut1 , Zt1 )
2: k ← k + 1;
3: e← computing (5);
4: if e = 1 then
5: k ← 0;
6: (Zt, Ut)← Solving OCP (2);
7: u← Ut(1);
8: Ut1 ← Ut;
9: Zt1 ← Zt;

10: else
11: k1 ← min(k + pl, p);
12: urt ← {Ut1(k + 1), . . . , Ut1(k1)};
13: Zr

t ← {Zt1(k + 1), . . . , Zt1(k1)};
14: u← Solving OCP (4);
15: end if
16: return u, k, Ut1 , Zt1

17: end procedure

The event-triggered NMPC described above reduces
throughput requirement by decreasing the frequency of
solving the nonlinear OCP (2). In practice, the control
performance can be slightly degraded since event-triggered
NMPC can only compensate the model mismatch and/or
unmeasured disturbance in a re-active fashion. In this paper,
we propose a new event-triggered NMPC that differs from
Algorithm 1 by how the control action u is computed
when the event is not triggered, i.e., Line 11. Specifically,
we propose to use a time-triggered LPV-MPC with shorter
prediction horizon to track Zt1 when e = 0. By having a
closed loop control in between event-triggering, the overall
control performance is expected to be better than that of
Algorithm 1. The LPV-MPC considered in this case solves
the similar OCP problem (4) as described in Section II-B,
with prediction horizon pl being shorter than that of NMPC,
and the input and state references Zr

t and urt computed by
urt = {Ut1(k + 1), . . . , Ut1(min(k + pl, p))} and Zr

t =
{Zt1(k + 1), . . . , Zt1(min(k + pl, p))}.

In other words, this LPV-MPC tracks a section of the pre-
vious optimal sequences Ut1 and Zt1 by utilizing the up-to-
date state estimation and model linearization to compensate
the prediction error made at last event. Algorithm 2 sum-
marizs the event-triggered NMPC with LPV compensation,
which runs each sampling time t. Note that the optimal
sequences from the OCP (4) is abandoned and not passed
to the next control loop.

III. AUTONOMOUS VEHICLE PATH TRACKING

This section presents the bicycle model, as depicted in
Fig. 1, which can be used as prediction model for MPC, and
formulates the AV path tracking problem.

A. Vehicle Dynamics Model at CG
The equations for vehicle center of gravity (CG) and wheel

dynamics are given by

ẋ = vx cosψ − vy sinψ (7a)

Fig. 1. The bicycle model for vehicle dynamic.

v̇x = vyr +
2

m

∑
i=f,r

Fx,i − g sinσg −
1

m
Fa (7b)

ẏ = vx sinψ + vy cosψ (7c)

v̇y = −vxr +
2

m

∑
i=f,r

Fy,i (7d)

ψ̇ = r (7e)

ṙ =
1

I
(2LxfFy,f − 2LxrFy,r) , (7f)

where x, y and ψ are the vehicle CG longitudinal position,
lateral position, and rotational angle, in global inertial frame,
and vx, vy , and r are the vehicle longitudinal velocity, lateral
velocity, and yaw rate, in vehicle frame, m is the vehicle
mass, I is the vehicle rotational inertia on yaw dimension,
Lxf and Lxr are the distance from CG to the middle of front
and rear axle, respectively.

According to [28], the aerodynamic drag force, Fa, can
be modeled by, assuming wind speed is 0,

Fa =
1

2
ρCdAF v

2
x, (8)

where ρ is the air mass density, Cd is the aerodynamic drag
coefficient, AF is the effective front area. Typical values for
ρ, Cd and AF are: 1.225 kg/m3, 0.25 − 0.3, and 1.6 +
0.00056(m−756). More details regarding vehicle dynamics
can be found in [10], [28].

B. Tire Force Model

The tire force Fx,i and Fy,i in (7b), (7d), and (7f) are
expressed in vehicle frame. Denote F̄x,i and F̄y,i as the
tire force in wheel frame, then we have the following
relationship, for i = {f, r},

Fx,i = F̄x,i cosβi − F̄y,i sinβi (9a)
Fy,i = F̄x,i sinβi + F̄y,i cosβi, (9b)

where βi is the wheel-road-angle for the wheel i. Denote the
wheel rotational speed for wheel i as ωi, then we have

ω̇i =
Ti/2− F̄x,iR

Iw
, (10)

where Ti is the propulsion/braking torque at the axle, R is
the effective tire radius and Iw is the wheel rotational inertia.
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The tire slip ratio si and slip angle αi are defined as (for
driving forward)

si =
ωiR− v̄x,i

v̄x,i
(11a)

αi = arctan
v̄y,i
v̄x,i

, (11b)

where the vehicle corner velocities at wheel frame v̄x,i and
v̄y,i are given by

v̄x,i = vx,i cosβi + vy,i sinβi (12a)
v̄y,i = −vx,i sinβi + vy,i cosβi. (12b)

Furthermore, the vehicle corner velocities at vehicle frame
vx,i and vy,i then are given by

vx,f = vx,r = vx (13a)
vy,f = vy + Lxfr (13b)
vy,r = vy − Lxrr, (13c)

Finally, the normal force can be modeled by static load
transfer,

Fz,i =
Lxrmg

2(Lxf + Lxr)
i = 1, 2 (14a)

Fz,i =
Lxfmg

2(Lxf + Lxr)
i = 3, 4 (14b)

One can assume that during each discretized prediction
step the slip is at steady state, hence ṡi = 0. Further assume
that the change of v̄x,i is negligible compared to the change
of slip ratio, then we have 0 = ṡi = (ω̇iR)/v̄x,i = (Ti/2−
F̄x,iR)R/Iw/v̄x.i. Therefore F̄x,i = Ti/2/R. Also assume
that the lateral tire force is within the linear range, and so
F̄y,i = CiµiFz,iαi, where Ci is the tire corner stiffness and
µi characterize the road surface. In other words, we adopt
the following linear tire model

F̄x,i =
Ti
2R

, F̄y,i = CiµiFz,iαi (15)

C. Complete AV Plant Model

Putting everything together, the nonlinear model for AV
path tracking can be compactly represented as

ζ̇ = fc(ζ, u) (16)

where the state vector is ζ = [x, vx, y, vy, ψ, r] and input
vector is u = [Tf , Tr, βf , βr]. For vehicle that has only front
wheel drive and front wheel steering, as is considered in this
paper, we have Tr = 0 and βr = 0. Therefore, we have

u = [Tf , βf ] .

The nonlinear function fc(ζ, u) can be obtained by assem-
bling (7), (8), (9), (11b), (12), (13), (14), and (15). One
can also discretize (16) to obtain a discrete-time model, as
follows:

ζt+1 = f(ζt, ut) (17)

for discrete sampling time t. The discretization can be done,
for example, through Euler’s method.

D. AV Path Tracking

For AV path tracking, a path planner generates desired path
over the entire prediction horizon, which is then tracked by
the MPC as part of the optimization process. In this paper, we
consider the similar driving maneuver that was investigated
in [9], where the vehicle tracks a sinusoidal trajectory. As
shown in Figure 2, the lateral position is a function of the
longitudinal position, as given by

y = g(x) = 4 sin

(
2π

100
x

)
(18)

The vehicle is also tracked to maintain desired longitudinal
speed.

Depending on the MPC formulation being used, the actual
reference going into MPC would be different. For example,
an NMPC set up can explicitly deal with the nonlinear rela-
tionship between x and y over the prediction horizon, while
a LPV-MPC can only track the lateral position y by assuming
the constant vx and ψ. Next section details the controller set
up for each MPC formulation under investigation.

IV. NUMERICAL RESULTS AND DISCUSSION

Hereafter we will use tNMPC to indicate the time-
triggered NMPC, eNMPC the event-triggered NMPC, eN-
MPC/LPV the event-triggered NMPC with time-triggered
LPV-MPC compensation, and finally LPV-MPC indicates the
time-triggered LPV-MPC controller.

A. Controllers Setup

As mentioned in previous section, the control objective
here is to track the AV position according to the reference
trajectory defined by (18). Additionally, the longitudinal
speed in vehicle frame is tracked to a constant value vrx.
Therefore, the cost function for NMPC (both time-triggered
and event-triggered) is defined as follows.

JN (Zt, Ut) =

p∑
k=1

||ζt+k − ζrt+k||2Qζ

+

p−1∑
k=0

(
||ut+k − urt+k||2Qu + ||ut+k − ut+k−1||2Qd

)
+

p∑
k=1

∣∣∣∣∣∣∣∣ζt+k(3)− 4 sin

(
2π

100
ζt+k(1)

)∣∣∣∣∣∣∣∣2
Qt

(19)

where the last term penalizes the path tracking error and is
nonlinear, and ζrt+k = [0, vrx, 0, 0, 0, 0]T for each k.

For LPV-MPC, the cost function is given by (4a), where
for each k, ζrt+k = [0, vrx, y

r
k, 0, 0, 0]T and

yrk = 4 sin

(
2π

100
(x̂+ kv̂x cos(ψ̂)Ts)

)
(20)

where ·̂ denotes the estimation of the corresponding variable
at the beginning of the prediction horizon.

All controllers are evaluated in simulation environment
by using the complete bicycle model with wheel dynamics
presented in Section III-C. To provide a more realistic sim-
ulation analysis, model mismatch is introduced by differing
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Parameter MPC Virtual Vehicle
m [kg] 1500 1425
Lxf [m] 1.2 1.3
Lxr [m] 1.4 1.3
I [kgm2] 4192 4402
R [m] 0.2159 0.2159
Ci [-] -4.5837 -4.5837
µi [-] 1 0.95

TABLE I
PARAMETERS FOR THE BICYCLE MODEL.

Cals tNMPC eNMPC eNMPC/LPV LPVMPC
Qζ(2, 2) 1 1 1 1
Qζ(3, 3) 0 0 0 1
Qt 2 2 2 -
Qu [10,0;0,19] [10,0;0,19] [10,0;0,19] [10,0;0,40]
Qd [0,0;0,1] [0,0;0,1] [0,0;0,1] [0,0;0,1]

TABLE II
MPC CALIBRATIONS.

some key parameters used by the MPC and those used by
virtual vehicle plant, as summarized in Table I.

All controllers running at a sampling time of Ts = 200ms,
with prediction horizon p = 10, and upper bounds and lower
bounds for input constraints given by

umax =

[
500

0.54105

]
∆max =

[
70

0.034907

]
umin =

[
−500
−0.54105

]
∆min =

[
−200

−0.034907

]
Table II summarizes the calibration of the 4 controllers.

B. Numerical results

Figure 2 plots the results when the simulation reaches
steady state. Please note that for different controllers, the
steady state is reached in different x position, and Figure 2
offsets the plot to align at x = 0. As can be seen from Figure
2, tNMPC, eNMPC, and eNMPC/LPV provide comparable
tracking performance when −2 ≤ y ≤ 2, i.e., when the
vehicle is driving almost straight, while eNMPC has notably
performance degradation during high curvature maneuver.
Note that the results of LPV-MPC is not reported in Figure
2 in order to maintain the readability of the figure.

0 10 20 30 40 50 60 70 80 90 100

x [m]

-4

-2

0

2

4

y
 [

x
]

Path

Reference

tNMPC

eNMPC

eNMPC/LPV

Fig. 2. AV path tracking results.
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(c) Path Tracking Error - eNMPC/LPV
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(d) Path Tracking Error - LPVMPC

Fig. 3. AV path tracking error.

Cals tNMPC eNMPC eNMPC/LPV LPV-MPC
Ave. error [m] 0.111 0.133 0.077 0.252
Max error [m] 0.173 0.256 0.208 0.364
Ave. vx [m/s] 7.98 7.86 7.86 6.75
Ave. Ts [ms] 200 375 712 200

TABLE III
AV PATH TRACKING RESULTS.

Figure 3 plots the path tracking errors, where Figure
3(b) and 3(c) additionally plots the triggering events for
eNMPC and eNMPC/LPV. Note that tNMPC, eNMPC, and
eNMPC/LPV have comparable worst case tracking error,
while eNMPC/LPV has overall best performance. LPV-MPC,
on the other hand, has worst control performance in terms
of both average and worst case tracking error. Note that
the reason eNMPC/LPV outperforms tNMPC in terms of
average tracking error is unclear, and additional investigation
to confirm this observation is one of the future work. Possible
reasons include, for example, different calibrations should be
used for time-triggered and event-triggered formulations (in
this paper, tNMPC, eNMPC, eNMPC/LPV share the same
calibration). The initial guess for tNMPC may also be a cause
of local optimum.

Table III summarizes the test results based on Figures 2
and 3. Comparing tNMPC and eNMPC, acceptable perfor-
mance degradation is observed, while the averaging sampling
time is extended from 200ms to 375 ms, hence relaxing
the computation requirement on hardware. Furthermore, eN-
MPC/LPV triggers nonlinear MPC computation with average
interval of 712ms between events, while improving average
tracking error and degrading maximum error.

Finally, the relative throughputs1 of tNMPC, eNMPC, and

1The throughput data was measured in a desktop computer with Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz CPU and 8.0 GB of RAM.
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eNMPC/LPV, scaled by the average computational time of
tNMPC throughout the entire sinusoidal period, are com-
pared. Specifically, eNMPC and eNMPC/LPV, when trig-
gered, requires comparable amount of computation time as
tNMPC. However, when not triggered, they only require neg-
ligible computation. On average, eNMPC and eNMPC/LPV
consume 48.88% and 25.66% throughput, respectively, com-
pared to tNMPC.

V. CONCLUSION

This paper proposes and compares two different event-
triggered nonlinear model predictive controls (NMPC) for
autonomous vehicle (AV) path tracking problem. The dif-
ference between the two event-triggered NMPCs is, in the
first formulation, the last optimal control sequence is used
for control action when NMPC is not triggered, while in
the second formulation, a linear parametric varying MPC
(LPV-MPC) with shorter prediction horizon is used when
NMPC is not triggered. The AV path tracking problem
considers axle driving torque and front steering input as the
control variables. The aforementioned two event-triggered
NMPC, together with a time-triggered LPV-MPC and a
time-triggered NMPC, are implemented and compared in
terms of control performance and throughput requirements,
where event-triggered NMPCs are shown to provide benefits
of relaxing computational needs while maintaining control
performance. Future work includes (1) implementing the
proposed eNMPC/LPV in hardware-in-the-loop setting and
(2) investigating in energy systems [29]–[31].
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