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Abstract— This paper presents a novel Graph Neural Net-
work (GNN)-based surrogate model for predicting state evolu-
tion in reconfigurable battery packs. By leveraging graph-based
representations of battery cell interconnections, the proposed
approach addresses the unique challenge of estimating the
imbalance in state-of-charge (SOC) and temperature of cells
of a battery pack in dynamic battery configurations. Unlike
conventional methods that focus on instantaneous state estima-
tion, our GNN model predicts future SOC and temperature
distributions by considering both current system state and
switch configuration. The model architecture combines Graph
Attention Networks with pooling operations to effectively cap-
ture cell-to-cell interactions and battery pack-level dynamics.
Numerical results demonstrate that our GNN-based approach
significantly outperforms baseline Feedforward Neural Net-
work (FNN) and FNN-attention models, showing substantial
improvements in prediction accuracy for both temperature and
SOC while maintaining robust performance even with limited
training data.

I. INTRODUCTION

The increasing adoption of electric vehicles (EVs) [1],
[2], the integration of renewable energy sources into smart
grids [3]–[5], and the growing demand for reliable backup
power systems in various applications from mobile devices to
electric planes all point to the critical role of battery packs in
modern technologies [6]. Lithium-ion battery packs in EVs
consist of hundreds of cells arranged in series and/or parallel
configurations to meet the high voltage and energy require-
ments [7]. However, these complex battery systems face
challenges in their design and management. A key challenge
is cell imbalance, which arises from variations in battery
cell characteristics due to manufacturing inconsistencies,
uneven aging, and difference in operation conditions [8]–
[10]. This can lead to state-of-charge (SOC) and temperature
imbalance, which can result in reduced battery pack lifespan,
safety issues such as overheating and thermal runaway, and
diminished energy efficiency [11]–[15].

While conventional battery management systems employ
techniques like cell balancing to mitigate these issues, their
effectiveness is often limited by the static nature of cell in-
terconnections. To address these inherent limitations of fixed
cell topologies, reconfigurable battery packs, enabled by
networks of controllable switches, offer a promising solution
[16]–[18]. Consisting of battery cells equipped with switch-
ing circuits, reconfigurable battery packs allow dynamic re-
configuration of cell connections in series, parallel, or bypass

This work is supported in part by National Science Foundation through
Award #2237317.

Ali Irshayyid and Jun Chen are with the Department of Electrical and
Computer Engineering, Oakland University, Rochester, MI 48309 USA (e-
mail: {aliirshayyid,junchen}@oakland.edu).

configurations. Such a reconfigurable architecture enables
flexible control over cell interconnections, allowing battery
packs to be dynamically configured in different modes such
as all-serial, all-parallel, or hybrid (serial-parallel-bypass)
arrangements [19]. By dynamically altering the connections
between battery cells, reconfigurable battery systems can
improve cell balancing, enhance lifespan and safety, and
optimize energy efficiency [20], [21].

However, the adoption of reconfigurable battery packs
poses significant challenge in their modeling. Existing work
on battery modeling has focused on fixed topologies, where
the interconnections between cells remain static [22]. These
models typically capture electrical and thermal characteris-
tics through equivalent circuits or electrochemical principles.
However, reconfigurable battery systems require models that
can account for the dynamic nature of cell connections to
predict the impacts of different switching configurations on
future system states, such as cell-to-cell variations in SOC
and temperature distributions.

Attempts have been made in literature to address this issue.
For example, in [16], [23], several supervised learning ap-
proaches have been investigated to predict optimal topology
switches in a reconfigurable battery pack. To generate train-
ing data, a multi-objective optimization problem is formu-
lated for the topology selection, with objectives to maximize
the sum of all cell SOC values and to minimize the range
of SOC values across cells. By solving the multi-objective
optimization problem through simulations, the training data
is obtained for training various machine learning models
to predict the best topology for the next control period.
The FNN model achieved the best performance with 72%
testing accuracy. While the work of [16], [23] demonstrate
the potential for modeling battery pack reconfiguration, it
has significant scalability limitations. Exhaustive simulations
are required for training data generation, which enumerates
all possible transitions between topology pairs. Furthermore,
each configuration needs multiple simulations under dif-
ferent conditions to capture the patterns of SOC changes.
This approach becomes computationally intractable when
the number of cells increases, since the number of possible
topologies grows exponentially with pack size.

To scale up for the large number of cells that commonly
exist in EVs, we develop a Graph Neural Network (GNN)-
based surrogate model for reconfigurable battery packs to
predict future variations of SOC and cell temperatures. GNNs
are powerful deep learning models designed for processing
data represented as graphs, making them particularly suitable
for reconfigurable battery packs where cell interconnections
can be represented as a graph structure. Our GNN ar-



chitecture naturally captures the physical connections and
operational dynamics of reconfigurable battery packs by
representing both battery cells and switches as nodes in a
graph, with edges representing their physical connections.
The battery cell nodes contain state information such as
SOC and temperature, while switch nodes encode the mode
of connections between two adjacent cells. By processing
this graph-structured data through multiple GNN layers, our
model learns to aggregate information from neighboring
nodes and predict how different switch configurations affect
the evolution of cell states.

The GNN-based surrogate model is trained using simula-
tion data generated from a detailed experimentally-validated
electro-thermal battery model that incorporates both electri-
cal equivalent circuits and thermal dynamics [24], capturing
the complex interactions between battery cells in various re-
configurable topologies. Numerical results demonstrate that,
in all test conditions, the proposed GNN-based surrogate
model significantly outperforms traditional FNNs and FNN-
attention models in terms of estimation accuracy.

The reminder of the paper is organized as follows. Sec-
tion II presents the battery pack modeling approach using
integrated electro-thermal modeling, while Section III de-
scribes the graph representation of the reconfigurable battery
pack system. Section IV details the proposed GNN-based
surrogate model architecture and Section V outlines the
experimental setup and discusses the experimental results.
Finally, Section VI concludes the paper and presents future
research directions.

II. DYNAMICS OF BATTERY PACKS

A. Cell Dynamics

The cell model adopted in this work is based on the
equivalent circuit model (ECM) [24]–[26], which combines
an electrical circuit with a two-state thermal model to capture
both the electrical and thermal dynamics of lithium-ion
batteries. The electrical behavior is characterized by two RC
pairs and a series resistance, with dynamics governed by:

V̇1 = − V1

R1C1
+

I

C1
(1a)

V̇2 = − V2

R2C2
+

I

C2
(1b)

v = VOC − V1 − V2 − IRo, (1c)

where v is the terminal voltage, VOC is the open-circuit
voltage, and I is the current (positive for discharge, negative
for charge). The RC pairs are characterized by voltages V1,
V2, resistance R1, R2, and capacitance C1, C2, with Ro

representing the series resistance. The cell’s SOC is govern
by:

ṡ = − η

3600Cn
I, (2)

where s is the state-of-charge, η is the coulombic efficiency
and Cn is the nominal capacity of the cell in Amp-Hour.

Fig. 1. Reconfigurable battery packs consisting of M cells.

The thermal behavior is modeled using core and surface
temperatures:

CcṪc = Q+
Ts − Tc

Rc
(3a)

CsṪs =
Tc − Ts

Rc
+

Tf − Ts

Ru
, (3b)

where Tc is the core temperature, Ts is the surface tem-
perature, Tf is the ambient temperature, Cc and Cs are
the heat capacities of the core and surface respectively, Rc

is the conduction resistance between Tc and Ts, while Ru

is the convection resistance between Tf and Ts. The heat
generation Q is given by:

Q = I(Voc − v)− I
Ts + Tc

2

dVoc

dT
. (4)

All model parameters (Voc, Ro, R1, R2, C1, C2) are
functions of SOC s and temperatures Tc and Ts, and can
be expressed as:

σ = fσ(s, Tc, Ts), (5)

where σ = {Voc, Ro, R1, R2, C1, C2}. In this paper, param-
eters in [24], which have been experimentally validated, are
adopted for a nominal battery cell.

B. Battery Reconfiguration

These individual cell models are integrated into a recon-
figurable battery pack consisting of M cells interconnected
through a network of switches. As shown in Fig. 1, a three-
switch-per-connection architecture is adopted in this paper,
where switches can be either open or closed, enabling dy-
namic formation of series and parallel connections between
adjacent cells. This architecture provides sufficient degrees
of freedom for topology reconfiguration while avoiding the
limited flexibility of two-switch designs or the excessive
complexity of four-switch arrangements.

Formally, let B be a battery pack with M cells
(B1, B2, ..., BM ∈ M) connected through a network of
switches as shown in Fig. 1, where each cell Bi has three
switches (Si,1, Si,2, Si,3) controlling its configuration. In
other words, the switch configuration for cells Bi, i =
1, . . . ,M − 1 determines its connection state swi with its
adjacent cell Bi+1, with the following notation:

swi =

{
1 for series connection between Bi and Bi+1

0 for parallel connection between Bi and Bi+1.



Fig. 2. Graph representation of a reconfigurable battery pack with M cells.

Finally, the dynamics of each cell Bi is given by (1)-
(5). Given a prediction horizon τ , we define the SOC and
temperature imbalance across cells as:

∆s = max
1≤i≤M

si(τ)− min
1≤i≤M

si(τ) (6a)

∆Tc = max
1≤i≤M

Tc,i(τ)− min
1≤i≤M

Tc,i(τ). (6b)

Note that here the temperature imbalance is defined over the
core temperature Tc only. However, the work presented in
this paper can be straightforwardly extended to the case of
Ts.

III. GRAPH REPRESENTATION OF CELL TOPOLOGIES

Reconfigurable battery packs can be naturally represented
as a graph structure that captures both the physical connec-
tivity and the operational states of the system. As illustrated
in Fig. 2, we model switches and battery cells as differ-
ent types of nodes, where their interactions and physical
connections are represented by edges. The switches, which
control the series-parallel configurations, are represented as
one type of node carrying binary state information. The
battery cells form another type of nodes, containing their
respective state variables such as s and Tc. The physical
layout of battery packs determines the edge connections.
For the reconfigurable battery pack shown in Fig. 1, edges
exist between adjacent switches and between switches and
their connected battery cells. Such a graph-based approach
effectively captures the dynamic reconfigurability of the
battery pack and allows us to model how the switch states
influence the electrical configuration of the battery pack.

Formally, we define our graph structure as follows. Let
G = (V,E) be an undirected graph representing the battery
pack structure, where V is the set of nodes and E is
the set of edges. The node set V consists of two disjoint
subsets: V = Vs ∪ Vb, where Vs = {v1, v2, ..., vM−1}
represents the set of switch nodes and Vb = {v1, v2, ..., vM}
represents the set of battery cell nodes. Each node vi ∈ V
carries features such as switch status for vi ∈ Vs and
SOC for vi ∈ Vb. We denote the feature for node vi as
xvi . More details of the features will be given in Sec-
tion V-A. The edge set E represents physical connections,
i.e., E = {(i, j)| node i is physically connected to node j}.
The adjacency matrix A = [Aij ] ∈ R|V |×|V | is defined as:

Aij =

{
1 if (i, j) ∈ E

0 otherwise.
(7)

Fig. 3. GNN model architecture used in this paper.

IV. GNN-BASED SURROGATE MODEL

GNNs have emerged as powerful architectures for model-
ing complex systems with dynamic relationships. For recon-
figurable battery pack modeling, several GNN variants such
as Graph Convolutional Networks (GCNs) [27] and Graph
Attention Networks (GATs) [28] can be considered. While
GCNs offer a straightforward approach to aggregate neighbor
information using fixed weights based on graph structure,
GATs dynamically assign different levels of importance
to neighboring nodes using an attention mechanism. This
property is particularly crucial for reconfigurable battery
packs, where the influence of one cell on another can
vary significantly based on their electrical connection state.
Therefore, GATs are used in this paper. In the remaining of
this paper, we use “GNNs” and “GATs” interchangeably for
our modeling approach.

Given SOC variation ∆s and temperature variation ∆Tc as
defined in (6), the goal of the GNN-based surrogate modeling
is to learn and predict ∆s and ∆T of battery cells while
accounting for the dynamic reconfigurable topology. The pro-
posed GAT architecture is shown in Fig. 3, which consists of
three GAT layers that process both the battery cell and switch
node features while leveraging the graph structure defined in
Section III. The input of the first GAT layer is the original
nodes features, x = {x⃗1, x⃗2, ..., x⃗|V |}, x⃗i ∈ RF , where F
is the number of features in each node. After the message
passing process, new node features are produced as the
output of this layer, denoted as x′ = {x⃗′

1, x⃗
′
2, ..., x⃗

′
|V |}, x⃗

′
i ∈

RF ′
, where F ′ represents the embedding size.

In each GAT layer, the first step is to transform the features
of each node into a high-level representation parametrized by
W ∈ RF ′×F . After that, a self-attention operation is applied
at every node as follows:

αij =
exp

(
LeakyReLU

(
a⃗T1 Wx⃗i + a⃗T2 Wx⃗j

))∑
k∈Ni∪i exp

(
LeakyReLU

(
a⃗T1 Wx⃗i + a⃗T2 Wx⃗k

)) ,
where αij is the normalized attention coefficients represent-
ing the importance of node j’s features to node i, Ni is a
set of i’s node neighbors, and a⃗ ∈ R2F ′

is the attention
learnable weight vector. The final output features for each
node are determined by computing a linear combination
of the features using the normalized attention coefficients.
After the GAT layers transform the node features, global
pooling is employed to form a fixed-sized representation. The
fixed-representation is then processed through FNN layer to
produce a scalar output.



V. NUMERICAL RESULTS

A. Experimental Setup and Data Generation

We simulated a ten-cell reconfigurable pack with het-
erogeneous capacities. The 29 series/parallel combinations
yield 512 unique topologies. For each topology, we executed
10 trials (5120 runs total) with random initial conditions:
Tc ∈ [17.5, , 27.5]◦C and SOC ∈ [0.8, , 1.0]. Each 500 s
discharge at 1.5 A produced final ∆s and ∆Tc (see (6)).

Two GNN-based surrogate models are investigated, each
with different features for the battery cell nodes. In the first
scenario, only the battery states such as si and Tc,i are used
as input features in the battery cell node, with si being used
when the goal is to predict ∆s and Tc,i being used when the
goal is to predict ∆Tc. In the second scenario, the discharge
current of individual battery cell is added as an additional
input feature. In both scenarios, the switch status swi is
used as an input feature for the switch node, as discussed
in Section III. The final ∆s and ∆Tc measurements serve as
the target variables for both models.

For benchmarking, two approaches are considered: (1) a
four-layer FNN with ReLU activation that processes flattened
battery cell states and switch configurations [16], and (2)
our previously developed FNN-attention model with four
attention heads for capturing cell-to-cell interactions [29].
The FNN-attention model first extracts features through a
linear layer with normalization, then applies multi-head self-
attention to dynamically weigh the importance of different
battery cells and their interconnections. A residual connec-
tion preserves individual cell information alongside relational
data before a final linear layer generates predictions.

B. Results and Discussions

Our evaluation metrics include Root Mean Squared Error
(RMSE), which quantifies prediction accuracy with lower
values indicating better performance, and Mean Absolute
Percentage Error (%), which provides a relative measure
of prediction error as a percentage of the true value. The
percentage error metric is particularly valuable for comparing
prediction accuracy across different scales of measurements,
such as between ∆Tc and ∆s predictions. The evaluation is
conducted using different percentages of training data (50%,
30%, and 10%) to assess model robustness under limited
data availability. Results are presented under two scenarios:
(Case I) without individual cell currents as an input feature
(Table I) and (Case II) with individual cell currents as input
feature (Table II).

For temperature prediction, the proposed GNN-based
model demonstrates superior performance across all training
data configurations. As shown in Table I, GNN achieved
RMSE values of 0.094, 0.109, and 0.223 for 50%, 30%, and
10% training data respectively, significantly outperforming
both FNN and FNN-attention models. In the second experi-
ment, the individual cell current is included as an additional
input feature, the GNN’s performance improved further,
achieving RMSE values of 0.074, 0.1, and 0.173 across
the three training data configurations. This improvement

suggests that the GNN effectively leverages the additional
current information to enhance prediction accuracy.

For SOC prediction, the results followed a similar pattern,
with the proposed GNN-based model demonstrating consis-
tently superior performance. In Case I, the GNN achieved
RMSE values of 0.02, 0.02, and 0.023 for 50%, 30%,
and 10% training data respectively. These results represent
a substantial improvement over both the FNN and FNN-
attention models. Similarly, in the second experiment where
the individual cell current is included as an input, the GNN
model performance improved further, with RMSE values
reducing to 0.015, 0.015, and 0.019 across the three training
configurations. Notably, the GNN architecture maintained
robust performance even with limited training data (10%),
demonstrating its effectiveness in scenarios where extensive
training data may not be available.

Fig. 4 provides a visual comparison of the proposed
GNN-based model’s percentage errors for both ∆Tc and
∆s predictions across different training data percentages.
In Fig. 4 (Case I), we observe that ∆s prediction errors
show a gradual increase as training data decreases, ranging
from 10.46% with 50% training data to 12% with 10%
training data. The ∆Tc prediction errors follow a similar
trend but with notably lower error rates, increasing from
1.9% to 4.4% as training data is reduced. With individual
cell currents as input feature, Fig. 4 (Case II) demonstrates
improved performance, particularly for ∆s predictions, with
errors decreasing to 7.7% with 50% training data. This
improvement can be attributed to the addition of discharge
current as an input feature, which either needs to be measured
for each cell or needs to be calculated using the network
topology [30] (hence requiring additional complexity for
real-time implementation).

The performance advantage of the GNN over baseline
models was most evident in temperature prediction, where
the GNN achieved significantly lower errors across both
metrics - with RMSE values ranging from 0.094 to 0.223
and percentage errors between 1.9% and 4.4%, compared
to both FNN (RMSE: 0.357-0.44, percentage errors: 7.14-
8.75%) and FNN-attention models (RMSE: 0.393-0.453,
percentage errors: 8.19-9.20%) across all training conditions.
The superior performance of the GNN can be attributed to
its ability to effectively capture the complex relationships
between battery cells in the reconfigurable battery pack
structure. Furthermore, the addition of individual cell current
as an input feature provides valuable information about the
battery topology, enabling the model to better capture the
behavior of the battery pack. However, as discussed earlier,
it requires extra computation or sensors to obtain individual
cell currents for real-time implementation.

C. Generalization to Unseen Configurations

While the previous results demonstrate strong performance
across different training data percentages, the generalization
to unseen configurations is not tested. In other words, in the
previous evaluations, both training data and test data are ran-
domly sampled from the entire dataset, giving the surrogate



TABLE I
MODEL PERFORMANCE COMPARISON (CASE I)

Model
50% Training 30% Training 10% Training

RMSE % RMSE % RMSE %
∆Tc

FNN 0.357 7.14 0.378 7.61 0.440 8.75
FNN-

attention 0.393 8.19 0.459 9.30 0.453 9.20

GNN
(Proposed) 0.094 1.90 0.109 2.20 0.223 4.40

∆s

FNN 0.026 13.37 0.028 14.00 0.033 16.56
FNN-

attention 0.026 13.42 0.028 14.48 0.034 17.77

GNN
(Proposed) 0.020 10.46 0.020 10.80 0.023 12.00

TABLE II
MODEL PERFORMANCE COMPARISON (CASE II)

Model
50% Training 30% Training 10% Training

RMSE % RMSE % RMSE %
∆Tc

FNN 0.361 7.21 0.378 7.62 0.471 9.42
FNN-

attention 0.414 8.30 0.434 8.90 0.567 11.93

GNN
(Proposed) 0.074 1.49 0.10 2.20 0.173 3.70

∆s

FNN 0.028 14.08 0.03 15.54 0.033 17.00
FNN-

attention 0.03 16.14 0.0316 17.25 0.034 18.17

GNN
(Proposed) 0.015 7.7 0.015 8.07 0.019 10.10

models opportunity to train over all possible configurations.
Though this is not an issue for a small battery pack, it may
not be feasible to collect data for all configurations when the
number M of cells increases.

In this section, we randomly select 51 configurations
(10% of the total 512 possible configurations) and reserved
them exclusively for testing, ensuring these configurations
were never seen during training. From the remaining 4610
samples, we created three training scenarios using 50% (2305
data samples), 30% (1536 data samples), and 10% (461 data
samples) of the data. It’s important to note that when creating

Fig. 4. Comparison of percentage errors for ∆Tc and ∆s predictions
by the proposed GNN-based surrogate model with respect to training data
percentages.

TABLE III
PREDICTIONS FOR UNSEEN CONFIGURATIONS (CASE I)

Model
50% Training 30% Training 10% Training

RMSE % RMSE % RMSE %
∆Tc

FNN 0.316 6.47 0.346 7 0.458 9.4
FNN-

attention 0.397 8.31 0.440 8.9 0.563 11.68

GNN
(Proposed) 0.122 2.21 0.109 2.24 0.212 4.3

∆s

FNN 0.026 14.28 0.028 14.43 0.034 17.83
FNN-

attention 0.026 12.98 0.026 14.16 0.037 18.92

GNN
(Proposed) 0.02 11.25 0.022 12.42 0.022 11.20

TABLE IV
GENERALIZATION FOR UNSEEN CONFIGURATIONS (CASE II)

Model
50% Training 30% Training 10% Training

RMSE % RMSE % RMSE %
∆Tc

FNN 0.311 6.18 0.368 7.29 0.489 9.81
FNN-

attention 0.374 7.49 0.447 8.67 0.565 11.18

GNN
(Proposed) 0.1 2.02 0.109 2.24 0.151 3

∆s

FNN 0.028 14.44 0.031 16.63 0.034 18.40
FNN-

attention 0.028 14.37 0.033 17.05 0.037 16.60

GNN
(Proposed) 0.014 7.59 0.017 9.8 0.02 10.18

training dataset (for 50%, 30%, and 10%), data are sampled
randomly (from the remaining 4610 samples) regardless of
its configuration features. Tables III and IV present the
models’ performance on unseen configurations with and
without the individual cell current as an input, respectively.
The results demonstrate that while some models show some
performance degradation when tested on completely unseen
configurations, the GNN model maintains significantly better
performance compared to the baseline approaches.

For Case I, without individual cell current as an input fea-
ture (Table III), the GNN model achieves remarkable temper-
ature prediction accuracy with RMSE values of 0.122, 0.109,
and 0.212 across the three training scenarios, significantly
outperforming both FNN and FNN-attention models. The
GNN’s percentage errors for temperature prediction remain
consistently low, ranging from 2.21% to 4.3%, while baseline
models show errors up to 11.68%. For Case II with individual
cell current (Table IV), the GNN’s superior performance
becomes even more evident. For temperature prediction, the
GNN maintains excellent accuracy with RMSE values of
0.1, 0.109, and 0.151, while baseline models show consid-
erably higher errors. Particularly noteworthy is the GNN’s
performance in SOC prediction in Case II, where it achieves
remarkably low percentage errors (7.59%, 9.8%, 10.18%)
compared to the baseline models (14.44%-18.40%).



D. Comparison of Computational Requirements

This section discusses the architectural characteristics
and computational requirements of the three models. The
GNN model has a moderate number of parameters (24337)
compared to the FNN (25185) and FNN-attention (21009)
models. While the FNN uses a simple architecture with four
layers of decreasing dimensions (256, 64, 16, 1), and the
FNN-attention model employs an embedding size of 52 with
4 attention heads, the GNN achieves superior performance
using an embedding dimension F ′ of 24 and 4 attention
heads. However, the GNN does require longer training time
(87.77 minutes for 50% training data) compared to the FNN
(27.45 minutes) and FNN-attention model (31.61 minutes)
when trained on an NVIDIA RTX 3070 Ti GPU.

VI. CONCLUSION

This paper introduces a novel Graph Neural Network
(GNN)-based surrogate model for predicting state evolution
in reconfigurable battery packs. The proposed model utilizes
the graph representation of the reconfigurable battery pack
by modeling both cells and switches as different types of
nodes connected by edges representing their physical con-
nections. Our approach successfully addresses the challenges
of modeling both SOC and temperature imbalance in dy-
namic battery configurations by leveraging the natural graph
structure of the battery pack topology. The proposed GNN
architecture demonstrates superior performance compared to
traditional Feedforward Neural Networks (FNN) and FNN-
attention approaches. The model shows particularly strong
performance in temperature prediction, where it achieves
significantly lower RMSE values across different training
data conditions. Additionally, the incorporation of individual
cell current as an input feature further enhances the model’s
predictive capabilities. The effectiveness of our approach is
maintained even with limited training data (10%), demon-
strating the model’s robustness and potential for practical
applications where extensive datasets may not be available.
The generalizability is demonstrated by testing the model
performance over unseen battery configurations.
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