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Abstract— This paper studies the active cell balancing prob-
lem by using model predictive control (MPC) for real time range
extension. Specifically, three MPC formulations are proposed
and compared: the first one being a tracking controller to force
all cells to follow the same trajectory generated by a nominal
cell model, the second one trying to maximize the lowest cell
SOC/voltage and the last one minimizing the difference between
the highest and lowest cell SOC/voltages. Both steady state and
transient conditions are simulated to assess the effectiveness of
the proposed controllers, and a range extension of 4% is found
for dynamic driving cycle and 7% for steady state condition.
Comparing to the literature, our approaches achieve similar
range extension, without making the restrictive assumption that
the final battery state-of-charge is known in advance, making
our approaches more applicable. Real time implementability is
demonstrated via throughput analysis.

I. INTRODUCTION

State-of-charge (SOC) and voltage imbalance commonly
exist in battery cell, partially due to manufacturing variation,
and such imbalance inevitably degrades the battery perfor-
mance and reduces the range of electric vehicle (EV) [1]–[3].
The cell imbalance issue can be mitigated by cell balancing
circuit, such as flyback DC/DC converter [2] and half-bridge
converter [4], especially under conditions of higher power
demand and high variation [5]. Active cell balancing methods
can be either dissipative or nondissipative, [2], [6]. In this
paper, we focus on nondissipative cell balancing control,
which has less energy waste for performing balancing.

Active cell balancing control has been studied in the
literature. In [7] a rule-based control strategy was adopted
for cell balancing, where both voltage imbalance and SOC
imbalance were considered in the criterion to trigger control
action. Reference [8] studied cell balancing problem in the
context of renewable energy integration in the power grid,
where heterogeneous battery systems with different types,
ages, and rated capacity, were interconnected. A simple feed-
back controller was utilized in [8] to calculate the balancing
current.

Advanced control methods, such as model predictive con-
trol (MPC), have also been investigated in the literature
for active cell balancing. In [6], an auxiliary power module
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was designed to perform balancing during charging by using
MPC with linear SOC model. Linear MPC was also adopted
in [9] to track a reference trajectory generated by assuming
the final SOC was known in advance. Though such assump-
tion was very restrictive, a 5% of range increase was shown
through simulation. The authors of [9] also demonstrated the
robustness against the unknown driving cycle. Reference [1]
considered both SOC and voltage dynamics of battery cells
and formulated the balancing control problem as a reach-
ability analysis problem, where benefit on range extension
was shown on a short driving cycle. Reference [10] utilized
nonlinear MPC to simultaneously minimize SOC imbalance
and energy waste through balancing current, with simulation
results on a two-cell battery. To fit into a microcontroller, [11]
considered fast MPC where the objective is to minimize the
time to balance with a linear dynamic model for balancing
current.

In this paper, we study MPC for active cell balancing prob-
lem for EV range extension, and investigate three balancing
objectives for MPC. In the first objective, MPC is set to track
the SOC/voltages of all cells to follow a short term reference
that is generated by using a nominal battery cell model.
This setup is similar to the MPC formulation of [9], without
assuming that the final SOC at the end of the drive cycle is
known in advance. In the second objective, MPC is set to
maximize the lowest cell SOC/voltage, as opposed to track
all cells’ SOC/voltages. In the last objective, MPC is set to
minimize the difference between the highest and lowest cell
SOC/voltages. Note that the goal of active cell balancing is
to push all cell’s voltages away from the lower bound, below
which a cell would fail and lead to the failure of the entire
battery pack. The three MPC formulations presented above
realize this goal by using different cost functions, whose
effectiveness will be investigated. Numerical simulation of
these three MPCs are presented and it was found that the
first formulation is favored for transient conditions while
the last two formulations are comparably favored for steady
state conditions. A 4% range extension is shown through
simulation over dynamic driving cycle (e.g., Federal Test
Procedure [FTP]) and 7% for steady state condition. Finally,
real time implementability is demonstrated by throughput
analysis.

The rest of this paper is organized as follows. Section II
presents the equivalent circuit model for each cell and the
whole battery pack, while Section III formulates the optimal
control problems and three MPC setups. Section IV presents
numerical simulation results, and the paper is concluded in
Section V.
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Fig. 1. Structure of series connected battery cell and balancing current.

II. BATTERY MODEL

The system considered here is shown in Fig. 1, where
N cells are connected in series to provide the current i
requested from the higher level controller. Due to manu-
facturing variation, the SOC and voltage of each cell can
be significantly different without balancing mechanism. The
cell balancer, in this case a power converter circuit, draws
current un from an arbitrary cell n and transport it to another
cell j, so that the variations of SOC and voltage among
the series connected cells are minimized. Note that we only
consider series connection here, while the proposed control
methodology can be readily applied to the case where parallel
connection are also present.

To model the dynamics of each cell and the overall battery,
we use equivalent circuit model (ECM), which has been
widely used in the literature to study the dynamic behavior
of Li-Ion battery [12]–[16]. We briefly introduce the model
used in this study as follows, and more details can be found
from the aforementioned references.

The dynamics are specified by

ṡn = −ηn i
n

Cn
(1a)

˙V np = −
V np
RnpC

n
p

+
in

Cnp
(1b)

yn = V noc − V np − inRno , (1c)

where the superscript n denotes the nth cell, sn is the cell
SOC, ηn is the coulombic efficiency of cell n, Cn is the cell
capacity in Amp Hour, V np is the relaxation voltage over Rnp ,
V noc is the open circuit voltage, yn is the terminal voltage,
and in is the battery pack current. We use the convention that
positive value of in indicates discharging from battery and
negative indicates charging. Note that V noc, R

n
o , Rnp , and Cnp

are all dependent of sn, making (1) a nonlinear model. Refer
to [15] for an example of such dependency for a nominal cell.

Equation (1) can be discretized using Euler’s method, with
sampling time Ts, as follows

snk+1 = snk − ηn
Ts
Cn

ink (2a)

V np,k+1 = V np,k −
Ts

RnpC
n
p

V np,k +
Ts
Cnp

ink (2b)

ynk = V noc,k − V np,k − inkRno . (2c)

Denote ζn := [sn, Vp]
T where ·T denotes matrix/vector

transpose, then one can write

ζnk+1 = fn(ζnk , ik + unk ) (3a)
ynk = gn(ζnk , ik + unk ). (3b)

Note that here we use the fact that for the battery with
structure in Fig. 1, the current ink drawn through cell n
equals the pack current ik plus balancing current unk . Define
ζ = [ζ1, ζ2, . . . , ζN ]T as the state vector for the entire battery
pack and y to be the terminal voltage of the battery pack,
then

ζk+1 =


fn(ζ1

k , ik + u1
k)

fn(ζ2
k , ik + u2

k)
...

fn(ζNk , ik + uNk )

 (4a)

yk =

N∑
m=1

ynk =

N∑
m=1

gn(ζnk , ik + unk ). (4b)

III. PROBLEM FORMULATION AND MPC SETUP

A. Optimal Control Problem

Since voltage limit is the most important (post-design) fac-
tor that impacts the battery operational window, the control
objective here is to actively dispatch charge from cell to cell
so that all cells stay away from the lowest voltage bound,
denoted as y, below which the cell would fail and lead to the
failure of entire pack. In other words, the goal is to find the
balancing current unk for n = 1, . . . , N and k = 0, . . . ,K so
that the cell voltage satisfies

y ≤ ynk , n = 1, . . . , N & k = 0, . . . ,K, (5)

for any driving cycle in the form of current profile, ik, k =
0, . . . ,K.

To achieve this goal, we formulate the problem as a
model predictive control problem, which uses a short moving
horizon to predict the future evolution and optimizes the ob-
jective function over this relatively short horizon (compared
to the full driving cycle). Denoting uk = [u1

k, u
2
k, . . . , u

N
k ]T ,

the optimal control problem (OCP) for MPC to solve at time
k is given by

min
uk

J(uk) (6a)

s.t. ζnk+j+1 = fn(ζnk+j , ik+j + unk ),

0 ≤ j ≤ p− 1, 1 ≤ n ≤ N (6b)
ynk+j = gn(ζnk+j , ik+j + unk ),

1 ≤ j ≤ p, 1 ≤ n ≤ N (6c)
umin ≤ unk ≤ umax, 1 ≤ n ≤ N (6d)
y ≤ ynk+j , 1 ≤ j ≤ p, 1 ≤ n ≤ N (6e)

0 =

N∑
i=1

unk , (6f)

where p is the prediction horizon. Note the last constraint
(6f) indicates that the balancing circuit is only responsible to
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transport charge from one cell to another, and does not pro-
vide additional charge and neither is it capable of consuming
additional charge (hence different from dissipative balancing
strategy). Note also that in OCP (6) the MPC is to optimize
one balancing current unk for each cell, which is then kept
unchanged over the entire prediction horizon. This strategy
is adopted from [9] as the balancing currents are almost
constant over the prediction horizon. Note also that the above
OCP (6) requires a short-term prediction of the load profile
ik+j , 1 ≤ j ≤ p over the prediction horizon. In case such
preview is not available, the value at time k would be used
throughout the whole horizon, i.e., ik+j = ik, 1 ≤ j ≤ p,
which is then considered as disturbance to the control system.

B. Objective Functions

Though the general balancing problem we consider is
similar to that of [9], the cost function we consider for
the OCP (6) would be much different from [9], resulting
in completely different control strategies. In particular, we
consider three different objective functions for (6a).

In the first formulation, we use a nominal cell model
to integrate over the prediction horizon using the requested
total current ik (or ik+j if preview is available), and track
each cell’s voltage/SOC to follow the nominal cell. The
dynamics of the nominal cell are the same as those of (1)
but with nominal parameters. Then we integrate the nominal
cell model using the initial condition ζ0

k = 1
N

∑N
n=1 ζ

n
k

to obtain the nominal sequences ζ0
k+1, ζ

0
k+2, . . . , ζ

0
k+p and

y0
k+1, y

0
k+2, . . . , y

0
k+p, and the cost function (6a) is defined

as

Jt,σ(uk) =

p∑
j=1

(
σk+j − σ0

k+1

)T (
σk+j − σ0

k+1

)
+ uTkRuk.

(7)

where σk+j is defined as σk+j = [σ1
k+j , σ

2
k+j , . . . , σ

N
k+j ]

T

and σ ∈ {s, y} can be either cell’s SOC or terminal voltage,
and R is a positive semi-definitive weighting matrix.

Remark 1: Note that the first term of (7) is to penalize
the deviation from nominal trajectory while the second term
prevents large balancing current that may result in energy
waste through resistant heating. Note also that the first term
does not require a scaling matrix as in this work the output
being tracked is scalar, i.e., either SOC or voltage. The
weighting among these two terms can be achieved through
the R matrix alone.

In the second formulation, instead of tracking a nominal
trajectory, we formulate the MPC to directly maximize the
lowest cell SOC or voltage. In other words, the cost function
(6a) is defined as

Jm,σ(uk) = −
p∑
j=1

min
n
σnk+j + uTkRuk, (8)

which is to maximize the lowest cell SOC/voltage for each
time step over the prediction horizon with minimal balancing
current. In order to reformulate Jm,σ to be manageable
for embedded environment, the trick introduced in [17] is

adopted as follows. With addition of p slack variables, ε =
[ε1, ε2, . . . , εp]

T , the objective function (8) can be rewritten
as,

Jm,σ(uk, ε) = −
p∑
j=1

εj + uTkRuk, (9)

with additional constraint

εj ≤ σnk+j , 1 ≤ j ≤ p, 1 ≤ n ≤ N. (10)

In the third (and last) formulation, instead of maximizing
the lowest cell SOC or voltage, we set up the MPC to
minimize the difference between the highest and lowest cell
SOC/voltage. Specifically, the cost function (6a) is defined
as

J∆,σ(uk) =

p∑
j=1

(
max
n

σnk+j −min
n
σnk+j

)
+ uTkRuk

=

p∑
j=1

max
n

σnk+j −
p∑

n=1

min
n
σnk+j + uTkRuk.

(11)

Similarly, with a slight abuse of notation, define 2p slack
variables, ε = [ε1, ε2, . . . , εp, εp+1, . . . , ε2p]

T , the objective
function (11) can be rewritten as,

J∆,σ(uk, ε) =

p∑
j=1

εp+j −
p∑
j=1

εj + uTkRuk, (12)

with additional constraint

εj ≤ σnk+j , 1 ≤ j ≤ p, 1 ≤ n ≤ N (13a)

εp+j ≥ σnk+j , 1 ≤ j ≤ p, 1 ≤ n ≤ N. (13b)

Remark 2: Please note that in the last two formulations,
constraints (10) and (13) are only one sided, e.g., εj ≤ σnk+j

instead of εj ≤ ±σnk+j . This is due to the fact that both sn

and yn are positive by design and hence the cost functions
Jm,σ and J∆,σ are not based on conventional infinity norm.

In summary, the MPC for the first formulation, denoted
as Jt,σ , solves the following OCP

min
uk

(7)

s.t. (6b), (6c), (6d), (6e), (6f).

The MPC for the second formulation, denoted as Jm,σ , solves
the following OCP

min
uk,ε

(9)

s.t. (6b), (6c), (6d), (6e), (6f), (10).

The MPC for the third formulation, denoted as J∆,σ , solves
the following OCP

min
uk,ε

(12)

s.t. (6b), (6c), (6d), (6e), (6f), (13).

Remark 3: Please note that we can linearize the prediction
model (6b) and (6c) for each time step k, around the current
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state feedback ζk, requested pack current ik and balancing
current at previous control loop uk−1. Therefore, for all
three formulations, the OCP (6) can be reformulated into
quadratic programming (QP) problem, regardless of which
cost function is adopted. QP can be, in general, solved in real
time by embedded devices [18], [19], if the problem size is
manageable. It is also worth noted that, Jt,σ has (2p+ 1)N
optimization variables, Jm,σ has (2p+1)N + p optimization
variables with additional pN constraints, while J∆,σ has
(2p+ 1)N + 2p optimization variables with additional 2pN
constraints. As can be seen, Jm,σ and J∆,σ have larger
problem sizes and require higher throughput to solve, while
at the same time, provide certain benefits in some conditions,
as will be seen in the next section.

C. Infeasible Constraint

Note that the output constraint (6e) can be infeasible when
the cell voltage is approaching its lower bound. When this
happens, we introduce an additional slack variable εy , and
add to each cost function an additional term Wε2y where
W � R, and modify the constraint (6e) into

y ≤ ynk+j + εy, 1 ≤ j ≤ p, 1 ≤ n ≤ N (17)

In other words, MPC will solve the OCP with original
constraint (6e), and towards the end of driving cycle when
the OCP is found to be infeasible, MPC will then modify the
cost function and replace (6e) with (17) as discussed here.

IV. SIMULATION RESULTS

In this section, the effectiveness of the proposed MPC
formulations will be demonstrated through simulations. In
particular, two scenarios are considered. In the first scenario,
a constant requested current ik is considered, which is se-
lected so that the simulation can be conducted in a reasonable
amount of time. In the second scenario, the vehicle follows
a realistic driving cycle, i.e., FTP cycle, where the vehicle
is controlled by an MPC speed tracking controller that
requested a battery power Pk [20]. At each time k, Pk is
then converted to requested current by ik = Pk

yk−1
, where y

is defined in (4). Note that in this case, the preview of ik is
assumed to be unavailable. Due to the recent advancement of
connected and automated vehicle, the preview of Pk may be
estimated with acceptable noise. However, such availability
assumption can be too restrictive for the present study.

For each of these two scenarios, the three MPC formula-
tions with σ = y will be considered. In other words, the
first MPC (denoted as Jt) tracks all cells’ voltages. The
second MPC (denoted as Jm) maximizes the lowest cell
voltage. And the third MPC (denoted as J∆) minimizes the
difference between the highest and lowest cell voltages. For
all setups, N = 5 is used and all cells are initialized to
be fully charged. The cell parameters V noc, R

n
o , Rnp , and Cnp

are randomly generated to be within 10% deviation from the
nominal values.

Setup Operation Time [s] Extension
No balancing 1,528 -

Jt 1,599 4.65%
Jm 1,640 7.33%
J∆ 1,630 6.68%

TABLE I
SIMULATION RESULTS FOR CONSTANT DISCHARGE CURRENT.
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Fig. 2. Results for Jt with constant discharge current.

A. Constant Discharge Current

Recall that in this case, constant commanded current ik
is used to represent the steady state operation. Without the
active cell balancing, the battery pack can last 1,528 seconds
until the lowest cell voltage drops below y. For MPCs with
prediction horizon p = 5, Jt can extend the operation time to
1,599 seconds (4.65% increase), Jm extends to 1,640 seconds
(7.33% increase), while J∆ 1,630 extends to seconds (6.68%
increase). This is summarized in Table I. Furthermore, Fig.
2 depicts, for the case of Jt, each cell’s voltage, SOC,
and balancing current. It can be seen that the balancing
currents are near constant or vary slowly for most of the
time, justifying the use of constant balancing current over the
prediction horizon. Similar plots for Jm and J∆ are omitted
due to space limit.

Furthermore, Fig. 3 compares the lowest cell voltage for
different controllers, as well as the balancing effort, which
represents an index for Ohmic heating loss due to balancing
and is calculated as ek = uTk uk. It is clear from Fig. 3(b)
that, Jt requires larger balancing efforts, especially when the
SOC and voltage are still high. This is because Jt tracks all
cell voltages to the nominal trajectory, and hence will try
to balance even when all cell voltages are clear away from
the lower bound y. When the cell voltage gets closer to y,
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Fig. 3. Comparison of the lowest cell voltage and balancing efforts for
different MPC formulations with constant discharge current.

p Jt Jm J∆

5 4.3 3.35 8.34
35 28.83 701.36 5309.3

TABLE II
THROUGHPUT COMPARISON FOR DIFFERENT MPC FORMULATIONS. THE

UNIT IN THE TABLE IS MILISECOND.

all three MPCs utilize a similar amount of balancing efforts,
while J∆ is a little more aggressive.

In addition, we set p = 35 and reduce the current to a
reasonable level, while at the same time scale the calibration
R according to p to balance the two terms in the cost
functions. For Jt formulation, without balancing, the battery
failed at 5 hours, 16 minutes and 45 seconds, while with
active cell balancing, it failed at 5 hours, 33 minutes and
52 seconds, providing a 5.13% range extension, which is
a bit more than the 4.65% reported in Table I. Note that
conducting a similar simulation for Jm and J∆ is not possible
due to the long simulation time (see Table II).

The throughputs required by each MPC are summarized
in Table II, which is measured on a desktop computer with
standard CPU using Matlab’s standard matrix operations and
quadprog as the QP solver.

B. Realistic Driving Cycle

In this section, the vehicle follows a realistic driving cycle,
i.e., FTP cycle, where the vehicle is controlled by an MPC
speed tracking controller, as presented in [20]. The vehicle
speed and power of FTP cycle is then concatenated and
scaled up so to provide a realistic assessment of the range
extension within a manageable amount of simulation time.

The range extensions for different controllers for p =
5, 10, 15, together with their balancing efforts defined as
e = 1

K

∑K
k=1 ek, are presented in Tables III. With prediction

horizon p = 5, all controllers can achieve 4 percent of
range extension, with very minimum balancing efforts. For
Jt, this benefit keeps as p increases, while for Jm and J∆

the extension slightly decreases with the increase of p. Such

Setup p Distance [m] Extension e [A2]
No balancing - 89907.12 - -

Jt 5 93507.8 4% 3.91
Jm 5 93507.8 4% 0.96
J∆ 5 93507.8 4% 0.4
Jt 10 93507.8 4% 15.73
Jm 10 93268.78 3.74% 13.33
J∆ 10 93507.8 4% 11.83
Jt 15 93494.88 3.99% 15.73
Jm 15 93268.78 3.74% 11.33
J∆ 15 93268.78 3.74 11.83

TABLE III
SIMULATION RESULTS FOR FTP CYCLE.

Fig. 4. Cell voltages comparison for different MPC formulations with FTP
cycle.

slight decrease may be due to the fact that we are not using
preview on load profile in the present simulation, making
longer term prediction less effective.

Finally, Fig. 4 plots the cell voltages for the three MPCs,
where very similar behaviors are observed. Fig. 5 compares
the minimum cell voltages and balancing efforts for a short
period of time that is preceding to the pack failure. Though
the minimum cell voltages for three MPCs are almost the
same in Fig. 5(a), the balancing efforts are very much
different. In particular, similar to the steady state scenario,
Jt requires the maximum amount of balancing efforts.

C. Further Discussion

From Table I it seems that for steady state condition,
Jm and J∆ can achieve better range extensions with lower
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Fig. 5. Comparison of the lowest voltages and balancing efforts for different
MPC formulations with FTP cycle.

balancing efforts. However, they require a significant amount
of throughput compared to Jt, according to Table II. There-
fore, with shorter prediction horizon only, they seem to
be better choices for steady state condition. On the other
hand, according to Table III, for transient condition, Jt
is much more robust against disturbance on future load
profile, achieves better range extension with a slightly higher
balancing efforts. Therefore, Jt seems to be a better choice
for transient condition.

V. CONCLUSION

In this paper, we studied the active cell balancing problem
by using model predictive control for real time range exten-
sion. Specifically, three MPC formulations were investigated.
In the first formulation, a nominal cell was used to compute
a short term reference trajectory and MPC was set to track
all cell voltages to follow this reference trajectory. In the
second and third formulations, MPC was set to maximize the
lowest voltage cell and to minimize the difference between
the highest and lowest cell voltage, respectively. To demon-
strate the effectiveness of these controllers, both steady state
and transient conditions were simulated. In general, a 7%
range extension can be achieved for steady state condition,
while for transient condition, this is reduced to 4%. It
was also found that different driving scenarios may favor
different MPC formulations, and a hybrid approach might be
needed. Comparing to the existing approaches in literature,
our approach can achieve similar range extension without
restrictively requiring the final battery state-of-charge to be
known in advance. For future work, we would focus on
(1) designing an observer to estimate the cells’ voltage and
SOC, as full state feedback was assumed in the current
work, (2) including more driving scenarios to provide a
more realistic assessment on the range extensions, and (3)
investigating the application of event-triggered MPC [21] to
reduce throughput.
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