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Abstract—This paper presents an experimental validation of an
event-triggered model predictive control (MPC) for autonomous
vehicle (AV) path-tracking control using real-world testing. Path
tracking is a critical aspect of AV control, and MPC is a popular
control method for this task. However, traditional MPC requires
extensive computational resources to solve real-time optimization
problems, which can be challenging to implement in the real
world. To address this issue, event-triggered MPC, which only
solves the optimization problem when a triggering event occurs,
has been proposed in the literature to reduce computational
requirements. This paper then conducts experimental validation,
where event-triggered MPC is compared to traditional time-
triggered MPC through real-world testing, and the results
demonstrate that the event-triggered MPC method not only
offers a significant reduction in computation compared to time-
triggered MPC but also improves the control performance.

I. INTRODUCTION

S electric vehicles have gained popularity in recent years,

there is increasing interest in autonomous driving as
a promising technology to enhance traffic efficiency while
reducing accidents and congestion [1]. Autonomous vehicles
(AVs) rely on a complex network of sensors, algorithms, and
control systems to navigate the road safely and efficiently.
Model predictive control (MPC) is a class of algorithms that
is well suited for AVs, as it can handle complex optimiza-
tion problems and constraints [2]-[4]. Through the study of
stability, robustness, and feasibility in MPC, as demonstrated
by various research papers [5]-[7], the stability of MPC
applications in AVs has been further ensured.

Despite its advantages, model predictive control (MPC) has
some limitations. One of the main challenges is the computa-
tional burden it imposes, which can be particularly problematic
for AVs due to their limited computing power. To address
this issue, event-triggered control has been proposed with the
goal of reducing computation [8]-[13]. Unlike time-triggered
MPC, where MPC activates periodically, event-triggered MPC
is an approach in which the optimization problem is solved
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when a triggering event occurs. To demonstrate the benefits of
event-triggered MPC in the field of AV, particularly in terms
of its effectiveness in reducing computational requirements,
many researchers have used simulation software to simulate
the performance of event-triggered MPC on AVs [14]-[20]. In
[14], event-triggered MPC is implemented for multi-vehicle
control, achieving simultaneous tracking with collision and
obstacle avoidance. Another study [15] applies event-triggered
MPC to vehicle-following control with unreliable vehicle-
to-vehicle communications. The problem of multiple vehicle
cooperative path following is explored in [17], [18], while [16],
[19] investigate vehicle platooning and employ MPC for longi-
tudinal control to track inter-vehicle distance. Nonlinear MPC
is used in [20] for lateral trajectory tracking of AVs, which
enhances real-time performance while maintaining accuracy.
Previous works by the authors [21]-[23] also propose event-
triggered MPC and LPV-MPC for AV path tracking problems,
all utilizing event-triggered MPC to reduce the computational
burden. These studies demonstrate the accuracy and computa-
tional efficiency of event-triggered MPC in various application
scenarios.

While the benefits of event-triggered MPC have been
demonstrated in simulation environments, the validation of this
approach in realistic settings is still limited. In particular, there
is a need to demonstrate the effectiveness of event-triggered
MPC for AV path tracking, as this is a critical component
of AV control systems. To address this need, we present
an experimental validation of event-triggered MPC for AV
path tracking, by using a real-world testing platform to show
the advantages of event-triggered MPC over time-triggered
MPC. Specifically, the testing vehicle is a full-size sedan
equipped with a drive-by-wire system and a Polynav 2000P
OME GNSS-Inertial system, a Calmcar front view camera
with lane detection capabilities, and a Dspace Autera comput-
ing unit. The GNSS unit provides real-time vehicle location
information that is consumed by control systems. Moreover,
a predefined path is recorded using GNSS and serves as a
reference trajectory for subsequent testing. Both time-triggered
and event-triggered MPC are tested, and it is found that event-
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Fig. 1. Schematic of the bicycle model.

triggered MPC offers a significant reduction in computation
compared to time-triggered MPC, which at the same time
improves the control performance. The improvement in control
performance is likely due to the fact that when optimization
is not triggered, event-triggered MPC can provide real-time
control action without any delay.

The remainder of this paper is organized as follows. Section
IT discusses the vehicle model in the MPC and the algorithm
of time-triggered MPC and event-triggered MPC. The vehicle
platform setup and the test result are shown in Section III.
Section IV concludes the paper.

II. MPC-BASED PATH TRACKING
A. Vehicle Model

In normal on-road driving, which is the focus of this
paper, the vehicle dynamics can be conveniently approxi-
mated by the bicycle model [24] shown in Fig. 1. Define
T = [ z Dy w} as the state vector for the vehicle model
at the center of gravity (CG), where p, and p, are the vehicle
longitudinal and lateral positions, respectively, and v is the
vehicle heading angle, all the states are in the vehicle frame.

Then z = [p Dy z/}]T, the set of differential equations of
the vehicle is modeled by the following,
e = V cos(v + B) (la)
py = Vsin(y + 3) (1b)
= szccf([i)r(tan(u}c) — tan(u,)), (Ic)

where V is the velocity of the vehicle’s CG; L,y and Lg,
are the distances from the center of gravity to the front and
rear axles; uy and wu, are the front and rear steering angles.
Since the vehicle used in this paper is the front-wheel steering
vehicle, the u, is equal to zero. Furthermore, 3 is the vehicle
slip angle, which is defined by the following equation.

L, tan(uy) )
La:f + Lwr ’
B. Time-Triggered MPC for Path Tracking

The MPC controller designed here has to track a desired
path, and the vehicle model described in Section II-A is

[ = arctan ( 2)

employed to make predictions in the MPC algorithm. To make
use of the bicycle model by MPC, the forward Euler method
[25] is used to discretize the bicycle model,

Tip1 = Ty + BT, 3

where T is the sampling time and z; is the system state at
discrete time t. For MPC-based path tracking control, at time
instance ¢, the general MPC algorithm performs the following
operations. Initially, it measures the current state of the system.
Subsequently, it solves an optimal control problem formulated
on the system model, constraints, and current state to find the
optimal state sequence X; = {x¢y1,T¢42,...,2e4p} and the
optimal control sequence Uy = {u¢, uyt1, - - -, Ut4p—1}, Where
p is the prediction horizon. Lastly, it sends the first element
of the optimal control sequence to the actuators. The optimal
control problem (OCP) is formulated as follows,

p
minJ = E ‘
k=1

p P p—1
. 2
+ E Hﬂft+k(2) _pthJrkH + § :H“H’fHQu
k=1 R

zerr(1) =L,

le.

p—1
+ Z |wrn — Ut+k71||2Qd (4a)

k=0
St. Xy =Ty (4b)
System dynamics (3), 1<k<p (4c)
Umin < Utk < Umaz, 0<k<p-—1 (4d)
Apin < Uk — Utgh—1 < Dpae, 0k <p—1
(4e)

Note that the first two terms in equation (4a) denote
the deviation from the reference path, while the third term
penalizes a high steering angle, and the final term decreases
the amount of actuator busyness (i.e., limits the rate of actuator
change). The weights for path following error, steering efforts,
and control activity are represented by @,, Q,, and Qg
respectively.

Remark 1: To derive a reference path suitable for MPC,
the default path needs to rearrange due to varying intervals
between consecutive waypoints. As a result, the waypoints on
the default path should be re-sampled based on the current
vehicle speed v and sampling time 7. As MPC depends on
short-term prediction, it is sensible to presume that V' will
remain constant over the prediction horizon. Therefore, the
waypoints throughout the prediction horizon are re-sampled
so that they are equally distanced from each other, where the
distance d is equal to current vehicle speed v multiplied by
sampling time 7.

C. Event-Triggered MPC for Path Tracking

Time-triggered MPC can be computationally heavy since
the OCP (4) needs to be solved at every time step. Unlike time-
triggered MPC, event-triggered MPC solves the OCP (4) only
when an event is triggered. This paper considers the threshold-
based event-trigger mechanism adopted by [21], [26]. Since
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TABLE I
MPC PARAMETERS.

P 10 Qu 35 Umin (rad) -0.97
Ts (ms) | 200 Qq 30 Aumaa (rad) | 0.15
Qp 2 Umaz (rad) | 097 || Aumin (rad) | -0.15

MPC does not control the longitudinal speed, the lateral offset
Y is primarily considered when determining an event, which
is the closest distance from the current position to the target
path. Denote the closest points on the path before and after
the current position as (x1,y;) and (z2,ys2). Then the lateral
offset Y is calculated by equation (5),

|(z2 — 21) (11 —py) — (21 — pa)(y2 —1)|
Ve —21)? + (y2 —11)?

Finally, the event-trigger mechanism used in this paper is
shown below.

(1
°“ Vo

In other words, the condition at which the event-triggered
MPC is triggered depends on two calibration parameters: o
and k..., Where k represents the number of consecutive times
that the MPC has not been triggered. It is important to note
that k4, should not exceed the prediction horizon p. The
event-triggered MPC solves the OCP (4) only when either the
vehicle’s lateral offset exceeds a predefined threshold o (i.e.,
Y > o), or the previously optimized control sequence Uy, has
been depleted (i.e., k& > k;pqz), resulting in e = 1. Otherwise,
e = 0, and the control action can be obtained by shifting the
optimal sequence obtained during the last event.

Y = )

ifY >cork>knaee
Otherwise

(6)

III. EXPERIMENTAL SETUP AND RESULT ANALYSIS

The controller discussed in Section II is evaluated in the ex-
perimental test. To verify the efficiency of the event-triggered
MPC, both time-triggered MPC and event-triggered MPC are
implemented in the vehicle platform separately, and are used
to track the vehicle to follow a same reference trajectory.

A. Experimental Setup

In this paper, a relatively empty site is used as the experi-
mental testing track, as shown in Fig. 2, and the AV platform
is shown in Fig. 3. Specifically, the testing vehicle is a full-size
sedan, the distances from the CG to the front and rear axles
are 1.2m and 1.65m, respectively. This vehicle is equipped
with drive-by-wire systems, a Polynav 2000P GNSS-inertial
system, a Calmcar front view camera with lane detection
capabilities, and a Dspace Autera computing unit.

Meanwhile, to compare the performance of time-triggered
MPC and event-triggered MPC, the MPC parameters, includ-
ing cost function calibrations, actuator bound constraints, and
rate constraints are maintained the same. Table I lists all the
parameters for both time-triggered and event-triggered MPC.

Fig. 2. Bird view of the testing track located in Plymouth MI.

Fig. 3. The AV testing platform, which is a full-size sedan equipped with a
drive-by-wire system, a Polynav 2000P GNSS-inertial system, a Calmcar front
view camera with lane detection capabilities, and a Dspace Autera computing
unit.

B. Numerical Result

In the sequel, we denote time-triggered MPC as tMPC
and event-triggered MPC as eMPC(c) where o represents
the event-triggered threshold in (6). Additionally, the perfor-
mances of event-triggered MPC with various o values are
examined to investigate the impact of the event-triggered
threshold on eMPC control performance.

The reference trajectory and tracking results with different
MPC are shown in Figs. 4 and 5. In general, all the controllers
can control the vehicle to complete the entire path safely, and
the tracking performances of each MPC are satisfactory. To
compare the performance of all controllers, tracking errors for
all controllers are plotted in Fig. 6, together with the maximum
error and root mean square error, both on the lateral tracking
error, being shown in Table II. Based on Table II, tMPC has the
worst tracking performance, with both Max Error and RMSE
being larger than eMPC. For eMPC, the Maximum Error and
RMSE are similar with different thresholds. Comparing the
peaks in Fig. 6, it is clear that the large error occurs at the
starting and ending areas. Meanwhile, combined with Fig. 4,
it can be seen that the area with a large error is the turning
region at the beginning and end. This is further supported by
zoom-in pictures of the starting and ending turns in Fig. 5.

In Table III, the number of MPC triggers and the trigger
frequency of eMPC are used to compare the extent to which
eMPC reduces the amount of computation compared to tMPC.
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Fig. 4. Tracking trajectories with different controllers.
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Fig. 5. Tracking trajectories with different controllers during the turn

maneuvers (i.e., zoom-in version of Fig. 4).
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Fig. 6.

TABLE 11
TRACKING PERFORMANCE WITH DIFFERENT CONTROLLERS.

tMPC | eMPC(0.01) | eMPC(0.02) | eMPC(0.03)
Max Error (m) | 0.5833 0.4108 0.4736 0.4559
RMSE (m) 0.1386 0.1056 0.1030 0.1058

Comparing the tracking performance within the three event-
triggered MPC settings, as summarized in Tables II and III,
it is apparent that as the event-trigger threshold increases,
both the maximum error and RMSE almost equal, while the
MPC trigger frequency decreases. However, based on the
simulation result from the authors’ previous work [21], the
tracking accuracy of the time-triggered MPC is better than the
event-triggered MPC. In addition, the tracking performance
of event-triggered MPC decreases with the threshold increase.
The result in this paper is different from the simulation result
because of the delay caused by MPC computation. According
to the driving time and control times in time-triggered MPC,
it can be estimated that the average MPC calculation takes
75 ms. Specifically, there is a 75 ms gap from starting the

Time [s] 100 150

Tracking errors with different controllers.

MPC computation to sending the control signal to the vehicle.
However, in the time-triggered MPC, the optimal steering
control sent to the vehicle is based on the initial state, which
can change significantly after 75 ms. Therefore, the optimal
steering control that the time-triggered MPC sent is late. The
MPC trigger frequencies of three event-triggered MPC settings
are around 50%, indicating that on average the event is not
triggered once every two control steps at which MPC needs
to calculate the optimal control sequence. Note that when
an event is not triggered, event-triggered MPC simply shifts
the previous optimal control sequence to determine control
action for the current step, which requires very minimum or
negligible delay. Therefore, it is our conjecture this provides a
timely compensation to the delay caused by MPC computation
when an event is triggered and explains why event-triggered
MPC outperforms time-triggered MPC in our experimental
results.

IV. CONCLUSION

This paper implements the time-triggered model predictive
control (MPC) and event-triggered MPC to solve a vehicle
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TABLE III
COMPUTATION NEEDED WITH DIFFERENT CONTROLLERS.

tMPC | eMPC(0.01) | eMPC(0.02) | eMPC(0.03)
Control Counts 2146 2581 3160 3894
Event Counts 2146 1789 1847 1870
Trigger Frequency (%) 100 69.31 58.45 48.02
Driving Time (s) 162.38 128.35 135.64 143.15
Average Speed (m/s) 3.35 4.59 4.35 3.94

path tracking problem in a real-world scenario. The main
contribution of this paper is to demonstrate the advantage
of event-triggered MPC. The study begins by developing a
bicycle kinematic model, which is then utilized to apply MPC
for controlling the lateral motion of the vehicle. In event-
triggered MPC, the lateral offset of the vehicle’s current
position from the reference path is used to determine whether
a new optimization problem is necessary. The testing platform
is a full-size sedan equipped with a drive-by-wire system, a
Polynav 2000P GNSS-inertial system, a Calmcar front view
camera with lane detection capabilities, and a Dspace Autera
computing unit. We conducted two experiments using time-
triggered MPC and event-triggered MPC to validate the benifit
of the event-triggered MPC over the time-triggered MPC.
Experimental results show that the event-triggered MPC can
reduce the computation in a vehicle path tracking problem by
50% while providing better control performance. For future
work, more experiments should be run with different event-
triggered MPC settings in more challenging driving maneuvers
to validate the robustness of the proposed approaches.
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