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Abstract—Focusing on remote, isolated, and underserved com-
munities, a multi-energy system is designed in this research which
is capable of utilizing different energy sources in a more coordi-
nated and energy-efficient way to support various demands, such
as fresh water, electricity, hydrogen, thermal demand, etc. The
energy sources considered are renewables (wind, solar, marine)
and natural gas. The energy conversion process includes water
desalination, gas combustion, water electrolyzation, and different
types of storage (hydrogen tank, electricity, thermal, etc.) are
designed to serve as buffers in supply-demand balancing. Sets
of experiments are designed to demonstrate the effectiveness
of the proposed operating model and investigate the impact of
uncertainties from renewable generations and demands.

Index Terms—Coastal Ccommunity, Multi-Energy Systems,
Hydrogen Economy, Water Desalination.

I. INTRODUCTION

Energy, water, food are integral pillars of coastal infrastruc-
ture and essential for human well-being. However, being the
frontier of climate challenges, water and sanitation systems
of coastal communities are at increased risk to groundwa-
ter infiltration and salinization imposed by climate changes.
Meanwhile, remote and islandic communities face high energy
cost and energy disruptions, for example, Department of
Energy announced in April 2021 to support 11 selected island
communities (including coastal communities) planning its best
way to meet energy needs in a more affordable, resilient, and
sustainable way [1]. Compared to onshore solar and wind
generation, marine renewables like wave and tidal energy are
generally reliable and continuous, easy to predict, and have
a variety of ways to be harnessed. The theoretical annual
energy potential of waves off the coasts of the United States
is estimated to be as much as 2.64 trillion kilowatthours, or
the equivalent of about 66% of U.S. electricity generation in
2020 [2]. In April 2021, the National Hydropower Association
unveiled its new bold and achievable industry deployment
targets of 50 MW by 2025, 500 MW by 2030, and 1 GW
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by 2035 [3]. Despite of the tremendous potentials, marine
renewables suffer from high cost at current stage. Tidal energy
is limited by the availability of sites for construction, and wave
energy is highly dependent on wave speed and wavelength.
These drawbacks have made marine energy not a viable energy
source for long-distance inland consumption, and only coastal
towns and cities near the ocean can benefit directly from it.

In addition, for the transportation in coastal regions, new
emissions regulations by the International Maritime Organi-
zation limit the sulfur content in fuel oil used on ships (or
“bunker fuel”) from 3.5% to 0.5%, starting in 2020. These
limits are further reduced to 0.1% for ships operating in
Emissions Control Areas, including certain coastal regions
of the United States and the European Union. Given such
increasingly stringent requirements, hydrogen and hydrogen
carriers may offer an attractive alternative to bunker fuel.
Furthermore, the use of hydrogen in various marine vessels
and at ports for drayage trucks, shore power (electricity for
ships while docked), and cargo equipment offers the potential
to reduce both carbon dioxide and other emissions and to
develop infrastructure in targeted regions [4].

Extensive research has been conducted on different aspects
of off-shore renewables, freshwater and hydrogen production.
Wave energy resource assessments for US coastal waters have
been reported at different scales [5], for instance, regional
coastline (West Coast [6], Hawaii [7], East Coast [8] [9],
etc.) and national US Coast [10]. Energy hub of heating-
cooling-electricity-freshwater is designed for coastal urban by
taking economic and emission factors into account [11]. Day-
ahead optimal operation of coastal energy hub is modeled as
multi-objective problem with energy storage systems (thermal
storage, compressed air energy storage) and seawater desali-
nation as flexible load [12]. In [13], a solar-based integrated
energy system is designed to provide cooling and hydrogen
production via proton exchange membrane electrolysis, and
comprehensive parametric study is carried out to understand
the effect of major design parameters on system energy,
exergy and exergoeconomic. Hydrogen fueling stations are
essential to the success of fuel cell electric vehicles. To
justify the economic viability, optimal scheduling of privately
owned hydrogen storage stations is investigated to serve both
transport sector and electricity market operator [14]. As clean
and renewable energy, hydrogen is an emerging way to replace
fossil fuels. To build a hydrogen-based distributed energy sys-
tem for the demand side, the optimal planning of such a system
is studied with the objective of minimizing annual capital and
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operation expenditure [15]. Hydrogen storage units, hot water,
and chilled water storage units are coordinated together to
improve energy efficiency and reduce system costs.

Motivated by the thermal, fresh water, and potential hydro-
gen demand on coastal communities, we propose to design a
comprehensive multi-energy system aiming to improve energy
utilization efficiency and support the coastal blue economy. In
Section II, the systematic configuration of the proposed multi-
energy system is presented along with the basic component
modeling; in Section III, different sets of case studies are
designed to demonstrate the effectiveness of the proposed
model. Finally, conclusions are drawn in Section IV.

II. MULTI-ENERGY SYSTEM SCHEME AND MODELING

The schematic of proposed multi-energy system is shown in
Figure 1. The system components can be further categorized
as different phases: Resource, Conversion Process, Storage,
and Demand.

Resources: On the generation side, the resources include
seawater resources as feedstock to desalination plant to be
purified into potable water, natural gas as input to gas boiler
to be converted into electricity and renewable resources (wind,
PV solar, wave energy) to be harvested by appropriate devices
and converted into electricity.

Conversion process: During this process, water desalina-
tion plant consumes seawater, electricity or potentially ther-
mal energy depends on desalination technologies, to produce
potable water; gas boiler and turbine consumes natural gas
to generate electricity through combustion, boiler, and power
cycle; and electrolyzer consumes seawater and electricity to
produce hydrogen.

Industrial scale storage: To better balance supply and de-
mand of each product, the corresponding storage is integrated
as buffer. For example, water tank temporally stores the fresh
water produced by desalination plant; thermal storage tempo-
rally stores the thermal energy produced by the gas turbine;
hydrogen tank temporally stores the hydrogen produced by
electrolyzer; and battery temporally stores the electricity.

Demands: Residential water demand, thermal demand,
electricity demand and hydrogen demand from the transporta-
tion sector are considered on the demand side.

In the following subsections, operation constraints are pre-
sented and explained for each system component.

A. Renewables

The generated power of wind turbine is modeled as a static
mapping function of wind speed [16]–[19], as follows:

pWt =

 0.5 · ηw · ρair · V 3
t · π·d2

4 if 3 < Vt ≤ 14
1.5 if 14 < Vt < 25
0 else

,

(1)
where ηw is the conversion efficiency of the wind turbine,
ρair is the density of the air at the site, Vt (m/s) is the wind
speed, and d is the diameter of the turbine blades. For a
turbine with rated power of 1.5 MW, the values used for each

parameter in equation (1) are: η = 35%, ρ= 1.17682 (g/m3), d
= 58.13 (m). For this study, the wind speed data is downloaded
from Eastern Wind Dataset maintained by National Renewable
National Laboratory*.

The generated power of PV modeled as a static mapping
function of global horizontal irradiance [20], as follows:

pSt = Ωt · τpv · ηref ·A · [1− γ · (Tt − 25)], (2)

where Tt is the ambient temperature in Celsius, and A is the
total area (m2) of the PV module receiving solar irradiation
Ωt (kWh/m2). The values of parameters in Eqs. (2) used in
simulation are: τpv = 90%, ηref = 15%, and γ = 0.45%.
For this study, the solar irradiation data is downloaded from
National Solar Radiation Database maintained by National
Renewable National Laboratory†.

The generated power pVt of wave energy harvest device
is modeled by the Wave Energy Converter SIMulator (WEC-
Sim) developed by National Renewable National Laboratory‡.

Therefore, the total renewable power output, in terms of
electricity, is denoted as

pRt = pWt + pSt + pVt. (3)

B. Desalination

The reverse osmosis desalination plant consumes electricity
and push the seawater through a reverse osmosis membrane
to produce fresh water. The total power consumption pDt by
desalination plants is calculated as a production of water flow
rate wft and desalination specific energy consumption dst
(kWh/m3) in Eq.(4), as follows.

pDt · 1000 = dst · wft (4)

dst = 2.05 · 10−5 · C0 ·
2−R

2 · (1−R)
+ 2.78 · 10−7 ·Rm · wft,

(5)

where dst itself is a function of wft in Eq.(5). R is the
water recovery ratio of the process and Rm is the membrane
resistance, C0 is initial salt concentration of feed water. Eq.(4)
and Eq.(5) are adopted from reference [21]. Values C0 = 36000
(ppm), R = 0.55, Rm = 33.95 (Pa.Sec/m) are used here.

C. Combined Heat and Power (CHP)

In CHP, the gas turbine can generate both electric power and
heat while gas boiler is the heat generator. Here, pTt is power
generated by gas turbine, qTt is the thermal generated by gas
turbine, qBt is the thermal generated by gas boiler, gTt is the
gas input for gas turbine, gBt is the gas input for gas boiler.
V g low calorific value of gas. ηT is the generation efficiency
of gas turbine, ηQ is the thermal generation efficiency of gas
boiler. ηL is the heat loss coefficient of gas turbine, ηX is the

*The data is accessible at https://www.nrel.gov/grid/eastern-wind-
data.html

†The data is accessible at https://nsrdb.nrel.gov/
‡The simulator is accessible at https://wec-sim.github.io/WEC-Sim/
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Fig. 1: The scheme of multi-energy system for coastal community

heat exchanger coefficient. Eq.(6)-(8) are modified based on
reference [22], as follows.

pTt = gTt · V g · ηT (6)
qTt ≤ ηX · pTt · (1− ηT − ηL)/ηT (7)

qBt ≤ gBt · V g · ηQ (8)

Values ηT = 0.35, ηQ = 0.65, ηL = 0.5, ηX = 0.5, V g = 0.0097
(MWh/m3) are used here.

D. Electrolyzer
Hydrogen production is calculated based on Eq.(9) [23],

hft = ηZ · pZt · PH, (9)

where hft is the hydrogen production flow, ηZ is the efficiency
of electrolyzer, pZt is power input for electrolyzer, PH is
the power to hydrogen conversion factor. Values PH = 360
(m3/MWh) and ηZ = 0.6 are used here.

E. Storage or Tank
For storages or tanks, the general dynamic of charg-

ing/discharging activities can be modeled in Eqs. (10)-(13)
[24] [25], as follows.

pxt = px+
t − px−

t (10)

st = st−1 −
px−

t

ηD
+ px+

t · ηC (11)

−Cs · α ≤ pxt ≤ Cs · α (12)
0 ≤ st ≤ Cs, (13)

where px+
t and px−

t are charging and discharging amount,
pxt is the resulted charging or discharging amount (could be
positive or negative), st is the storage level, Cs is the storages
or tanks capacity. ηC and ηD denote the discharge and charge
efficiency of the storages or tanks. For thermal storage ηC =
ηD = 0.85, Cs = 1.5 (MW); for battery ηC = ηD = 0.9, Cs =
1 (MW), for water tank ηC = ηD = 1, Cs = 50 (m3), and for
hydrogen tank ηC = ηD = 1, Cs = 200 (m3). For all storages
and tanks, α = 0.25 is the maximum charging or discharging
efficiency.

F. Demand Balance

From the system scheme shown in Figure 1, the following
demand balance equations can be derived. Note that, px
represent charging or discharging amount for water, thermal,
hydrogen and power in Eq. (14), (15), (16) and (17), respec-
tively.

wft + pxt = Dwt (14)
qTt + qBt + pxt = Dqt (15)

hft + pxt = Dht (16)
pRt + pTt + pxt − pDt − pZt = Dpt (17)

The demands are modeled as time series data obtained from
various sources. For example, the building thermal demand
Dqt and electricity power demand Dpt are available from
public database [26] or [27]. The hydrogen demand Dht is
available in reference [23] or can be converted from daily
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Fig. 2: Multiple demands level in the system.

Fig. 3: Renewable generations in the system.

gasoline demand in [28]. The water demand profile Dwt is
available in reference [12].

III. NUMERICAL EXPERIMENTS

In this section, the used data and several groups of exper-
iments are presented. The hourly demand level of different
products are plotted in Figure 2, and the renewable power
generations are shown in Figure 3.

To demonstrate the proposed operation model in Section II,
two different operation cases are considered here.

A. Day-ahead Operation

In this case, the optimization model is solved once with
known hourly day-ahead data as input. The complete model
can be summarized as in model (18).

min
∑

t(gTt + gBt) (18a)
s.t. Eq.(1)− (17) (18b)

The optimization objective is to minimize total gas con-
sumption here. Assume the demand and generation are known
day-ahead, the minimum gas consumption is 21814.83 (m3)
based on current parameter settings. Figure 4 shows the hourly

Fig. 4: Gas consumption of CHP.

Fig. 5: State of charge for the storages and tanks.

gas consumption of CHP. The state of charge for storages and
tanks is shown in Figure 5. Note that, the state of charge at the
beginning of the day are initialized as 50% and are required
to be greater than 20% at the end of the day. Since thermal
energy can only be provided from CHP and thermal storage,
it can be observed from Figure 4 that, gas consumption is
concentrated around hour 7 and 8 to satisfy thermal demand
peak, and thermal storage is charged to full in Figure 5 before
the peak hour 7 for subsequent discharging.

B. Rolling-Horizon Operation

To make more practical decisions with the uncertainties
from renewables and demands, stochastic rolling-horizon op-
eration is also considered here by Model Predictive Control
(MPC) approach. Suppose current time step is t− 1, depends
on the demand prediction time window w, the main solving
procedure using MPC approach is as follows:

i Predict renewables and demands for a future horizon
window t+ w before the current time step t.

ii Solve the model (18) for time dimension t+w to obtain
charging or discharging amount decisions.
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Fig. 6: Gas consumption in rolling-horizon operation
considering the uncertainties.

iii Fix the charging or discharging decisions in time step t
and solve the model (18) only in time step t when the
demands become certain.

iv Obtain state of charge level of storages and tanks in time
step t which are inputs for next iteration in t+ 1.

v Repeat the previous steps until last time step.
For the sake of simplicity, we assume the look-ahead

window t + w = 4 (w = 3) and t + w = 8 (w = 7) hours
and the prediction error ξ is within different ranges: ± 0%, ±
5%, ± 10% and ± 15% based on the true demands in Figure
2 and Figure 3 for each time step.

With the data sampling, for each parameter setting, the
experiment is run 30 times to get the objectives. The objective
distribution is shown in Figure 6. For instance, when look-
ahead window w = 3 and error range ξ = 0.15, the 30 objective
points locate in range [21928, 21977], and similarly, the range
is [21854, 21899] for w = 7 and ξ = 0.15. It indicates that
it’s better to have more information on the renewables and
demands in near future even though with 15% prediction error.
It also shows that the worst objective with w = 7 and ξ = 0.15
is still better than the objective w = 3 and prediction error ξ =
0 (accurate prediction). The similar trend can be observed for
different prediction error ξ. Note that, the objective (21833)
with w = 7 and ξ = 0 is slightly worse than the optimal
objective (21814) in day-ahead operation. The results in this
section could also imply the bound of the information value
if purchasing more accurate prediction services.

IV. CONCLUSION

In this work, social welfare for the coastal community is fo-
cused. Specifically, we have proposed a comprehensive multi-
energy system to satisfy the needs of freshwater, hydrogen, and
thermal production in an integrated way. Based on the system
framework, an operating model is established to coordinate
the multiple conversion processes and storage operations.
The effectiveness of the proposed model is demonstrated
by day-ahead operation. The impact of uncertainties on the
objective is illustrated by parametric studies of the look-ahead

time windows and prediction errors in the model predictive
control approach. In the future, more interactions between
the proposed multi-energy system and energy markets will
be investigated, together with Monte Carlo simulation using
synthetic dataset [29] and detailed battery modeling [30]–[32].
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