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Abstract—Smart motor controllers usually provide plentiful
information that makes it possible to model the various mech-
anisms they control. One such mechanism, a flywheel, is one of
the simplest models to implement, yet has various characteristics
that need to be identified for the model to be accurate. To
ensure accurate control of the flywheel, not only is real-time state
information necessary such as position, velocity, and acceleration,
but also system characteristics such as inertia, friction, and
drag. This paper investigates the use of extended Kalman filter
to simultaneously estimate the system state and parameters,
providing rich information that the user could use to optimally
control the end mechanism.

Index Terms—Extended Kalman Filter, Smart Motor Con-
troller, Flywheel, Firmware, Embedded Implementation

I. INTRODUCTION

Motor controllers are electronic devices that take a control

signal and output a voltage to a motor responding to that

signal. The smart motor controllers [1] provide additional

capabilities to offload computation from the main controller to

the device. By offloading the computation, the motor controller

can react to sensor input faster than the main controller

and abstract functionality from the main controller for faster

development.

An example of such integrated smart motor controllers is

the Talon FX [2], where users can configure PID gains, set

position/velocity setpoints, and get information such as motor

position/velocity from the motor controller, all through the

CAN bus. Since the Talon FX is integrated with the motor,

it also has a rotor position sensor available along with supply

and stator current measurements. Moreover, the Talon FX is

capable of executing some basic estimation software in the

firmware to estimate system states and parameters utilizing

these onboard sensors, thus providing real-time analysis of

the system.

The easiest model to run in the firmware would be a

simple flywheel. By modeling the flywheel’s characteristics

and taking into account the measurements available, the motor

controller can reasonably estimate the position, velocity, and

acceleration of the system. These estimates are sufficient

to control the mechanism to a desired position or velocity,

as is often the end goal of such mechanisms. However, in

most circumstances, the characteristics of the system, such as

inertia, friction, and drag, are unknown. To address this issue,

this paper investigates the use of an extended Kalman filter

(EKF), a state estimation technique for systems with nonlinear

dynamics [3]–[9], in the firmware to estimate the system
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characteristics. The identified characteristics can then be used

for further control or general identification of the system.

Experiments demonstrate that the firmware implementation

produces identical results as compared to Matlab implementa-

tion, illustrating the capability of Talon FX in running complex

software in real-time.

The rest of this paper is organized as follows. Section II

provides preliminaries on EKF and real-time requirements,

while Section III describes the physical system and the equa-

tions used to model it. The experimental setup is presented in

Section IV, together with results discussed in Section V. The

paper is concluded in Section VI.

II. PRELIMINARIES

A. Extended Kalman Filter

A linear Kalman filter estimates the state of a linear system

given the model, measurements, and control inputs [10]–[12].

It relies on the system being linear and is the optimal method

of estimating the state for linear systems.

Extended Kalman filter (EKF), on the other hand, supports

nonlinear systems by locally linearizing the system dynamics

at each time step [3]–[9]. This is done by linearizing the

system around the current state estimation for propagating the

covariance matrix and calculating Kalman gain L [13]. This

results in a non-optimal method of estimating the state, but

is relatively easy to compute and still performs well under

most circumstances. More specifically, given the following

nonlinear dynamics,

xk+1 =f(xk, uk) + wk (1a)

yk =g(xk) + vk, (1b)

EKF performs the following two-step updates.

• Time update:

x̂k+1 = f(x̂+
k , uk) (2a)
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• Measurements update:

Ck+1 =
∂g(x)
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Lk+1 = Pk+1C
T
k+1(Ck+1Pk+1C

T
k+1 +R)−1 (2e)

x̂+
k+1 = x̂k+1 + Lk+1(yk+1 − g(x̂k+1)) (2f)

P+
k+1 = (I − Lk+1Ck+1)Pk+1 (2g)

As will be described shortly, the flywheel system is a

nonlinear system that is mostly locally linear. By putting the



inertia, friction, and drag characteristics into the state matrix,

the system becomes nonlinear, and the friction component

itself is nonlinear. However, when zoomed into any part of the

system, it does behave linearly, making EKF an ideal approach

for such a system.

B. Real Time Requirements

In order to model such a mechanism in firmware, the

estimation algorithm should be implemented on a processor,

which usually has limited computation. The processor used in

the Talon FX is a 16-bit processor with no floating point unit.

This results in floating point operations being computation-

ally expensive and should be minimized to meet the timing

requirement for real-time analysis.

The drive to change from floating point to fixed point

comes from the lack of a floating point unit on the micro

controller used. This means for any floating-point calculation

to be performed, it needs to happen in “software”, where

the floating point operation needs to be broken down into

exponent, mantissa, and sign operations, then pieced back

together, multiplying the time taken for any operation to take

place [14]. This is significantly reduced by moving to fixed

point operations, as the numbers can be treated essentially as

full integers for the purpose of computation.

The easiest way to reduce floating-point operations is to

eliminate them entirely by changing to a fixed point notation.

Fixed point is a different representation of a number, where

a “fixed” number of bits is above the decimal point and the

remainder are below the point [15]. This means the resolution

of the number is fixed, and cannot be adjusted to best represent

large and small numbers. For this particular micro controller,

the computationally optimal fixed point representation is a

signed 15.16 number, that is, 1 sign bit, 15 bits above the

decimal, and 16 bits below the decimal. This results in a

range of [-32768, 32768) with a resolution of 1.526e-6. This

is sufficient for essentially any position, velocity, acceleration,

inertia, friction, and drag value that would be encountered in

this work.

III. FLYWHEEL DRIVEN BY DC MOTOR MODEL

A flywheel system is a mechanical system in which a

rotational actuator spins a mass. There may or may not be

a gear reduction between the actuator and the mass, and the

mass may be any size. The rotational inertia of the mass resists

any change in rotational velocity, following the rotational

kinematic equations. In addition, friction and viscous friction

act against the velocity of the flywheel resulting in a force

counteracting the instantaneous velocity of the flywheel.

In the field of competitive robotics, the flywheel system

is designed to interact with a game piece and launch it.

In order to maintain consistency in the launch profile, the

flywheel needs to target a rotational velocity and hold that

velocity while the game piece interacts with it during the

launch. Ideally, the flywheel reaches the target velocity in

as little time as possible so the delay between spin-up and

launch is minimized. Fig. 1 provides some examples of robots

(a) Team 254’s robot in 2012. (b) Team 1323’s robot in 2017.

(c) Team 1610’s robot in 2020. (d) Team 2910’s robot in 2022.

Fig. 1: Robots teams created utilizing flywheel mechanism to

launch game objects from various years. Circled in red is the

flywheel of each robot.

teams have created that utilize flywheels to achieve the game’s

objective.

A. Model Description

The flywheel model can be found by using standard kine-

matic equations that have been extended to the rotational

domain [16]. The equations (3) and (4) below describe how

the acceleration affects position (θ) and velocity (ω) over time.

∆θ = ω0t+
1

2
αt2 (3)

ω = ω0 + αt, (4)

where (α) is the acceleration. Note that the acceleration (α)

is determined by a different equation. The first aspect of this

equation is how the applied power of the motor corresponds

to the angular acceleration of the flywheel, which can be

described as follows [17].

α =
kTIstator

Jflywheel

, (5)

where kT is the motor constant describing the relationship

between stator current and angular torque, Istator is the current

in the motor’s stators, and Jflywheel is the flywheel’s inertia.

In this case, the flywheel’s inertia and the motor’s kT constant

are both constant assuming the system does not change, so we

can lump them together to a kI term for the system’s rotational

inertia with respect to applied stator current, resulting in the

following simplified equation.

α = kIIstator. (6)

This also has an additional benefit of removing a division in

the kinematic equations, making the linearization step easier

and the computation faster. This also means that the “inertial”

term acts more as an “inertial conductance” term, with larger



numbers indicating less inertia and faster acceleration for the

same applied torque.

The next step is to take into account the drag of the system.

For simplicity, the system is assumed to operate under low

Reynolds numbers, resulting in linear drag or viscous friction

[18]. This form of drag increases linearly with respect to

velocity as follows.

α = −Dω. (7)

Here D corresponds to the drag characteristic of the flywheel.

The last component of the acceleration is the frictional com-

ponent, which is a constant force acting against the current

velocity signage. That is, it will accelerate the system in

reverse if the system is moving forward and vice versa. This

is described by 8

α = −F · sign(ω), (8)

where F is the frictional term and the sign function is defined

as

sign(x) =











1 x > 0

−1 x < 0

0 x = 0

. (9)

However, due to the discretization inherent in digital signal

processing, the frictional term needs to be adjusted to ensure

that the resultant velocity does not change signs. This can be

found using (4), finding the maximum rotational acceleration

to result in ω = 0. This is simplified to effectively capping the

rotational acceleration to the instantaneous velocity divided by

the time step, resulting in the following.

α =

{

−F · sign(ω) |ω|
t

> F

−ω
t

otherwise
, (10)

which can be further simplified using the min function, as

follows.

α = −sign(ω) ∗min

(

F,
|ω|

t

)

(11)

All these forces are combined to result in the final rotational

acceleration of the system described by (12).

α = kIIstator − sign(ω) ∗min

(

F,
|ω|

t

)

−Dω. (12)

B. Matrix Representation of the Model

Given the system dynamics described in (3), (4), and (12),

the matrix representation can be derived as follows. Define

the state variable as x =
[

θ ω α kI F D
]T

and the

control variable as u =
[

Istator
]

. Note that here the state vector

includes system parameters kI, F and D for the purpose of

online parameter estimation. The Jacobian matrix with respect

to x is then given as follows.

Fig. 2: Top down view of the mechanism. The motor is directly

coupled to the shaft with a large steel disk connected.
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
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For the output calculation, since only the rotor position is

measured by the sensor, the output equation is truly linear, as

follows.

y =
[

θmeas

]

(15)

Therefore, the corresponding C matrix for EKF is given by

C =
[

1 0 0 0 0 0
]

. (16)

IV. EXPERIMENTAL SETUP

This model was then verified using a real-world mechanism

to collect data. See Figs. 2 and 3. This mechanism was

created using a Kraken X60 brushless motor with an integrated

Talon FX smart motor controller connected 1:1 to a hex shaft

spinning a large steel flywheel.

The mechanism was designed so that artificial friction and

drag could be introduced and removed in order to prove that

the EKF real-time estimator can correctly identify a change in

friction and/or drag, and that the inertia of the system remains

constant. This is done by adding and removing a 3D-printed

structure with holes for magnets (See Fig. 4). The introduction

of the structure itself adds some friction and a small amount

of drag, while the magnets will add primarily drag to the

system. This is due to Lenz’s law, where a magnetic field

moving relative to a piece of conductive material will produce

a magnetic field proportional to the velocity of the movement

[19]. That magnetic field will oppose the original magnetic

field, and so there is a force that acts as a brake. Since the

magnitude of that force is proportional to the velocity, the

overall effect on the system is an apparent drag, a braking

force that is linear to the velocity of the system, captured by

the D term of (12).



Fig. 3: Side view of the mechanism. (a) With the removable

magnets in place to provide an artificial drag component to the

mechanism. (b) The magnets removed so there is no artificial

drag component.

Fig. 4: Model of component added to artificially increase drag

and friction.

A. Data Collection

The Talon FX can be communicated with via CAN using

a CANivore on a Windows Computer. A Python project was

created to control the motor and acquire data from the motor.

The Python code uses a modified Phoenix 6 library to provide

inertia/friction/drag variables from the Talon FX that runs the

EKF estimator. The primary data collected during the initial

runs were the position and the torque current reported by

the Talon FX. This data was then analyzed (by Matlab) to

verify that all 6 state variables were able to be calculated

and were stable. After this was confirmed, the EKF was then

implemented in C language to run on the firmware inside the

Talon FX, with all 6 state variables available for comparison

against the MATLAB implementation.

B. Implementation in MATLAB

The EKF estimator for flywheel systems was first imple-

mented in MATLAB, which is a generic implementation that

utilizes a nonlinear function for the prediction and observation

steps, and a linearization function to get the A and C matrices.

Some key things to note are that the time steps, as captured

by the acquired data, are not constant, so the change in

time is represented with a dT variable used to adjust both

the prediction/observation steps and the linearized A and

C matrices to account for the time-varying step size. The

linearization of the A matrix has two solutions depending on

if the angular velocity is so slow that the frictional term brings

the velocity to 0 or if there’s sufficient velocity for friction to

take full effect.

C. Implementation in C

After the MATLAB implementation was verified, the code

was ported to C to run on the micro controller inside the

Talon FX. The first implementation of the EKF was using

floating point to verify the implementation was correct and any

issues present were not due to the fixed point implementation.

Despite this, there were various issues that were encountered.

1) Matrix implementation: The first issue was the C imple-

mentation of matrix operations. Since the code was running

on a small micro controller, the matrix operations had to

be created by hand. The debug and verification of matrix

implementation was done by creating a suite of unit tests to

compare the hand-written C code against the MATLAB code.

2) Not A Number (NaN) results: After the Matrix opera-

tions were confirmed to be correct, there was occasional NaN

results that propagated throughout the model. This was due to

a float conversion to int that was later being used as a dividend.

The floating point number could occasionally be less than 1,

which would result in a division by 0 and the result of NaN.

This was discovered by logging all the original data getting

passed into the firmware EKF and passing it into a C version

of the EKF running on Desktop C++. Through the use of

breakpoints the NaN was found and the bug was fixed.

3) Discrepancies with MATLAB: The small discrepancies

with the MATLAB implementation, particularly in the co-

variance propagation,s was worked through by debug-stepping

iteration over iteration between the Desktop C version of the

EKF and the MATLAB version. This resulted in the error

being attributed to standard floating point error, particularly as

the MATLAB implementation uses “double” precision under

the hood while the C version explicitly used the“float” key-

word specifying “single” precision, resulting in significantly

less overall precision.

4) Very large covariance values: While not specific to

the C implementation, it was also noted that the covariance

terms grew to be very large in both the MATLAB and C

implementations, on the order of 100s of thousands. This

posed to be a problem in the eventual fixed point conversion, as

a 15.16 fixed point number can only represent values between

[-32768, 32768). After stepping through a few covariance

propagation cycles, it became obvious that the initial noise

terms used were way too high. The prediction noise was on the

order of 1 when it should be closer to an order of 0.01, while

the measurement noise was 10 when it should be closer to

0.001. This change makes sense when taking into account the

units of the model and sensor, the model operates in rotations

and the measurement is also in rotations. The sensor used is

a 11-bit sensor with very low noise, so should be accurate
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Fig. 5: Estimated Position/Velocity/Acceleration from MAT-

LAB EKF to time-derivative estimation. The variables with a

K prefix are from the MATLAB EKF.

within 0.0005. After making these corrections, the covariance

terms dropped significantly and were well within the bounds

of being represented in fixed point notation.

After these issues were worked through, the floating point

implementation was changed to fixed point with no undesir-

able effects. By making the switch from floating point to fixed

point, the time taken to calculate the model also dropped from

2.426 ms to 769.29 us, a nearly 3x improvement. Getting the

full calculation under 1 ms is particularly important, as the

goal is to run the model once every millisecond.

V. RESULTS AND DISCUSSIONS

The overall results were exceptional. As discussed below,

the EKF correctly identified systems with additional fric-

tion and drag and resulted in cleaner and more responsive

accelerations compared to classic time-derived velocity and

acceleration estimates.

In Fig. 5, the experiment was to drive the flywheel and

measure the position/velocity/acceleration/stator current of the

motor during the data collection period. Note that velocity

and accelerations are measured here for comparison purpose,

and they are not utilized by the EKF for estimation. The

position and stator current values are then fed into the MAT-

LAB implementation of EKF to estimate the characteristic

inertia/friction/drag and provide a filtered position/velocity/ac-

celeration. By comparing the acceleration, the noisiest variable

under typical circumstances, the filter performance can be

subjectively determined. In this case, the filtered acceleration

from EKF is significantly less noisy while still following the

general trend, even leading the measured acceleration. This

indicates a strong correlation between the model and the real

world, as the model is able to predict what the acceleration

will be while the measurement lags behind.

Figs. 6, 7, and 8 show the results with EKF running in the

firmware to estimate Inertia/Friction/Drag characteristics on

the fly. In particular, in Fig. 6, the experiment was conducted

without any artificial friction or drag added. In Fig. 7, the

experiment was conducted with artificial friction added, while

in Fig. 8, the experiment was conducted with both artificial

friction and drag added.

By analyzing EKF estimation results and comparing them

against each other knowing the general state of the mechanism,
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(b) Inertia, Friction, and Drag of Test

Fig. 6: Results of the EKF running in firmware without

the artificial drag/friction. At the end, inertia is roughly 1.1,

friction is essentially 0, and drag is about 0.14.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-200

-100

0

100

200

300

400

Torque Driven

Pos

Vel

Acc

K Pos

K Vel

K Acc

(a) Position, Velocity, and Acceleration of Test

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Inertia

Friction

Drag

(b) Inertia, Friction, and Drag of Test

Fig. 7: Results of the EKF running in firmware with artificial

friction added. At the end, inertia is roughly 1.1, friction

increases to 0.3, and drag increases to ∼0.4.

the model can be examined and determined if it’s able to

correctly identify systems with additional friction/drag and

correctly diagnose that the differing levels of effort required

to drive the mechanism isn’t due to a change in inertia. In

all 3 cases, the inertia was identified as being around 1.1,

correctly identifying that there was no significant impact on

the system’s inertia between the 3 cases. In addition, as friction

and/or drag was added to the system, the model was able

to correctly identify and provide an increasing friction/drag

characteristic value. Throughout all the experiments, the posi-

tion/velocity/acceleration was very clean, further indicating the
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Fig. 8: Results of the EKF running in firmware with artificial

drag and friction added. At the end, inertia is roughly 1.1,

friction increases to 0.7, and drag increases to ∼2.4.

model was a good representation of the real world mechanism.

Based on the results presented, it’s clear that the proposed

EKF estimator in a smart motor controller can provide mean-

ingful improvement to key variables that are reported, and

opens the door to additional opportunities.

• First, it is possible to take the flywheel characteristics and

use them to calculate ideal PID gains for position and

velocity control. This reduces the problem of finding op-

timal closed loop gains to simply driving the mechanism

with the model running in the background, allowing data

to collect, and finally plugging the found characteristics

into a calculator rather than the tedious work of hand-

tuning the PID gains.

• In addition, after the characteristics are found, the model

simplifies to an even more linear model, with the only

nonlinear term becoming the frictional term. If the fric-

tional component of the system is small enough, such as

the mechanism in Fig. 6, it can be dropped and turned into

a completely linear system that can be controlled through

a linear discrete Model Predictive Controller [20].

• One last possibility is health monitoring and failure

diagnosis through constant monitoring of system char-

acteristics and identification [21]. For example, in Fig. 7,

if the inertia were to change significantly to a value of 4,

that would indicate a significant decrease in inertia and

could be caused by the flywheel no longer being attached

to the motor, a catastrophic failure.

VI. CONCLUSIONS

This paper investigates the use of extended Kalman filter

(EKF) for the real-time state and parameter estimation in fly-

wheel systems. Both Matlab and firmware implementation (in

C) are developed. Several experiments are conducted with and

without additional artificial friction/drag added. Experiment

results demonstrate that the proposed EKF estimator, with only

position measurements, can accurately estimate the position,

velocity, and acceleration, while at the same time providing

accurate estimation of the system characteristics such as

inertia, friction, and drag. The proposed method requires less

than 1 ms computation time in firmware, and hence is suitable

for real-time applications. Future work include utilizing the

estimated system characteristic for control design and health

monitoring.
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