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Abstract—This paper focuses on sizing and operation op-
timization of hybrid energy systems (HES), which integrate
multiple electricity generation units (e.g., nuclear, renewable) and
multiple electricity consumption units (e.g., grid, EV charging
station, chemical plant) for effective management of variability
in renewable generation and grid demand. In particular, the
operation optimization considers the optimal charging and dis-
charging profile of energy storage element (ESE) so that the
variability of the industrial scale chemical plant is minimized. The
receding horizon optimization approach is adopted to solve this
operation optimization problem, which is then reformulated into
a linearly constrained quadratic programming problem, suitable
for running in real-time. The design optimization problem
finds the optimal sizes of ESE to balance the variability of
the chemical plant and the economic cost of ESE installation.
Global optimization technique (e.g., DIRECT) is employed to
numerically solve the proposed sizing optimization problem, due
to its non-convexity.

I. INTRODUCTION

Hybrid energy systems (HES) that consist of multiple en-

ergy generation and consumption units have been extensively

studied in literature to enable higher level of renewable energy

penetration [1]–[17]. By integrating multiple energy units with

different response time scales, HES can be operated under

flexible operation schedules to accommodate the variability

introduced from renewable generation (such as wind farm

and solar power) and modern loads (such as electric vehicles)

[3]–[5], [11]. In general, HES can be configured to produce

different types of energy outputs such as both thermal and

electric energy in combined heat and power (CHP) systems

[1], utilize different energy resource to produce electricity

[2], [8]–[10], [12], [14], [15], [17], or utilize different energy

resource to produce multiple energy outputs [3]–[6], [11].

The optimization problems for HES are investigated in

literature. For example, the HES design optimization prob-

lem is studied in [18], where the optimal sizes of two key

components are computed to achieve optimal production while

maintaining minimal variability of process variables. Authors

of [19], [20] introduce a systematic approach for the design

analysis of HES (without thermal output). In particular, the

size of a photovoltaic (PV)-wind HES with battery storage

is optimized using different optimization strategies such as

simulated annealing, response surface methodology, and Op-

tQuest method. Ref. [21] proposes an optimization method

for designing hybrid solar-wind systems employing battery

banks, where the optimum system configurations are calcu-

lated to maximize economic benefit, while meeting a certain

resiliency constraint (e.g., probability of losing power supply).

HES design optimization is also discussed in [22], where the

benefits of HES are analyzed to increase renewable penetration

and to assure power supply security in a particular region.

Similar work can also be found in [23], in which the sizes of

different components in a grid-independent hybrid PV-wind

power systems are optimized.

The literature on HES operation optimization are reviewed

as follows. The receding horizon optimization approach is

utilized by [2] to optimize the operation of HES to achieve

minimum operating and environmental cost while meeting

electricity demand. Ref. [12] formulates the HES operation

optimization problem as a model predictive controls (MPC)

problem to optimally operate a HES with both PV and diesel

generation, while energy storage element (ESE) based control

for renewable generation smoothing is discussed in [24]. Oper-

ation optimization of distributed energy systems are studied in

[15], [25], [26], where multi-objective optimization approach

is utilized to minimize energy loss in the grid, total electricity

generation cost, and greenhouse gas emissions. Fractional PID

control is implemented in [27] to the steam supply control

of nuclear plant, and the flexible operation of nuclear power

plant is realized by dynamic matrix control in [28]. Finally, the

coordination control of multiple nuclear plant in the context

of hybrid energy systems is investigated in [29].

In this paper, we consider a grid-connected HES config-

uration consisting of a baseload generation, a wind farm,

an EV charging station, an energy storage element (ESE),

and an industrial scale chemical plant (e.g., reverse osmosis

[RO] desalination plant). The operation optimization problem

considered in this paper is to optimize the ESE charging and

discharging profile so that the variability of RO process is

minimized. In particular, the receding horizon optimization

approach is adopted to solve this operation optimization prob-

lem, which is then reformulated into a linearly constrained

quadratic programming (QP) problem, suitable for running

in real-time. The design optimization problem considers the

optimal sizes of ESE that balance the variability of RO process

and the economic cost of ESE installation. Global optimization

technique (e.g., DIRECT) is employed to numerically solve

the proposed sizing optimization problem, due to its non-
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Fig. 1: Topology of the hybrid energy system configuration

considered in this paper.

convexity.

The rest of this paper is organized as follows. Section II

presents problem formulation including the HES configuration

under study. The operation optimization and sizing optimiza-

tion are detailed in Section III and IV, respectively. Finally,

Section V concludes the paper.

II. PROBLEM FORMULATION

A. HES Configuration

The topology of the HES under study is shown within the

dotted line in Fig. 1, which includes the following components:

• a baseline electricity generation with 180 MW capacity,

• a series of wind turbines as renewable power generation

source with total capacity of 15 MW,

• an energy storage element (e.g., a system scale bat-

tery set) used for power smoothing of the electricity

generated by wind turbines, whose sizes (maximum

charge/discharge power and maximum energy storage

capacity) and operation are to be optimized,

• a reverse osmosis plant converting saline water to potable

water by consuming 14.5-30 MW electricity,

• an electric vehicle (EV) charging station consuming elec-

tricity between 0 and 500 kW,

• electric grid connected to HES at a point of common

coupling and consuming 165 MW electricity .

The wind farm considered in Fig. 1 consists of 10 wind

turbines, each rated at 1.5 MW, producing a maximum of 15

MW electricity. The generated power of each wind turbine is

modeled as a static mapping function of wind speed. See Fig.

2 for a sample 10-day wind speed and wind power generation.

The power consumption of EV charging station is modeled as

a random process. See Fig. 3 for a sample one-day power

consumption of EV charging station.
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Fig. 2: A sample 10-day wind speed and wind power genera-

tion.
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Fig. 3: A sample one-day power consumption of EV charging

station.

B. ESE Optimization

Recall that the operation optimization tries to optimize

ESE charging and discharging profile, while the sizing op-

timization tries to find the optimal ESE storage and power

configuration. The optimization problem is depicted in Fig.

4, which consists two layers. The inside layer focuses on the

operation optimization. Given ESE sizing parameters, the ESE

charging/discharging profile is optimized so that the variability

of RO plant power consumption is minimized over given wind

speed and EV charging profile. The outside layer aims to find

the optimal sizes of ESE storage and power so that the RO

plant power consumption is minimized. Note that a penalty

term is also added in the cost function to penalize large ESE.

III. ESE OPERATION OPTIMIZATION

The HES considered in Fig. 1 is operated such that the

baseline is generating constant 180 MW electricity and the

HES is delivering 165 MW electricity to power grid. The

electricity produced by wind farm and the consumption by

EV charging station are variable, and the remaining electricity

is consumed by RO. The ESE is operated in a way so that the

variability of RO power consumption is minimized.
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Fig. 4: Two layer optimization for ESE sizing and operation

optimization.

A. QP-based Formulation

Denote CESE as the maximum storage of ESE and PESE

as the maximum charging/discharging power of ESE. The

ESE is operated such that it’s charging/discharging command

changes at every discrete time interval ΔT . At given time k
and prediction horizon k+1, . . . , k+N , where N is the length

of prediction horizon, let

• W0 be the state of charge (SOC) of ESE;

• PRO,0 be the current RO power consumption;

• P̂REN = [P̂REN,1, . . . , P̂REN,N ]T , be the predicted wind

power over prediction horizon;

• P̂EV = [P̂EV,1, . . . , PEV,N ]T be the predicted power

consumption by EV over prediction horizon;

• finally, U = [PESE,1, . . . , PESE,N ]T be the charging or

discharge power of ESE over prediction horizon, which

are the variables to be computed.

Remark 1: Note that at each time step, the operation opti-

mization problem considered here finds a sequence of N ESE

charging/discharging commands over the prediction horizon,

but only the first command, i.e., PESE,1 will be implemented

and the rest will be disregarded. Then at the next time step, the

whole process will be repeated by finding again a sequence

of N commands and implementing only the first one. This

formulation is called receding horizon optimization [2].

The power consumed by RO over prediction horizon, i.e.,

PRO = [PRO,0, . . . , PRO,N ]T , is given by

PRO = 15IN + P̂REN − P̂EV,n + U,

where IN = [1, . . . , 1]T has length of N . Note that we

adopt the convention that PESE,n > 0 denotes the ESE is

discharging and PESE,n < 0 means charging. Hence the

variation of PRO,n, n = 0, . . . , N , is given by

J =
1

N

N∑
n=1

(PRO,n − PRO,n−1)
2

Note that PRO,0, being the current RO power consumption, is

a constant. Denote D as a N×N difference matrix, as follows

D =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎦

and denote P0 = [PRO,0, 0, . . . , 0]
T and C = D(15IN +

P̂REN − P̂EV,n)− P0, then we have

J =
1

N
(DPRO − P0)

T
(DPRO − P0)

=
1

N

(
D(15IN + P̂REN − P̂EV,n + U)− P0

)T

×
(
D(15IN + P̂REN − P̂EV,n + U)− P0

)

=
1

N
(DU + C)

T
(DU + C)

=
1

N

(
UTDTDU + 2CTDU + CTC

)

Ignoring the term in J that are independent on U , we get

J =
1

N

(
UTDTDU + 2CTDU

)
(1)

The constraints are formulated as follows. For each n ∈
{0, . . . , N}, the charging/discharging power cannot exceed its

capacity, and so

−PESEIN ≤ U ≤ PESEIN (2)

Furthermore, the SOC cannot be higher or less than a preset

limits, i.e.,

wlb ≤W0 −
n∑

k=1

PESE,k ≤ wub, ∀n ∈ {0, . . . , N}

In this paper, we consider wlb = 1.5 MWh, which is sufficient

for EV charging station to operate at its full capacity for 3

hours, and wub = 0.9CESE , i.e., the SOC cannot exceed

90% of its maximum storage capacity. Denote S as a N ×N
summation matrix, as follows

S =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
...

...
...

. . .
...

...

1 1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎦

Then the above constraint can be rephrased as

1.5× IN ≤W0IN − SΔTU ≤ 0.9CESEIN

or equivalently,

W0IN − 0.9CESEIN ≤ SΔTU ≤W0IN − 1.5IN (3)

Finally, for each n ∈ {1, . . . , N}, the power consumed by

RO cannot exceed its operating range, i.e.,

14.5IN ≤ PRO = 15IN + P̂REN − P̂EV,n + U ≤ 30IN
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Fig. 5: RO power consumption with respect to time for a 2-day

period.

or equivalently,

−(0.5IN + P̂REN − P̂EV,n) ≤ U ≤ 15IN − (P̂REN − P̂EV,n)
(4)

Then the operation optimization problem is formulated as

the following QP problem

min J = (1)

subject to (2), (3) and (4)

The QP problem can be solved by active set approach [30],

[31], Newton’s method [32], or interior point [33], [34]. In

this paper, the Matlab’s implementation “quadprog” [35] is

employed.

B. Numerical Results

The operation optimization problem formulated above was

simulated for a 10-day period, with CESE = 30 MWh and

PESE = 5 MW. Fig. 5 shows the RO power consumption for

a 2-day period, with different prediction horizon N , assuming

perfect prediction on wind power generation and EV charging

station consumption. The dotted line represents the RO power

consumption if no ESE is employed. As can be seen, longer

prediction horizon seems to result in a smoother RO operation.

Fig. 6 plots the mean RO ramping rate and the frequency

of ESE at maximum charging/discharging power, both with

respect to prediction horizon. As can be seen, with longer

prediction horizon, the mean ramping rate of RO decreases,

aligned with previous results. Similarly, the frequency of

ESE utilizing its maximum charging/discharging power also

decreases when prediction horizon is extended, hence relaxing

the need to have a large ESE.

The results for N = 12 are shown in Fig. 7-9. In particular,

Fig. 7 shows the ESE charging/discharging power and storage

with respect to time. Note that a snapshot of the corresponding

RO power consumption was shown in Fig. 5 already. The

histogram of ESE charging and discharging power is given

in Fig. 8, while the histogram of ESE storage is shown in

Fig. 9. As can be seen, most of the time, ESE is operated

with moderate charging/discharging behavior (less than 2 MW
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Fig. 6: Top: Mean RO ramping rate with respect to pre-

diction horizon; Bottom: Frequency of ESE at maximum

charging/discharging power with respect to prediction horizon.
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Fig. 7: Top: ESE charging/discharging power with respect to

time; Bottom: ESE storage with respect to time.

Fig. 8: Histogram of ESE charging and discharging power

during 10-day period.

power), and hits the maximum power whenever needed (due

to the stochastic nature of wind farm and EV charging station).

For almost a quarter of the time, ESE SOC is at the preset

upper and lower limit, and is evenly distributed across storage

range for the rest of the time.
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Fig. 9: Histogram of ESE storage during 10-day period.

IV. ESE SIZING OPTIMIZATION

This section discusses the ESE sizing optimization that

aims at finding the optimal sizes of ESE storage and power

capacity to balance the variability of RO plant as well as the

ESE installation cost. Specifically, the following optimization

problem is considered,

min J = λCCESE + λPPESE + σRO (5a)

subject to Clb ≤ CESE ≤ Cub (5b)

where σRO denotes the variation of RO power consumption

and the regularization parameters λC > 0 and λP > 0 penalize

large ESE. The lower bound Clb and upper bound Cub ensures

the boundedness of the optimization problem. For numerical

analysis, they are selected to also ensures the feasibility of the

operation optimization problem discussed in previous section.

In particular, Clb = 2 MWh and Cub = 50 MWh are used for

numerical simulation presented here.

In order to gain sufficient insights on the optimization prob-

lem (5), we simulate the operation optimization for different

level of CESE and PESE , all with N = 12, and plot the

RO power consumption as in Fig. 10 and 11. In particular,

Fig. 10 plots the RO power consumption against time, for

different level of CESE and PESE . It appears that as the ESE

storage and charging/discharging power capacity increase, the

time profile of RO power consumption tend to be smoother.

However, as shown in Fig. 11, the variation σRO of RO power

consumption (in terms of mean ramp rate) is a non-convex

function w.r.t. CESE and PESE . Hence global optimization

algorithm (e.g., DIRECT [36], [37]) is utilized to obtain

numerical results in this section.

Remark 2: Intuitively, larger CESE and PESE should pro-

vide better smoothing capability, and lead to smaller σRO.

However, this is true only if the operation optimization has

infinite prediction horizon, i.e., N =∞, and the prediction is

perfect. In this section, we consider N = 12, which can lead

to non-monotonic behavior as shown in Fig. 11, making the

optimization problem (5) non-convex.

The proposed sizing optimization problem (5) is then solved

using global optimization algorithm, and the results are sum-

marized in Figures (12)–(14), which plot the optimal CESE
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Fig. 10: RO power consumption with respect to time for a

2-day period. Top: For different level of CESE ; Bottom: For

different level of PESE .
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Fig. 11: Top: Mean RO ramping rate with respect to CESE ;

Bottom: Mean RO ramping rate with respect to PESE .
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Fig. 12: Top: Optimal CESE with respect to λC ; Bottom:

Optimal PESE with respect to λP .

and PESE with respect to regulation parameters λC and λP . In

general, when λC and λP increase, placing a heavier penalty

on large ESE, the optimal CESE and PESE tend to decrease.

This will result in a less smooth RO operation, with the

advantage of less capital investment on installing ESE devices.

Remark 3: It should be noted that λP and λC are hyper-

parameters that penalize large ESE, which should be pre-
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selected to balance the installation cost of ESE and RO

variation. It is beyond the scope of this paper to discuss

what values of λC and λP should be selected. However, the

methodology presented and discussed in this section, together

with the optimization problem formulated in (5), provide a

generic framework for HES sizing optimization once λC and

λP are determined.

V. CONCLUSION

This paper proposed a framework for sizing and operation

optimization for a grid-connected renewable-EV hybrid energy

systems. In particular, the operation optimization problem,

formulated as a linearly constrained quadratic programming

problem, considers the optimal charging and discharging pro-

file of the energy storage elements to minimize the impact

of the variability introduced by renewable energy and EV

charging station. The design optimization problem finds the

optimal sizes of the energy storage element, with regulation

terms on penalizing large sizes. Global optimization algorithm

is utilized to solve the sizing optimization problem as it is

generally non-convex. Future work include (1) analysis of

prediction error and its impact on optimization results, (2)

scenario based operation optimization with nonlinear battery

model [38] and (3) optimization with synthetic data [39] to

analyze the sensitivity of the reported results.
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