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Abstract: This study explores a novel application of the pumping motion to enhance the
performance of active suspension systems for vehicles on downhill slopes. Inspired by the
pumping motion of skateboarders, a suspension model is developed to mimic this movement on a
curved slope assuming the surface is frictionless. The suspension control problem is formulated
as an optimal control problem to maximize the vehicle’s exit speed. Numerical simulations
clearly demonstrate the improvement in the vehicle’s exit speed across various slope profiles,
indicating the potential of the proposed approach in optimizing energy utilization. Specifically,
simulation results illustrate that to increase the exit speed, the suspension systems need to lift
the vehicle before entering the slope, compress at the start of the descent, and then release
the stored energy near the end of the slope to further increase the exit speed. Such a control
strategy aligns with the principles of pumping that is commonly used by skateboarders that
reduces energy consumption.
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1. INTRODUCTION

Suspension systems play a critical role in vehicle vertical
movement restriction and are used to enhance vehicle
ride comfort and handling (Jiregna and Sirata (2020);
Llopis-Albert et al. (2023); Theunissen et al. (2021)). As
a result, it is currently of great interest to both academia
and industry. The challenge of designing and optimizing
vehicle suspension systems has been extensively studied
by researchers in the automotive field (Chakraborty et al.
(2024); Jiang et al. (2023)). Among various suspension
systems, active suspension stands out for its superior
flexibility and efficiency compared to passive and semi-
active systems (Aly and Salem (2013); Faraji-Niri and
Khani (2023)). Unlike passive and semi-active suspensions,
which rely on mechanical components like shock absorbers
and springs to manage the vehicle’s vertical force, active
suspension systems incorporate actuators that can actively
control the vehicle’s vertical position (Nguyen (2023); Yu
et al. (2023)).

Recently, the study of active suspension systems has fo-
cused on reducing road noise and improving comfort. In
the work of Shafiei (2022), the active suspension system
is tuned via a PID controller using the Ziegler–Nichols
method to enhance passenger ride comfort. A fuzzy PID
control strategy is proposed by Han et al. (2022) to meet
the different performance requirements of active suspen-
sion for comfort and safety under different road condi-
⋆ This work is supported in part by National Science Foundation
through Award #2237317.

Fig. 1. Pumping of a skater.

tions. Moreover, in the work of Nguyen et al. (2024), the
active suspension control signal is synthesized from PID
and sliding mode control to reduce vibrations. In addition
to improving ride comfort, many researchers have been
exploring ways to control the suspension to recover energy
(Hajidavalloo et al. (2022); Liu et al. (2024); Sathishkumar
et al. (2021)). For example, Sathishkumar et al. (2021)
proposes an approach to harvest energy from the vehi-
cle hydraulic active suspension. Liu et al. (2024) intro-
duces an innovative energy-saving robust tracking control
method for active suspension systems to reduce vibration,
minimize control energy consumption, and improve ride
comfort and energy efficiency. This study builds on this
existing research by exploring whether a vehicle can mimic
the pumping motion of a skateboard on a slope to reduce
energy consumption while achieving maximum exit speed.

Pumping is a common technique in skateboarding and
skating. Skaters use the up-and-down motion of their body
or rotational movements to increase or maintain speed.



Fig. 2. Schematic of the pumping model.

See Fig. 1. This can be counterintuitive if only transla-
tional movements are considered. According to Newton’s
third law, forces within a system cancel each other out.
Therefore, internal forces do not affect the overall motion
of the system. Many scholars have studied the seemingly
counterintuitive phenomenon of pumping, such as (Feng
and Xin (2014); Kogelbauer et al. (2024); Luginbühl et al.
(2023)). It turns out that pumping involves skaters altering
their center of gravity through up-and-down movements
while rotating, thereby affecting the moment of inertia
and subsequently controlling speed (Feng and Xin (2014);
Luginbühl et al. (2023)). By molding this movement, re-
searchers found that when going downhill, the skater first
crouches down and then quickly stands up just before
leaving the slope, thereby reducing the moment of inertia
to achieve higher speed (Kogelbauer et al. (2024)).

Inspired by this phenomenon, in this study, we investigate
the impact on vehicle speed if a similar “pumping” strat-
egy is applied to vehicles equipped with active suspension
systems consisting of a damper, a spring, and an electric
motor. The vehicle’s vertical position can be controlled
during the downhill movement through the motor force,
where the downhill surface is assumed to be frictionless for
the simplicity of analysis. To simplify the control design,
a quarter car model is used to model the vehicle’s vertical
dynamics. In addition, several assumptions concerning ro-
tational frames are made to simplify the conversion of the
pumping model from a half pipe to a downhill slope. The
determination of the optimal motor force, which impacts
the vehicle’s vertical position, is formulated as an optimal
control problem, solving of which provides a more efficient
movement for the vehicle to traverse the downhill and save
energy. Simulation results demonstrate a more effective
downhill pumping motion compared to the case without
any pumping, which is aligned with the skateboard pump-
ing strategy. In particular, about 1.4% increase in the exit
vehicle speed can be achieved by adopting the proposed
pumping strategy.

The remainder of this paper is structured as follows:
Section 2 analyzes the suspension pumping model in
the pipe scenario, which is further developed for general
curve scenarios in Section 3. Section 4 presents optimal
control problem formulation for optimal pumping strategy,
together with simulation results presented in Section 5.
The paper is concluded in Section 6.

2. LAGRANGIAN MECHANICS OF PUMPING IN A
PIPE

In this article, the vehicle pumping motion is shown in Fig.
2, modeled as a pendulum with variable lengths, where
the g represents the gravity acceleration. Let R denote

the radius of the pipe, and θ represent the angle from the
central line to the vehicle, the counterclockwise direction
taken as positive. The center of the circle is defined as the
zero-potential energy level and the friction is ignored for
the simplicity of analysis. To derive the motion equations
of this model, Lagrangian mechanics is used to analyze
the system of Fig. 2, and the total kinetic energy (T ) and
potential energy (V ) of this system are shown below.

T =
1

2
MwR

2ω2 +
1

2
Mv(R− h)2ω2 +

1

2
Mvh

2
v (1a)

V =
1

2
E(h− hini)

2 −MwgR cos θ −Mvg(R− h) cos θ,

(1b)

where ω is angular speed, h is length of the suspension,
Mw is mass of wheel, Mv is mass of quarter of vehicle,
hini is the resting length of the suspension, E is elasticity
modulus of the spring, hv is the compression and extension
speed of the suspension. In this case, the damping and
motor provide the generalized forces. The equations of
motion can be derived using Lagrange’s method, with θ
and h as the two generalized coordinates. Therefore, the
Lagrange equations are given as follows:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 (2a)

d

dt

∂L

∂ḣ
− ∂L

∂h
= F − bḣ, (2b)

where F is the motor force of the active suspension, and b
is the damping coefficient.

In the angular domain (θ), the Lagrange equations are
shown below:

∂L

∂θ
= −MwgRsinθ −Mvg(R− h)sinθ (3a)

∂L

∂θ̇
= MwR

2ω +Mv(R− h)2ω (3b)

d

dt

∂L

∂θ̇
= MwR

2ω̇ − 2Mv(R− h)ḣω +Mv(R− h)2ω̇.

(3c)

Therefore, substituting (3) into (2a), the angular acceler-
ation can be calculated as below:

ω̇ =
2Mv(R− h)ḣω −MwgRsinθ −Mvg(R− h)sinθ

Mv(R− h)2 +MwR2
.

In the suspension length domain (h), the Lagrange equa-
tions are shown below:

∂L

∂h
= −Mv(R− h)ω2 − E(h− hini)−Mvgcosθ (4a)

∂L

∂ḣ
= Mvhv (4b)

d

dt

∂L

∂ḣ
= Mvḣv (4c)

Substituting (4) into (2b), the acceleration of suspension
length is,

ḣv =
F − bhv −Mv(R− h)ω2 − E(h− hini)−Mvgcosθ

Mv
.

By defining the state space as l = [θ, ω, h, hv]
T , the state

dynamic equations of this model are expressed as follows,



Fig. 3. Comparison of (a) a convex arc and (b) a concave
arc.

θ̇ = ω (5a)

ω̇ =
2Mv(R− h)ḣω −MwgRsinθ −Mvg(R− h)sinθ

Mv(R− h)2 +MwR2

(5b)

ḣ = hv (5c)

ḣv =
F − bhv −Mv(R− h)ω2 − E(h− hini)−Mvgcosθ

Mv
.

(5d)

3. PREDICTION MODEL FOR GENERAL CURVES

The model (5) derived previously assumes a constant
radius along the pipe circumference. For a smooth curve,
the radius varies at each point, and the angular position
also changes along the curve. For simplicity, in this study,
curves are treated as a combination of multiple small
arcs, where the radius and angular position are relative
to the position on the curve. To determine the position
on the curve, the velocity along the curve is required.
Since each arc is small, the velocity along the curve can
be approximated as equal to the linear velocity of the
rotation. Denote s and v as the distance and velocity
along the curve. Then the state space can be converted
into [s, v, h, hv]

T , with the dynamic equations of the new
state space shown below:

ṡ = v (6a)

v̇ = ω̇R (6b)

ḣ = hv (6c)

ḣv =
F − bhv −Mv(R− h)ω2 − E(h− hini)−Mvgcosθ

Mv
.

(6d)

A smooth curve may contain both concave and convex
arcs, and the Lagrangian equation varies across these
sections. Specifically, the rotational radius ofMv is R−h in
the convex sections and R+h in the concave sections. The
potential energy is negative in convex sections but positive
in concave sections because the center of the circle is below
the vehicle in the concave case, as illustrated in Fig. 3. The
expressions for ω̇ and ḣv in each case are shown below:

ω̇cv =
2Mv(R− h)ḣω −MwgR sin θ −Mvg(R− h) sin θ

MwR2 +Mv(R− h)2

(7a)

ω̇cc =
−2Mv(R+ h)ḣω +MwgR sin θ +Mvg(R+ h) sin θ

MwR2 +Mv(R+ h)2

(7b)

ḣvcv =
F − bhv −Mv(R− h)ω2 − E(h− hini)−Mvgcosθ

mv
(7c)

ḣvcc =
F − bhv +Mv(R+ h)ω2 − E(h− hini)−Mvgcosθ

Mv
.

(7d)

Here, cc and cv represent concave and convex, respectively.
Therefore, to obtain a consistent equation for both concave
and convex sections, curvature (κ) is used instead of radius
(R), since curvature is positive in convex regions and
negative in concave regions. Namely, in convex sections,
R = 1/κ, while in concave sections, R = −1/κ. Moreover,
since the angular position is the angle from the central
line to the vehicle and positive in the counterclockwise
direction, it equals to the slope angle. To simplify the
calculation, the slope angle (ϕ) is used as a replacement
for θ. By substituting R = 1/κ into (7a) and (7c),
R = −1/κ into (7b) and (7d), and θ = ϕ into (7), a

unified model for ω̇ and ḣv can be derived for both concave
and convex sections. The updated state-space equation is
shown below:

ṡ = v (8a)

v̇ = ω̇R (8b)

ḣ = hv (8c)

ḣv =
F − bhv −Mv(

1
κ − h)ω2 − E(h− hini)−Mvgcosϕ

Mv
,

(8d)

where ω̇ is equal to:

ω̇ =
2Mv(

1
κ − h)ḣω −Mwg

1
κ sinϕ−Mvg(

1
κ − h) sinϕ

Mw
1
κ

2
+Mv(

1
κ − h)2

.

4. OPTIMAL PUMPING CONTROL

To find the optimal pumping strategy, the following opti-
mal control problem is formulated.

min J = wh

N∑
k=1

h2
vk + wvv

2
N (9a)

s.t. System model (8) (9b)

Fmin ≤ Fk ≤ Fmax (9c)

hmin ≤ hk ≤ hmax (9d)

− g ≤ ḣvk ≤ g. (9e)

Here, N represents the total number of steps required for
the model to complete the downhill path. In the objective
function (9a), the first term penalizes large vibrations of
the vehicle, while the second term encourages a higher
final speed as the vehicle exits the downhill path. The
weights for these two terms, wh and wv, are respectively
positive and negative. Equation (9b) represents the system
dynamics constraint. The actuator constraint (9c) limits
the maximum force that the motor can exert. Constraint



(9d) specifies the maximum extension and compression
lengths of the suspension. Finally, constraint (9e) limits
the vehicle’s vertical acceleration below 1g to ensure ride
comfort.

Based on the model described in Section 3, curves must
first be analyzed to obtain the required features, such as
curvature and slope angle. In addition, they are repre-
sented as 2-by-n arrays with both longitudinal (x) and
vertical (z) coordinates of the road. Since κ (curvature)
and ϕ (slope angle) are related to the positions on the
curve, and the distance traveled along the curve is one of
the states in the model, the calculations of κ and ϕ in
the optimization process can be simplified by precomput-
ing the curvature and slope angle for all corresponding
distances from the starting point. During optimization,
the curvature and slope angle at the current position are
obtained using linear interpolation based on the vehicle’s
distance (s) from the starting point. The following steps
are used to process the road profile and generate the
curvature table and slope angle table to enable the model
to function effectively.

Distance: The distance from start point to the k-th point
is calculated by following equations:

sk =

k∑
i=1

si

si =
√
(xi − xi−1)2 + (zi − zi−1)2

where the i = 0 represent the start point, and k needs
greater than 1.

Slope Angle: To calculate the slope angle at k-th point,
the slope at this point needs to be determined first. The k-
th point, along with its two neighboring points (one before
and one after), is substituted into the following formula to
calculate the slope at the k-th point.

Slopek =
(xk+1 − xk)

zk−zk−1

xk−xk−1
+ (xk − xk−1)

zk+1−zk
xk+1−xk

xk+1 − xk−1

The slope angle is then given by ϕk = arctan (Slopek).
However, the slopes at the two endpoints cannot be
obtained using the formula above, as each endpoint has
only one neighboring point. Thus, the slope angles at the
endpoints are set equal to the slope angle of the nearest
point.

Curvature: The curvature at the k-th point is also
calculated using three consecutive points to calculate, and
the equation is as follows:

κk =
x′
kz

′′
k − z′kx

′′
k

(x′2
k + z′2k )

3
2

.

In discrete cases x′, x′′, z′ and z′′ can approximate by
following equations

x′
k =

xk+1 − xk−1

2
(10a)

z′ =
zk+1 − zk−1

2
(10b)

x′′ = xk+1 − 2xk + xk−1 (10c)

z′′ = zk+1 − 2zk + zk−1 (10d)

The curvature at the endpoints is handled in the same
way as the slope angle, i.e., the curvature at the endpoints
is set equal to the curvature at the nearest point. Addi-
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Fig. 4.

tionally, to avoid undefined angular acceleration when the
curvature is zero, we assign a curvature value of 10−10

whenever the curvature is zero.

In this paper, five paths with the same height but different
lengths are used to test the model, as shown in Fig. 4. For
each path, the relationship between the slope angle and
the distance is illustrated in Fig. 5, and the relationship
between the curvature and the distance is shown in Fig. 6.

5. RESULTS AND DISCUSSIONS

For testing, the vehicle initial speed in all simulations is
set to 15 m/s, with the starting point located at the top-
left of the path where the coordinate is (0, 0). See Fig. 4.
To prevent excessive cumulative integration errors caused
by a long step time, the step time is set to 0.02 seconds.



Table 1. Coefficients for model and optimiza-
tion problem.
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Fig. 7. Optimal motor force in each path.

Additionally, since each path has a different length, the
total number of optimization steps (N) is set to 100, 115,
130, 145, and 160, corresponding to path lengths of 35, 40,
45, 50, and 55 meters, respectively. This ensures that the
optimization process fully covers each descent part. The
other coefficients used in this paper are listed in Table
1. MATLAB CasADi (Andersson et al. (2019)) is utilized
to solve the optimization problem (9), and the resulting
optimal control force for the motor is illustrated in Fig.
7 for each downhill path. In addition, the optimal vehicle
speed profile are illustrated in Fig. 8.

As can be seen from Fig. 7, at the beginning of the
path, the motor applies a positive force to lift the vehicle,
preparing it for the downhill motion. This upward force
increases the vehicle’s potential energy for a more effective
energy utilization during the downhill. As the vehicle

0 20 40 60 80 100 120 140 160

step

15

16

17

18

v
e
lo

c
it
y
 (

m
/s

)

-6

-4

-2

0

ro
a
d

 h
e

ig
h
t 
(m

)

35m

0 20 40 60 80 100 120 140 160

step

15

16

17

18

v
e

lo
c
it
y
 (

m
/s

)

-6

-4

-2

0

ro
a
d
 h

e
ig

h
t 

(m
)

40m

0 20 40 60 80 100 120 140 160

step

15

16

17

18

v
e
lo

c
it
y
 (

m
/s

)

-6

-4

-2

0

ro
a
d
 h

e
ig

h
t 
(m

)

45m

0 20 40 60 80 100 120 140 160

step

15

16

17

18

v
e
lo

c
it
y
 (

m
/s

)

-6

-4

-2

0

ro
a
d
 h

e
ig

h
t 
(m

)

50m

0 20 40 60 80 100 120 140 160

step

15

16

17

18

v
e
lo

c
it
y
 (

m
/s

)

-6

-4

-2

0

ro
a
d
 h

e
ig

h
t 
(m

)

55m

Fig. 8. Comparison of speed profile with (solid line) and
without (dashed line) the proposed optimal pumping
strategy.

approaches the downhill section, the motor applies a
negative force to bring the vehicle downward. This action
aligns the vehicle’s motion with gravity, allowing it to
accelerate more effectively for higher speed as it descends
the slope. During the descent, the motor maintains the
negative force to further compress the spring system. This
compression stores energy in the suspension, which can
later be released strategically to enhance performance. As
the vehicle approaches the end of the slope, the stored
energy in the compressed spring is released, and the
vehicle’s upward velocity increases. This upward motion
reduces the moment of inertia and optimizes the energy
transfer, resulting in a higher exit speed when leaving the
downhill slope.

Fig. 8 also compares the vehicle speed with and without
the proposed pumping strategy. The dashed lines represent
the vehicle’s speed without motor force optimization, while
the solid lines represent the speed profile achieved using
the optimal motor force. As mentioned above, lowering
the center of gravity near the downhill section to achieve
higher speed is validated in Fig. 8. It can be observed that



Table 2. The final speed with and without the
proposed optimal pumping strategy.

Road Profile 35m 40m 45m 50m 55m

w/o Pumping (m/s) 17.57 18.09 18.22 18.33 18.38

w/ Pumping (m/s) 17.87 18.32 18.45 18.61 18.62

Improvement (%) 1.71 1.27 1.26 1.52 1.31

at the very beginning of the descent, the speed represented
by the solid line is already greater than that of the dashed
line and this improvement maintains throughout the entire
downhill slope. Near the end of the slope, by releasing
the stored energy from the compressed spring with the
motor providing an upward force, the vehicle is lifted very
quickly, allowing its speed to further increase as it exits
the downhill section.

Finally, Table 2 records the final speed when vehicle exits
the downhill. As can be seen, with the proposed pumping
strategy, the final speeds are increased in all cases, with an
average improvement of 1.4%. It is also worthnoting that,
in the case without the proposed pumping strategy, higher
final speed can be achieved when the length of the path
increases. This is because, for the same descent height,
a longer distance means a more shallow path, resulting
in smaller vehicle vibrations. This, in turn, causes less
energy to be absorbed by the damper, thereby increasing
the speed.

6. CONCLUSION

In this study, the downhill motion of vehicles is op-
timized by an active suspension system consisting of
damper, spring, and electric motor. The suspension model
is adapted from the pumping motion of a skateboard in
a pipe and then adjusted for general frictionless smooth
curves. Through simulations, it is observed that to max-
imize the vehicle’s exiting speed, the suspension system
needs to lift the vehicle before entering the slope and
then compress the vehicle as soon as it begins descending
to achieve a higher entry speed. During the descent, the
suspension system remains compressed, and just before
leaving the downhill, it lifts the vehicle again to further
increase the exit speed. This process closely mirrors the
motion of a skateboarder during pumping. Future work
will focus on more realistic analysis by considering sur-
face roughness and friction, and validating the proposed
method through real-world experiments to ensure practical
applicability.
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