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Abstract—This paper presents a multi-agent reinforcement
learning approach for autonomous vehicle highway merging
control. A decentralized partially observable Markov decision
process is formulated, where each autonomous vehicle acts
independently based on local observations. The scenario con-
sidered in this paper assumes randomly spawning vehicles and
fluctuating traffic flows and a self-attention network is used
to handle varying numbers of agents (vehicles). The proposed
method is validated in SUMO traffic simulator, which provides
a realistic highway simulation environment. Results demonstrate
the approach can enable safe, efficient coordination for merging
maneuvers, successfully handling dynamic number of agents.
Future work will continue to enhance multi-agent reinforcement
learning for autonomous vehicle coordination in complex traffic
environments by reducing the training time.

I. INTRODUCTION

AUtonomous vehicles (AVs) promise major benefits in
terms of safety, efficiency, and accessibility [1]–[3].

However, developing reliable control policies for AVs remains
an immense challenge [4]. A key difficulty involves handling
merging scenarios, where AVs must interact safely and effi-
ciently both among themselves and with human drivers with
diverse driving styles [5]. To address this, recent research has
explored deep reinforcement learning (DRL) for learning AV
merging policies that map observations to actions. DRL lever-
ages deep neural networks as powerful function approximators
to handle complex, high-dimensional state spaces [6]. More-
over, multi-agent reinforcement learning (MARL) [7], where
agents learn by not only interacting with the environment but
also by taking into account the actions and strategies of other
agents, has also been studied for AV merging control.

However, most existing work uses predefined number of
vehicles that remain constant during the training episode [8].
Therefore the trained policy cannot be deployed in real-world
where the number of vehicles can be time varying. To address
this issue, this study proposes a dynamic environment where
the number of AVs, within a single episode, varies over time.
Specifically, the MARL is employed to control AVs attempting
to merge onto a highway already occupied by human-driven
vehicles (HDVs). See Fig. 1, where the goal is to determine
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the optimal merging point to achieve the highest traffic flow.
In particular, the highway environment is modeled as a two-
lane road, where the right lane terminates after 300 meters,
necessitating the merging of vehicles from the right lane to
the left lane. This environment is simulated in the open-
source microscopic traffic simulator SUMO (Simulation of
Urban Mobility) [9], where newly arriving vehicles enter the
highway randomly from either lane. The focus on a dynamic
environment and varying number of learning agents in this
work not only tests the scalability of MARL algorithms to
changing traffic conditions but also aligns more closely with
the fluctuating real-world traffic flows and tests generalization.

II. ENVIRONMENT

The SUMO simulator offers a Traffic Control Interface
(TraCI) [10] to enable the interaction between the environment
and the RL agents. Vehicle longitudinal dynamics are modeled
using the Krauss car-following model [11]. Furthermore, the
default SUMO lane change decision models are disabled and
replaced with RL actions, while the default lane change control
model is utilized to execute lane changes initiated by RL.

The state space representation in this work includes a local
observation for each agent, comprised of the ego agent’s speed,
distance to the merge point, and state of merge (1 if merged
and 0 if not yet merged) as well as the relative longitudinal
position and speed of surrounding vehicles within 8 meters
range. This local observation is normalized and then passed
to the actor network. The full state representation used for
the critic is created by concatenating the local observations
of all active agents. This allows the actor to act based on
its local view, while the critic evaluates state-action values
using the global observations to enable learning cooperative
merging behaviors. The action space for each agent is defined
as a discrete binary set, where an action value of 0 indicates
the agent should maintain its current lane, while an action of
1 signals a request to perform a merge into the adjacent lane.

The reward function consists of two main components - a
safety reward Rc and a speed reward Rs, with a weighting
term w applied to combine them into a total reward Rt. The
safety reward Rc penalizes the agent for getting too close to
the merging point and is defined as: Rc = −

(
x−d
d

)2
if x ≤ d
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Fig. 1. The AV merging scenario in SUMO simulation environment.

and otherwise Rc = 0, where x is the distance from the agent
to the merge point, and d is a defined threshold distance.

The speed reward Rs is based on the average speed of the
ego vehicle and surrounding vehicles as Rs = 1

N

∑N−1
i=0 si,

where si is the speed of vehicle i and N is the total number of
vehicles. Only vehicles within close longitudinal proximity are
included to avoid credit assignment problem. The total reward
Rt combines the coordination and speed rewards as Rt =
w1Rs + w2Rc. This provides a composite reward signal that
balances optimizing speed while achieving safe, coordinated
merging maneuvers.

III. MULTI-AGENT REINFORCEMENT LEARNING

The problem is modeled as a decentralized partially observ-
able Markov decision process (Dec-POMDP) [12] defined by
the tuple: (S,O,A, R, P, n, γ). Here, S is the state space. O
is the joint local observation space of all agents. A is the
joint action space for all agents. P (S′ | S,A) is the transition
probability to S′ given the current S and A = (a1, . . . , an).
γ is the discount factor. R is the immediate shared reward
received when taken the actions A at state S. This work uses a
Centralized Training Decentralized Execution (CTDE) MARL
framework, adopted from [13], for multi-agent automated
traffic control with a dynamic number of agents. At each time
step, SUMO provides local traffic state observations to each
actor agent. The actors independently choose actions using
their policies πθ(a|s) parameterized by deep neural networks
(DNNs). A centralized critic network utilizes self-attention to
evaluate state-action values based on the combined observa-
tions of all currently active agents, allowing the critic to handle
varying number of agents at each time-step. Additionally, a
centralized counterfactual baseline network with self-attention
is used to estimate each agents contribution. For each active
agent, the baseline marginalizes out the agent’s action and
conditions on other agents’ observations and actions.

IV. PRELIMINARY RESULTS AND DISCUSSION

The learning process achieved increasingly higher mean
rewards over the training process, as shown in Fig. 2. The in-
creasing reward progression over training indicates that the RL
agents successfully learned policies to navigate the merging
scenario through balancing the composite reward comprising
of safety, coordination, and speed. While these preliminary
results are promising, further investigation is required to
fully assess the approach’s robustness. The current training
time of approximately 90 hours is extensive and warrants
reduction through methods such as hyperparameter tuning and
optimized implementation. The technique currently determines
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Fig. 2. Training results.

agent contributions using a third neural network. Although
functional, this solution adds complexity and resource over-
head. Reward shaping, which uses expert rewards to quantify
per-agent performance, is worth investigating. Exploring aug-
mented state representations and alternate reward formulations
may also yield further performance improvements.
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