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Abstract—This paper presents an approach for modeling
driver lane change behavior using inverse reinforcement learning
(IRL). The driver behaviors are assumed to be the solution of
an optimal control problem with unknown weights that simulta-
neously optimizes several objectives and follows a Bezier curve.
The IRL is then used to identify the weights that best explain
the driver’s preference. To test the efficacy of the proposed
methodology, expert trajectories are generated using simulation,
which serves as the data set for this model training. Test results
demonstrate the capability of the proposed methodology to
reproduce each driver’s individual trajectory, which can then
be fed into low level motion control to provide personalized
autonomous driving.

I. INTRODUCTION

THE Autonomous driving technologies have rapidly ad-
vanced, now capable of perceiving environments, navi-

gating roads, and adhering to traffic rules [1]–[7]. However,
many studies indicate that driving styles vary significantly
among individuals [8]. Therefore, to enhance the user ex-
perience, personalized driving has also become an area that
is attracting considerable attention. To create personalized
trajectories based on driver demonstrations, extensive research
has focused on using neural networks for imitation learning
[9], [10]. However, the imitation learning methods based on
neural networks have poor interpretability [11].

Beyond pure imitation learning, inverse reinforcement learn-
ing (IRL) has gained popularity for learning from expert
demonstrations across a variety of domains, including car
following [12], [13], behavior prediction [14], [15], and tra-
jectory planning [16]. IRL is a machine learning method
used for understanding complex behaviors from observed
actions instead of directly copying observed behaviors [17]–
[19]. Unlike traditional reinforcement learning, which aims
to find the best strategy given a known reward function
[20], IRL focuses on inferring the underlying reward function
based on observed behavior. This inferred reward function
can then be used to generate driving behaviors that align
with the observed preferences, as opposed to being merely
replicas of the observed actions. On the other hand, lane
change is one of the most frequent driving behaviors on the
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road which requires personalization [21]. The way individual
drivers execute lane changes is affected by efficiency, ride
comfort, and safety. Most previous works that modeled lane-
change behavior heavily focused on the operational level,
aiming at generating a comfortable and efficient lane-change
trajectory [22], [23]. However, these works often fall short in
capturing the preference of personal driving styles during lane
change maneuvers [24].

This paper focuses on utilizing IRL for modeling driver lane
change maneuvers. Bezier curves are employed to parameter-
ize the lane change trajectories, which are chosen for their
theoretical ability to create smooth and continuous paths [25].
Bezier curves are shaped by the control points; by adjusting
these points, the Bezier curve can fit various driving scenarios
[26]. The driver behaviors are then assumed to be the solution
of an optimal control problem (OCP) that determines the
best control points of the Bezier curve to deliver the driver’s
preference. The IRL method is then used to learn the weights
for the cost function of the OCP, which reflects the individual
differences among different drivers. The proposed IRL-based
driver behavior model is tested using simulation data, where it
is demonstrated that with the learned weights, the model can
generate trajectories aligned with driver behavior for varying
starting conditions.

The remainder of this paper is organized as follows. Section
II formulates the Bezier curve path representation and optimal
control problem for trajectory generation. Section III details
the MaxEnt IRL algorithm and feature design. Section IV
presents the simulation of expert demonstrations and model
training process. Testing results are analyzed to evaluate how
well the model reproduces driver behavior.

II. LANE CHANGE PATH MODELING

A. Bezier Curve

A Bezier curve is a parametric curve that uses the Bernstein
polynomials as a basis with the control points defining the
shape of the curve. The nth-Bezier curve is represented as
follows:

B(t) =

n∑
i=0

Pibi,n(t) =

n∑
i=0

Pi

(
n

i

)
(1− t)n−iti, (1)
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where t is the parameter for curve construction, varying from
0 to 1, Pi represents the ith control point, and bi,n denotes
the Bernstein polynomial. In this paper, the lane change path
modeling is based on a 5th-order Bezier curve defined by 6
control points. Substituting n = 5 into (1), a more succinct
representation of the 5th-order Bezier curve is derived as
follows:

B(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5,

where ai are functions of the control points, as follows,

a0 = P0

a1 = −5P0 + 5P1

a2 = 10P0 − 20P1 + 10P2

a3 = −10P0 + 30P1 − 30P2 + 10P3

a4 = 5P0 − 20P1 + 30P2 − 20P3 + 5P4

a5 = −P0 + 5P1 − 10P2 + 10P3 − 5P4 + P5

The curvature κ at any point on a Bezier curve can be
calculated using the formula:

κ(t) =
Ḃ(t)× B̈(t)

|Ḃ(t)|3
(2)

where Ḃ(t) and B̈(t) are the first and second derivatives of
the Bezier curve for t, respectively. For lane change, it is often
desirable to start and end the maneuver with zero curvature
to ensure a smooth transition. This implies that the curvature
at the beginning t = 0 and end t = 1 of the Bezier curve
should be zero. Substituting t = 0 into (2), it is evident that
the curvature at t = 0 is zero only when Ḃ(0)×B̈(0) equal to
zero. According to the 5th-order Bezier curve defined earlier,
the first and second derivatives of the Bezier curve can be
expressed as:

Ḃ(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (3)

B̈(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3 (4)

Substituting t = 0 into (3) and (4) and applying the zero
curvature condition, the following is obtained:

5(P1 − P0)× 20((P2 − P1)− (P1 − P0)) = 0 (5)

Let v01 denote the vector from P0 to P1, and v12 the vector
from P1 to P2. Then (5) can rewritten as follows:

5v01 × 20(v12 − v01) = 0 (6)

To satisfy (6), v01 × v12 must be equal to zero. Since both
v01 and v12 are non-zero vectors, v01 and v12 has to be in the
same direction. Consequently, this indicates that points P0,
P1, and P2 are colinear. This condition ensures that the path
begins with a straight line, a necessary requirement for zero
curvature at the start of lane changes.

To ensure zero curvature at the end of the lane change,
similar conditions must be satisfied at t = 1. By substituting
t = 1 into (3) and (4) and applying the zero curvature
condition, we have

5(P4 − P5)× 20((P4 − P5)− (P3 − P4)) = 0. (7)

This condition, similar to the one derived for the start of
the maneuver, ensures that the lane change path ends with
a straight line, which is essential to ensure that the control
points P3, P4, and P5 are colinear.

B. Complete Lane Change Model

Based on the definition of the Bezier curve, a Bezier curve
can be generated as long as the coordinates of a set of
control points are obtained. Therefore, in the lane change
model, the state space is defined by the coordinates of these
control points. We assume the driver solves an optimal control
problem (OCP) to find a set of control points such that the
corresponding Bezier curve optimizes a certain cost function.
We further assume the starting point of the lane change, i.e.,
P0, is known. Moreover, to ensure zero curvature at both
the beginning and end of the lane change for the smooth
transition, P1, P2 have the same y-coordinate as P0, and P3

and P4 have the same y-coordinate as P5, as discussed in II-A.
Consequently, the optimization variables of the OCP can be
defined as X = [x1, x2, x3, x4, x5, y5] where the xi are the
x-coordinates of control points Pi, and y5 is y-coordinate
of control point P5. Moreover, the following optimization
problem is formed to determine a Bezier curve,

min
X

J(X) = W1

(∫ 1

0

(κ(t))2dt

)2

+W2(x5 − x0)
2

+W3y
2
5 +W4

(
(w − yb)(xa − xb)

ya − yb
+ xb − P0x

)2

(8a)

s.t. B(t) =

5∑
i=0

Pibi,5(t) (8b)

xi−1 < xi, 1 ≤ i ≤ 5 (8c)
xlb < x5 − x0 < xub (8d)
ylb < y5 < yub, (8e)

where the first term in (8a) represents the total curvature of
lane change curve, the second and third terms penalize long
and wide lane change curves, respectively, and the fourth term
makes the trajectory cross the lane mark as soon as possible.
The constraint (8b) is the expression for a 5th-order Bezier
curve, (8c) ensures that the x-coordinates of the control points
are in ascending order, which is essential for maintaining
the Bezier curve in the horizontal direction. The constraint
(8d) sets the bounds for the horizontal extent of the lane
change, ensuring that it is neither too short nor excessively
long. Finally, constraint (8e) limits the y-coordinate of the
final control point, P5, to ensure the end of the lane change is
within the second lane, where ylb and yub are the y-coordinates
for the boundaries of the second lane.

Note that in (8), the weights W =
[
W1 W2 W3 W4

]
can be different for different drivers, and are usually unknown
as drivers do not express their preference numerically. In the
sequel, we will discuss how to use IRL to infer W based on
the driver’s historical data (termed as expert trajectories).
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III. INVERSE REINFORCEMENT LEARNING

A. Maximum Entropy Inverse Reinforcement Learning

In this study, maximum entropy inverse reinforcement learn-
ing (MaxEnt IRL) [17] is proposed for learning the expert
trajectory patterns and generating a model capable of produc-
ing similar trajectories in different situations. To enable the
model to learn the characteristics of these expert trajectories,
it is necessary to extract their features. Each feature is a
function that maps the trajectory to a real value. Consequently,
the vector of all features, denoted as f , is a function that
maps the trajectory to a vector of features. For a single expert
trajectory ζ̃i, the feature vector is denoted as f(ζ̃i). The expert
feature vector for the model to learn can be calculated by
averaging all feature vectors from all expert trajectories, i.e.,
f̃ = 1

N

∑N
i=1 f(ζ̃i) The goal of the MaxEnt IRL is to identify

parameters that align the feature expectation values with the
expert feature values observed,

Ep(ζ|W )[f ] = f̃ . (9)

For MaxEnt IRL, the reward function is assumed to be a
linear combination of features and their respective weights,
J = WT f(ζi), where the J is the reward function, W is the
weight vector and f is feature vector. Moreover, following
the principle of maximum entropy [17], which ensures that
distribution is the least biased in describing the data, the
probability distribution over all the possible trajectories is
presented as follows:

P (ζi|W ) =
1

Z(W )
e−J (10)

where the partition function Z(W ) =
∑

e−WT f(ζi) to make
sure this distribution is properly normalized, meaning that the
sum of the probabilities of all possible paths equals 1. Given
the distribution (10) and expert trajectories ζ̃i, the unknown
weights W can be found by maximizing the log-likelihood:

W = argmax L(W ) =

N∑
i=1

logP (ζ̃i|W ). (11)

Although (11) is usually not solvable analytically, the gradient
descent approach can be used, where the gradient of the log-
likelihood is given as follows:

▽L(W ) = Ep(ζ|W )[f ]− f̃ . (12)

Note when the log-likelihood reaches the maximum, the
gradient is zero, indicating that the feature expectation matches
the expert feature, satisfying (9). According to the gradient
descent approach, the feature weight vector is updated using
the following equation:

W = W + η
▽L(W )

∥▽L(W )∥
,

where the η is the learning rate. Note that the calculation of
the gradient in (12) requires the computation of expectation
either analytically or by sampling [27]. Instead, we utilize
an estimated approach to determining the feature expectation

values by calculating the feature values for the trajectory with
the highest likelihood, as follows

Ep(ζ|W )[f ] ≈ f(argmax p(ζ|W )).

B. Feature Designing

In this section, features f are real mappings of the charac-
teristics of the lane change trajectory state which are shown
capable of capturing the preference of lane change driving
behaviors.

Comfort: Comfort is an important aspect of driving be-
havior. The integration of the square of the curvature over
the curve is considered a feature to capture comfort, which
reflects the rate of change in the vehicle’s direction. A lower
value indicates a smoother trajectory, indicative of a more
comfortable drive. According to (2), the first feature, which
is comfort, is defined as follows:

fc =

∫ 1

0

(κ(t))2dt =

∫ 1

0

(
Ḃ(t)× B̈(t)

|Ḃ(t)|3
)2dt (13)

Traffic Efficiency: The efficient movement of a vehicle
during a lane change is decomposed into two main com-
ponents: longitudinal and lateral. The longitudinal efficiency
considers the length of the lane change path and the specific
point where the vehicle crosses the lane marking, denoted as
fT1 and fT2, respectively.

fT1 = P5x − P0x (14)

fT2 =
(w − yb)(xa − xb)

ya − yb
+ xb − P0x (15)

where Pix represents the x-coordinate of the control point Pi,
w refers to the width of the lane, and the coordinates (xb, yb)
and (xa, ya) correspond to the nearest points on the curve
located before and after the lane mark is crossed.

Lateral efficiency is gauged by the vehicle’s lateral position
at the end of the lane change maneuver, represented by the
y-coordinate of the curve’s endpoint. This is defined as the
feature fy , indicating the vehicle’s final lateral position in the
adjacent lane, as shown below:

fy = y5 (16)

C. Lane Change Behavior Learning Algorithm

In this section, we presented an MaxEnt IRL-based algo-
rithm for learning driver lane change behavior from expert
trajectories, as summarized in Algorithm 1. The algorithm
iteratively updates a weight vector W to align the expected
feature values Ep(ζ|W )[f ] with the empirical feature values f̃ .
This process involves solving the OCP (8) based on current
estimated W and adjusting the weights through gradient
descent to minimize the difference between the expected and
the expert feature values. The learning rate η is decreased
during iterations to ensure convergence.
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Algorithm 1 MaxEnt IRL Driver Behavior Learning Algo-
rithm
Input: Expert trajectory D = {ζ̃1, ζ̃2, .., ζ̃N}, learning rate η
Output: W

1: f̃ = 1
N

∑N
i=1 f(ζ̃i);

2: Initialize c← 0, W ← all-ones vector;
3: while W not converge do
4: for all ζ̃i in D do
5: ζopt,i ← solving OCP (8) with aligned P0 of ζ̃i;
6: fopt,i ← f(ζopt,i);
7: end for
8: Ep(ζ|W )[f ]← 1

N

∑N
i=1 fopt,i;

9: ▽L← Ep(ζ|W )[f ]− f̃ ;
10: W ←W + η ▽L

∥▽L∥ ;
11: c← c+ 1;
12: if c = 200 then
13: η ← η/10;
14: end if
15: end while

0 5 10 15 20 25
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6

8

10

Fig. 1. Expert trajectories (training dataset).

IV. RESULTS

To test the proposed method, the expert trajectories are
generated using (8) with a selected W (for data generation
only) and with random initial points. The road width is set at
4 meters, which places the first lane’s lateral range between
0 to 4 meters and the adjacent lane’s from 4 to 8 meters.
The total length of the road is 25 meters, which means the
lane change maneuvers are complete within this distance. The
starting area for all initial points is confined to a specific region
in the 2D plane, with x ranging from -1 to 1 and y from 0 to
4. This approach allows the model to understand different lane
change behavior under varying initial conditions. To accurately
represent the behavior of the same driver, the cost function
used in the optimization problem remains consistent across
all simulations. This consistency ensures that the variations in
the generated expert trajectories are due to differences in initial
conditions rather than changes in driving style or preferences.
A total of 30 expert trajectories are generated, and the first 25
trajectories serve as the training data, denoted as D, as shown
in Fig.1. The remaining 5 trajectories are used for testing.

To improve the numerical stability of the IRL algorithm, the

TABLE I
EXPERT FEATURES RANGE.

fc fT1 fT2 fy

fmin 0.0013 15.932 7.033 5.108

fmax 0.0015 22.388 11.097 6.181

TABLE II
LEARNED FEATURE WEIGHT

fc fT1 fT2 fy

W 1.434 1.3017 0.7947 4.4054

Min-Max normalization is used to adjust the range of expert
feature values. The feature ranges of the expert trajectories
are shown in Table I, which are used for the aforementioned
normalization except for fy ([6, 8] is used for fy).

Table II listed the learned weights from IRL, and Fig. 2
compares the expert and predicted paths from various starting
points. These results demonstrate that, with the learned cost
function, the Bezier lane change model accurately generates
lane change curves at different starting points. Furthermore,
Table III presents the feature differences between the expert
and predicted trajectories, with each row representing a distinct
starting point. Notably, differences in curvature, total length,
and the longitudinal distance a vehicle crosses a lane marking
(x-cross) are minimal. This indicates that the predicted path
closely mirrors the expert path in these aspects. However,
the second case has a relatively large lateral efficiency error,
probably because the method is only based on the most likely
trajectory during learning when calculating feature expecta-
tions.

V. CONCLUSION

This paper presented an approach for modeling driver lane
change behavior using Bezier curves and MaxEnt IRL. Bezier
curves were utilized to generate smooth lane change paths that
ensure zero curvature at the start and end. The MaxEnt IRL al-
gorithm was used to learn driver preferences and cost function
weights from expert demonstration trajectories. Features were
designed to capture key aspects of driver behavior including
comfort, longitudinal efficiency, lateral efficiency, and traffic
efficiency. The learned cost function weights reflected the
relative priorities of these factors. The model efficacy was
demonstrated through testing on unused expert trajectories.

TABLE III
FEATURE DIFFERENCE BETWEEN EXPERT PATH AND PREDICTED PATH.

Initial point Curvature Length (m) x-cross (m) x-end (m)

[0.515,1.997] -3.02E-06 0.006633 0.022394 -0.06938

[0.486,2.919] 9.43E-05 0.264324 0.124813 -0.40642

[-0.216,1.681] -5.30E-07 0.38732 -0.06683 0.065326

[0.311,2.171] 1.22E-05 -0.05343 -0.0008 -0.07845

[-0.658,1.448] 7.51E-07 0.534073 -0.10584 0.116749
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Fig. 2. Predicted trajectory in different initial points for the testing.

The predicted paths closely matched the expert trajectories in
terms of curvature, length, and lane change timing. For future
research, the incorporation of real driver data and considering
more complicated initial conditions will be a significant step
forward.
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J. Pérez, “Urban motion planning framework based on n-bézier curves
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