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Abstract- This paper studies the failure diagnosis of discrete­
time stochastic systems with linear-time temporal logic (LTL) as 
correctness requirement-A fault is a violation of the LTL spec­
ification. The detection problem is first reduced to stochastic 
reachability estimation problem for an input-output stochastic 
hybrid automaton (I/O-SHA) introduced in this paper, based 
on which the likelihood of no-fault is recursively computed for 
issuing a detection decision. The performance of the detection 
scheme is measured in terms of false alarm (FA) and missed 
detection (MD) rates, and the condition for the existence of a 
detector to achieve any desired rates of FA and MD is captured 
in form of Stochastic-Diagnosability. The proposed method of 
fault detection is illustrated by a practical example. 

I. INTRODUCTION 

The problem of fault detection has been recently studied 
in the setting of stochastic systems [1], [2], [3], [4], [5], [6]. 
In this paper we study fault detection of certain physical 
systems modeled as stochastic difference equations, where 
a fault is a violation of certain correctness requirements 
expressed as linear-time temporal logic (LTL) formulas. 

We first introduce the notion of input-output stochastic 
hybrid automaton (I/O-SHA), extending the logical input­
output hybrid automaton (I/O-HA) introduced in [7], and 
propose an algorithm that refines the stochastic systems 
against the LTL formula to yield an I/O-SHA. The likelihood 
of fault versus no-fault (requirement-violation versus non­
violation) is recursively computed and is used as a statistic 
for issuing fault detection decisions: Whenever the likelihood 
of no-fault falls below a suitable threshold, i.e., the likelihood 
of no-fault is "low", a fault decision is issued, and otherwise 
the detector remains silent. The performance of this detection 
scheme is determined by introducing and computing its 
false alarm (FA) and missed detection (MD) rates. In order 
to identify the class of systems for which detection with 
any desired accuracy is feasible, we introduce the notion 
of Stochastic-Diagnosability as the corresponding necessary 
and sufficient condition. The proposed diagnosis framework 
is implemented for a benchmark room heating problem [6], 
[8] to demonstrate the validity and applicability of the results. 

11. PRELIMINARIES 

In this paper, we study fault detection of physical systems 
subject to disturbance and noise, modeled by stochastic 
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difference equations (1)-(3): 

Yk 

f(Xk, Uk, Vk), 
g(Xk, Uk), 
h(Xk, Uk, Wk), 

(1) 

(2) 

(3) 

where u, x, r, y, v, W represent, respectively, the input, state, 
requirement (unobserved), output (observed), disturbance 
and noise variables, and k is the time-index. Note the 
requirement variable, being user-defined, is independent of 
disturbance or noise. The properties of the nonfault system 
behaviors are described by using a LTL formula over the 
requirement variables. In the following we present a brief 
discription of LTL; a more thorough introduction can be 
found in [9]. 

Let Md = (Ld, 0, AP, label) be a state transition graph, 
where Ld is the set of states, 0 : Ld -+ 2Ld is a 
total transition relation, i.e., VI E Ld,O(I) i= 0, AP is 
a finite set of atomic proposition symbols, and label : 
Ld -+ 2AP is a function that labels each state with the 
set of atomic propositions true at that state. A sequence 
of states 7r = (10(7r), 11(7r), ... ) is a state-trace in Md 
if lHl(7r) E o(li(7r)) for every i E {O, I, . . .  }. 7rk = 
(lk (7r) , lk+l(7r), ... ), where kE N, is used to denote the 
suffix of 7r starting from index k. A proposition-trace over 
an atomic proposition set AP is defined as a sequence of 
set of atomic propositions, 7rp = (labelo, labeh, ... ) such 
that labeli <;;; AP, Vi E {O, 1, . . .  }. A proposition-trace 
7rp = (labelo, labeh, ... ) over AP is said to be contained 

in Md if there exists a state-trace 7r = (lo, h, . . .  ) in Md 
such that labeli = label(li) , Vi E {O, 1, . . .  }, in which case 
7r p is said to be associated with 7r. 

LTL temporal logic is a formalism for describing prop­
erties of sequences of states. Such properties are expressed 
using temporal operators of the temporal logic which in­
clude: X ("next time"), U ("until"), F ("eventually" or "in 
the future"), G ("always" or "globally") and B ("before"). 
We have the following relations among the above operators, 
where qy denotes a temporal logic formula: Fqy == trueU qy, 
Gqy == -,F-..,qy, and qyBg == -,(-,qyUg). So we can use X and 
U to express all the other temporal operators. 

The semantics of LTL can be defined with respect to 
the infinite state-traces in a state transition graph Md = 
(Ld, 0, AP, label). For a LTL formula qy, we use the notation 
< Md,7r >1= f (resp., < Md,7r >f!= f) to denote that f 
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holds (resp., does not hold) along the infinite state-trace 7r 

in Md. The detailed definition of the relation F is omitted 
here. The semantics of LTL formulas can also be expressed 
over infinite length proposition-traces without referring to 
any specific state transition graph. 

Given a LTL formula 4Y, denote S1> as the set of all 
infinitely long proposition-traces over AP satisfying 4Y. Then 
we can obtain a generalized nondeterministic BUchi automa­
ton T1> ([9]) that accepts S1>. To construct T1>, we first put 4Y 
into negation normal form, in which negation is only applied 
at the atomic level. Then we rewrite each subformula of the 
form Fg as TrueU g. Let 14Y1 be the number of subformulas 
of the form >..U fJ. Then the generalized nondeterministic 
BUchi automaton has 14Y1 sets of accepting states and is of the 
form: T1> = (L1>, 2AP, 01>, zt, £'1», where £.1> <;;; 2L", is the 
generalized BUchi acceptance condition, such that for each 
subformula of the form >..U fJ in 4Y, there exists a £. E £.1> 
which is used to capture the fulfillment of >..U fJ. 

While every LTL formula can be characterized as the 
w-language accepted by a nondeterministic BUchi automa­
ton, only certain fragments of LTL can be captured by 
a deterministic BUchi automaton. In this paper we only 
consider prediagnosable LTL formulas (see Definition 1 in 
next section) that can be accepted by deterministic BUchi 
automata. 

Ill. FAULT DIAGNOSIS PROBLEM FORMULATION 

Suppose the dynamics of a physical system G under 
diagnosis can be described by the stochastic difference 
equations (1)-(3), where recall that u, x, r, y, v, w represent, 
respectively, the input, state, requirement (unobserved), out­
put (observed), disturbance and noise variables, and k is the 
time-index. The initial state Xo, the disturbance Vk as well 
as the noise Wk are all assumed mutually i.i.d. with known 
distributions. Note the requirement variable, which specifies 
a required value for each input-state pair through the function 
g, is used to capture a user-defined specification that, at 
each step, depends on system state and input, and being a 
user-defined requirement, it is not corrupted by noise. We 
assume that the properties of the required system behaviors 
can be described by using a LTL formula 4Y involving 
predicates defined over the requirement variables rb kE N. 
Then the predicates, appearing in the LTL specification, 
and their boo lean combinations act as atomic propositions 
guarding the transitions in the BUchi automaton. The set 
of all infinitely long feasible sequences of aforementioned 
predicates is denoted a Ac. 

Since detection of requirement-violation must occur based 
on a finite history of input/output observations, it is natural 
to assume that every infinite run of a system, that violates 
the given LTL formula, possesses a finite prefix, called an 
indicator, such that all its infinite extensions that are feasible 
in the system also violate the LTL formula. This property 
was captured under the name of prediagnosability in [ lO], 
[11], and is a necessary condition for any detector's ability 
to detect the violation of the specified LTL formula based on 
finite-length observations. So, without loss of generality, we 

assume that the prediagnosability holds. Next we provide a 
formal definition of indicator and also of prediagnosability. 

Definition 1: Given a system G and a LTL formula 4Y, 
a finite sequence of requirement variables is said to be an 
indicator if all of its infinite extensions in G violate 4Y. 
Denote the set of all indicators as 11> ( G). G is said to be 
prediagnosable with respect to 4Y if each infinite sequence 
of requirement variables violating 4Y possesses a finite prefix 
that is an indicator. 

Remark 1: Note that a system is inherently prediagnos­
able if the LTL formula 4Y is a safety one [9], i.e., it only 
requires that some "bad" things must never occur. However, 
when the correctness requirement is a more general one, the 
system may not be prediagnosable (See Example 1), and in 
this case, the violation of 4Y can not be detected even if the 
system is perfectly observable, i.e., Yk = rk for all kE N. 
For this reason, we assume without loss of generality that the 
system is prediagnosable with respect to the LTL formula . •  

As established in [ lO, Theorem 1], the prediagnosability 
of system G with respect to a LTL formula 4Y, is equivalent to 
the existence of a deterministic BUchi automaton accepting 
S1> n Ac, which can also be characterized as the limits of 
the finite prefixes accepted by the same model treated as 
a standard finite state automaton. Then we can augment 
the BUchi automaton, by adding an absorbing state called 
F reaching which indicates the execution of an indicator, 
to yield an augmented deterministic requirement model, 
denoted R. (Note the augmentation requires adding the 
"missing" transitions from each state to the newly added 
fault state F, guarded by the complement of the existing 
transitions of the state.) 

Example 1: Consider a system G with dynamics: Xk+I = 
Xk + Vk and requirement variable rk = 2Xk - 1, where 
Vk is i.i.d. Gaussian random variable. Suppose the LTL 
formula is given as 4Y = GF(r < 0) , i.e., it is always (G) 
possible that in future (F), the requirement variable becomes 
negative. Then it can be verified that for any infinite sequence 
(rO,rI, ... ,rm, ... ) with ri � O,'Vi � m (i.e., a sequence 
violating 4Y), any of its prefix has certain infinite extension 
in which (rk < 0) is satisfied for infinitely many k (i.e., a 
sequence satisfying 4Y). Therefore G is not prediagnosable 
with respect to 4Y. In this case even with perfect observation 

Yk = rb the violation of 4Y cannot be detected. Now 
consider the disturbance to be Vk = sign(xk)v�, where v� 
is a positive-valued random variable, i.e., the noise Vk is 
dependent on the state variable Xk and is negative (resp., 
positive) if Xk is negative (resp., positive). Consider again the 
LTL formula 4Y = GF(r < 0). Then in this case, for every 
infinite sequence (ro, rI, ... , rm, ... ) with ri � 0, 'Vi � m 

(i.e., a sequence violating 4Y), there exists a finite prefix 
(ro, . . .  , rk) with rk � 0 (so that Xk = (rk + 1)/2 � 0.5) 
whose all infinite extensions also violate 4Y. Then G is 
prediagnosable with respect to GF(r < 0). • 

IV. ApPROACH TO DETECTION PROBLEM 

Consider the detection structure of Fig. 1. At any given 
time, the true state of the requirement model R is not avail-
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Fig. 1. The detection structure. 

able to the detector and must be estimated from the observed 
history of inputs and outputs. We transform this problem of 
estimating requirements violation to fault-location rechability 
estimation in an input-output stochastic hybrid automaton 
(UO-SHA) model that captures the behaviors of both C and 
R in an unified manner. 

We first introduce the notion of an I/O-SHA, extending 
that of a logical input-output hybrid automaton (I/O-HA) 
given in [7]. 

A. Input-Output Stochastic Hybrid Automaton 

Definition 2: An input-output stochastic hybrid 
automaton (I/O-SHA) is a lO-tuple P 
(L, D, U, Y,�,�, eo, do, Lm, E), where 

• L is the set of locations (symbolic states), and each 
lE L is a 3-tuple l = (Cl, fz, hz), where 

- Cl : D x U ---+ [0, 1] is the location invariant 
probability satisfying (4) below, 

- it : D x U x D ---+ [0, 1] assigns for each (d, u) E 
D x U a probability density function flCld, u) on 
the data space D, and 

- hl : D x U x Y ---+ [0, 1] assigns for each (d, u) E 
D x U a probability density function hl Cid, u) on 
the output space Y. 

• D = Dl X . . .  x Dn <;;; !Rn i s  the set of data (numerical 
states), and hence the hybrid state space of P is given 
by L x D, 

• U = U1 x· . .  X Um <;;; !Rm 
is the set of numerical inputs, 

• Y = Y1 X . . .  x Yp <;;; !RP is the set of numerical outputs, 
• � is the set of symbolic inputs, 
• � is the set of symbolic outputs, 
• eo : L ---+ [0, 1] is the initial probability distribution for 

the locations, 
• do: D ---+ [0, 1] is the initial probability distribution for 

the data values, 
• Lm <;;; L is the set of final locations, 
• E is the set of edges (transitions), and each e E E is a 

7-tuple e = (oe, te, O'e, Oe, Ce, fe, he), where 

- Oe E L is the original location, 
- te E L is the terminal location, 
- 0' e E � U {c} is the symbolic input, 
- Oe E � U {c} is the symbolic output, 
- C e : D x U ---+ [0, 1] is the guard probability 

satisfying (4) below, 
- fe : D x U x D ---+ [0, 1] assigns for each (d, u) E 

D x U a probability density function fe Cid, u) on 
the data space D, 

- he : D X U x Y ---+ [0, 1] assigns for each (d, u) E 
D x U a probability density function heCld,u) on 
the output space Y. 

Remark 2: In Definition 2, Cl and Ce, where l E L, e E 
E, capture the probabilities that an I/O-SHA stays in the 
current location l or executes a transition e, and so it satisfies 
the following stochasticity constraint: 

\f(d,u) E D x U,O' E � U {c}, 

Cl(d, u) + L Ce(d, u) :s; 1. 
eEE:<Je=<J 

(4) 

Note that in certain special setting, the range space of 
Cl and C e can simply be the binary set {O, I} [7], i.e., 
given any (d, u), an UO-SHA will either stay at current 
location, or execute one transition, with probability 1. Then 
the guard/invariant can be equivalently written as logical 
predicates, Cl := {(d,u) : Cl(d,u) = I} <;;; D x U and 
Ce := {(d,u) : Ce(d,u) = I} <;;; D x U.  Since in this 
paper, we consider refinement of physical systems against 
their logical LTL formula, only logical guards/invariants are 
needed in the refined I/O-SHA models. • 

An UO-SHA P starts from an initial distribution eo over 
L and an initial distribution do over D. At each time step, 
given a current location l, current data value d and input 
value u, upon the arrival of a symbolic input 0' E � U {c}, 
P evolves either within the current location with probability 
Cl(d, u) or executes an outgoing edge e such that O'e = 
0' with probability Ce(d, u). In the former case, it updates 
the data variable d according to the distribution fl Cid, u), 
and the output variable y is assigned a value according to 
the distribution hlCld, u). In the latter case, the distributions 
feCld,u) and heCld,u) are used for updating d and y, and 
a symbolic output oe is emitted. 

Remark 3: In [12], the authors proposed discrete time 
stochastic hybrid systems (DTSHS), which includes hybrid 
state/control space. The I/O-SHA model introduced here is 
more general than the DTSHS model: state variables of a 
DTSHS are fully observed, whereas the data of an UO-SHA 
is only partially and unreliably observed. • 

Next we present the refinement of a system against its LTL 
formula. Given a physical system C with dynamics described 
by (1)-(3) and the requirement model R, the refinement is 
modeled by an I/O-SHA CR, where 
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• L is given by the state space of R, 10 = o(lt) where 0 
is the Diract delta function, do is the initial distribution 
of Xo, and Lm = {F}, 

• D, U, Y are given by the state/input/output space of C, 
respectively, and � = � = 0, 

• the discrete transition structure of CR is preserved from 
that of R, 

• for each location I E L, 
- location invariant Cl is given by Cl = {( d, u) : 

g( d, u) violates the predicates over each outgoing 
transition from I in R}, 

- probability density functions it Cid, u) and 
hl Cid, u) for data updates and output assignments 



are determined by the distributions of Vk and Wk, 
together with the functions i and h of G, 

• for each e = (l,ll,(Je,6e,Ge,ie,he), e is a transition 
of GR (i.e., e E E), if and only if, 

- there exists a transition of R from I to 11, and 

- G e = {( d, u) : g( d, u) satisfies the predicates over 
the above transition of R}, and 

- (Je = 6e = E, ie(drld, u) = 6(dr - d), and 
he Cid, u) is the identity function that keeps the 
output values unchanged on discrete transitions. 

Remark 4: The refinement GR captures the behaviors of 
both G and R in an unified manner such that any system 
run associated with an indicator, transitions GR to the fauIt­
location Lm = {F}. • 

B. Detection Statistics and Detection Scheme 

Denote the history of observed inputs/outputs up to a 
time k as uk = (uo, ... , Uk), yk = (Yo, ... , Yk) and let 

zk = (yk, uk). Define 7rkClzk) := Pr(lk = llzk) as the 
conditional probability distribution over the discrete locations 
given the observations until time k, Pklk(dklzk,lk-l) := 
Pdk Izk ,lk-l (dk Izk, lk-d as the probability distribution func­
tion over continuous variables at time k, given zk and lk-l, 
and Pk+llk(dk+llzk,lk) := Pdk+llzk,lJdk+llzk,lk) as the 
probability distribution function over continuous variables at 
time k + 1, given zk and lk. Note that Pklk(dklzk,lk-d 
(resp., Pk+llk(dk+llzk,lk» can be interpreted as the poste­
rior (resp., prior) distribution of the data dk (resp., dk+1) 
given the input/output up to time k. The following equations 
(5)-(9) initialize and recursively update the state distributions 
7rk, Pklk and Pk+llk for an I/O-SHA upon the arrival of the 
kth input/output pair. For each I E L, d E D: 

is the probability of the refinement GR being outside of the 
fault-location Lm = {F} and is given by: 

pk 
N L 7rk(llzk). 

/(1.L= 
(10) 

Note P� can be found by first computing 7rk, which in turn 
is computed by the filter (5)-(9). A detector issues a fault 
decision "F" whenever this likelihood of no-fault is lower 
than a threshold, i.e., when P� :s; p, and remains silent 
otherwise. The detector D : (U x y)N -7 {F, E} is formally 
defined as: 

Note that once the detector issues F, it issues F for all 
subsequent steps, i.e., the detector "doesn't change its mind". 

V. CASE STUDY: A ROOM-HEATING PROBLEM 

In this section we present the results for fault detection 
computations presented above by applying to a room heating 
benchmark, which aims to regulate the temperature in a 
single room with a single heater, and is inspired from [6], [8]. 
Let the continuous variable Xk present the room temperature 
at time k, and the binary variable Uk denote the status of 
the heater, with Uk = 1 if the heater is on at time k and 0 
otherwise. The room temperature Xk is assumed to evolve 
according to the linear stochastic difference equation: 

Xk+l = Xk + a (xa - Xk) + bUk + Vk, 

and the requirement and output variables are given by: 

rk 
[ �: ] , 

Yk Xk + Wk, 
7ro(llzo) = 10(1) 

Pllo(d1IzO,l) = j� fL(dlld�,uo)do(d�)d(d�) 

Pklk(dlzk,lk-d 

(5) where Xa is the (constant) ambient temperature, and the 

(6) disturbance Vk and the noise Wk are zero mean Gaussian 
random variables with variances (J; and (J�, respectively. 

For safety purposes, it is required that the room temper­
ature satisfies Xl :s; Xk :s; Xh for all k. It is also required hlk_1 (Ykld, Uk)Pklk_l(dlzk-l, lk-d 

ID hlk_1 (Ykldk, Uk)Pklk_l(dklzk-1, lk-l)d(dk) 
7rk(llzk) = L 7rk_l(lk_llzk-1) 

(7) that the room temperature is guaranteed to be higher than 
Xw in at most 2 steps after the heater is turned on. Note 
Xh > Xw > Xl are constants, specified by user/designer. Such 
correctness requirement can be expressed as LTL formula qy: 

x j ih_l(dldk,Uk)Pklk(dklzk,lk-dd(dk), (9) 
D(lk_,.-tlk IUk) 

where D(lk-l -7 lkluk) <:;; D for each lk and lk-l is defined 
as D(lk-l -7 lkluk) := {dk E D : ::le E E,oe = lk-l, te = 
lk, (Uk, dk) E Gel, i.e., it is the set of data values that enable 
the edge from lk-l to lk while the input is Uk. 

Now that we have computed the state probability distribu­
tion, given the input/output sequence up to a current time k, 
we can use this to compute the likelihood of no-fault, which 

qy = G[{Xl < r(2) < xd 

A{(r(l) = 1) =} (r(2) > xw) V X(r(2) > xw) 
VXX(r(2) > xw)}]. (12) 

It can be verified that the aforementioned system is prediag­
nosable with respect to qy, and the requirement model R is 
shown in Fig. 2, which has four states and 9 edges, while 
reaching the state F indicates the violation of formula (12). 

The refinement GR is such that L = {1o, h, 12, F}, U = 
{O, I}, D = X = Y = JR, 1o = 6(l0), do = 6(xo), Lm = 
{F} and the edges are as shown in Fig. 2. For each I E L, 

fL('ld, u) 
hl(-Id,u) 

NCld + a (xa - d) + bu, (J�), and 

N(-Id, (J!), 
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(T(l) = O,X,< T(Z) < Xh) 
V (T(l) = 1, Xw < T(Z __ ) <_X-.:: h::,... ) _-"X",- w --,-< -'.,!T(", Z)_<:..::X,,-- h __ � 

Fig, 2. The requirement model R for single room heating problem. 

where NCIM, (T2) denotes Gaussian distribution with mean 
M and variance (T2. For each lj, lj ELand u E U,  D(li ---+ 
lj lu) can be easily computed and is shown in Table I. 

TABLE I 

LIST OF D(li --+ lj lu). 

D(lo --+ lolu - 0) (Xl,Xh) 
D(lo --+ lolu - 1) (Xw,Xh) 
D(lo --+ h lu = 1) (xl,xwl 
D(h --+ lolu E {O, I}) (Xw,Xh) 
D(h --+ 121u E {O, I}) (xl,xwl 
D(l2 --+ lolu E {O, I}) (Xw,Xh) 
D(lo --+ Flu E {O, I}) (-oo,xtl U [Xh,OO) 
D(h --+ Flu E {O, I}) (-oo,xtl U [Xh,OO) 
D(l2 --+ Flu E {O, I}) (-00, xwl U [Xh, 00) 
D(F --+ Flu E to, l}) (-00,00) 
Others 0 

For the computational study, we set xa = 70, a = 0.1, b = 
3, (T; = (T� = 0.4, and suppose the system is initialized 
at Xo = 80 and loo Suppose the specification parameters 
are Xl = 70, Xh = 90 and Xw = 80. For simulation, 
the continuous space is discretized by a grid size of 0.1 
over the range [65, 100], The input is such that the heater 
switches between on and off at each discrete time. A total 
of 5000 runs, with terminal time T = 200, were simulated, 
out of which there were 457 runs violating the correctness 
requirement. We implemented the detection algorithm (5)­
(11), and the results are shown in Figs. 3-5. In Fig. 3, the 
room temperature exceeds the upper limit, whereas in Fig. 
4, the correctness requirement is violated since the room 
temperature remains below Xw = 80 two steps after the 
heater is on. In both cases, the likelihood of no-fault, PN, 
drops soon after the specification model R reaches state F, 
and the fault can be detected with a delay of 7 steps by 
using a detection threshold p < 0.5. The performance of the 
detection procedure can be evaluated by the errors in terms 
of false alarms and missed detections (formally defined in 
next section), and Fig. 5 shows the number of runs that are 
false-alarmed or missed-detected over the 5000 runs, as the 
detection threshold p and detection delay n are changed. 

VI. PERFORMANCE EVALUATION AND STOCHASTIC 

DIAGNOS ABILITY 

Here we formally define false alarm (FA) and missed 
detection (MD) rates, by first introducing the following 

(b) 

] , 

e e 

j 
185 190 195 ZOO 

(c) 

:�I •. � 

\ • '�;:J 0.2 185 190 195 ZOO 

Fig. 3. The detection result for a run that violates the correctness 
requirement by exceeding the upper limit xh. Ca) true r(2) = x V.S. 
y = x + w; Cb) the true state of specification model R where the 
fault-location F is represented by the number 3; Cc) the estimate of state 
probability distribution. 

notions. 
A finite run of the system is a finite execution of the 

stochastic difference equations (1)-(3), denoted as z := 
(u1zl, xlzl, rlzl, ylzl), where Izl < (X) and for each ° E 
{u,x,r,y}, olzl := (00, . . .  ,olzl)' A run is a fault-run if 
r Izl E Iq, ( G), where recall that Iq, (G) is the set of all indica­
tors, and otherwise it is a nonfault-run. Given two runs Zl := 
(u1Z1 1 XIZll rlZll ylZll) and -z .= (u1Z21 XlZ21 rlZ21 y1Z21) 1 ' 1 ' 1 ' 1 2· 2 ,2 ,2 ,2 ' 
Zl is said to be a prefix of Z2, denoted as Zl � Z2, if IZ11 � 
IZ21 and o�zll == o �zll for each ° E {u,x,r,y}. In this case 
we denote Z2 \Zl as an extension of Zl. Associated with each 

- . f d . .. pO pI plzl run Z IS a sequence 0 etectlOn statlstlcs, N' N" '" N' 

computed through (5)-(10). 
A false alarm (FA) occurs if the detector issues "F" for 

a nonfault-run, and a missed detection (MD) occurs if the 
detector remains silent n steps after the system executes an 
indicator, where n is the detection delay bound allowed by 
the detector. So the rates of FA and MD can be defined as: 

pia '- Pr(z: rlzl tj. Iq,(G) 1\ pJJ I � p) (13) 

pmd '- Pr(z: �k < Izl - n, rk E Iq,(G), pJJ I > p)(14) 

In the following we present a characterization of the class 
of systems for which detectors with arbitrary accuracies 
can be designed, by introducing the notion of Stochastic­

Diagnosability which requires that for any tolerable threshold 

p and error bound T, there must exist a delay bound n such 
that for any fault-run, its extensions, longer than n and having 
likelihood of no-fault lower than p, occur with probability at 
most T. 

Definition 3: Given a system G subjected to an input­
sequence drawn from a distribution M, with correctness 
requirement expressed in LTL formula qy, (G, M, qy) is said 
to be Stochastically-Diagnosable, or simple S-Diagnosable, 
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Fig. 4. The detection result for a run that violates the correctness 
requirement by failing to reach Xw within 2 steps after the heater is on. (a) 
true r(2) = x V.s. y = x + w; (b) the true state of specification model R 
where the fault-location F is represented by the number 3; (c) the estimate 
of state probability distribution. 
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Fig. 5. (a) The number of false alarms as a function of the threshold; 
(b) the number of missed detections as a function of the threshold; (c) the 
number of missed detections as a function of detection delay, when the 
threshold is p = 0.75. 

if V p, T > 0, ::In E N, such that for any fault-run zo, 
Pr(z\Zo : Izl - Izo 1 > n, pJJ I > p) < T. 

The following theorem establishes the significance of 
the S-Diagnosability property, by showing its necessity and 
sufficiency for the existence of a detector to achieve any 
desired level of accuracy as measured in terms of FA and 
MD rates. The proof is omitted here for the sake of space. 

Theorem 1: For any FA rate v > ° and MD rate T > 0, 
there exists a detection threshold p and delay bound n so that 
the rates of FA and MD defined by (13)-(14) satisfy pta < v 

and pmd < T if and only if (G, IL, 4Y) is S-Diagnosable. 

Remark 5: Theorem 1 identifies the class of systems for 
which a detector of any desired accuracy can be constructed. 
Therefore, the S-Diagnosability property should be checked 
before designing a detector--A desired accuracy may not 
be achievable if S-Diagnosability is not satisfied. The future 
work will focus on the verification of S-Diagnosability, 
together with algorithm that computes a detector so as to 
ensure the desired rates of FA and MD. • 

VII. CONCLUSION 

This paper studied the fault detection of discrete-time 
stochastic systems subject to linear-time temporal logic cor­
rectness requirement. The continuous physical system (mod­
eled as stochastic difference equations) was refined against 
its LTL correctness requirement to yield an input-output 
stochastic hybrid automaton which preserves the behavior of 
the physical system and captures the requirement-violation 
as a reachability property. Based on this refinement, the 
likelihood of no-fault was recursively computed for issu­
ing a detection decision: a fault decision is issued when 
the likelihood of no-fault drops below a suitably chosen 
threshold. The performance of the diagnosis procedure was 
evaluated in terms of false alarm and missed detection rates, 
and the existence of detector to achieve any desired false 
alarm and missed detection rates was captured as Stochastic­
Diagnosability introduced in this paper. In future, the ana­
lytical computation of the rates of false alarm and missed 
detection will be investigated, together with the verification 
of the Stochastic-Diagnosability property. 
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