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Abstract—This paper proposes a reinforcement learning-
assisted model predictive control (RL-assisted MPC) framework
to improve autonomous vehicle parking performance. A Deep
Q-Network (DQN) agent is trained to dynamically select the cost
function weights of an MPC controller, enabling real-time adapta-
tion based on the vehicle’s current state. The hybrid framework
leverages the predictive optimization capabilities of MPC and
the adaptive decision-making strength of RL. Experimental
evaluations demonstrate that the proposed RL-assisted MPC
framework achieves comparable lateral tracking accuracy, while
consistently providing smoother steering behavior and improved
heading stability compared to baseline controllers using static
MPC weights. The results highlight the potential of integrating
RL with model-based control for enhancing robustness and
adaptability in automated parking systems.

Index Terms—autonomous parking, reinforcement learning,
nonlinear MPC, deep Q-Network, adaptive control

I. INTRODUCTION

The rising number of vehicles on the roads each year has
significantly increased the demand for parking spaces, making
parking a time-consuming and energy-draining task, especially
in densely populated urban areas [1]. Additionally, this surge
in vehicles also escalates the probability of accidents, result-
ing in substantial losses and damages [2]. Advanced Driver
Assistance Systems (ADAS) have been developed to address
these challenges, incorporating various features, including
autonomous parking systems (APS), to enhance safety and
convenience [3].

The architecture of APS is generally comprised of three
key components: parking spot detection, path planning, and
path following [3]. Path planning and path following represent
two fundamental components in the behavioral control of
autonomous vehicles (AVs) [4]. Path planning is performed
to generate a feasible trajectory while satisfying safety con-
straints, whereas a controller is subsequently employed to
accurately track this path by accounting for the vehicle’s cur-
rent state and applying appropriate control inputs. Extensive
research has been devoted to the development of effective path
planning strategies [5]. However, path following remains a
challenging task due to the highly dynamic nature of AVs and
the limitations in onboard computation and communication
resources. Path-following controllers are required to generate
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accurate control commands in real-time while operating under
these computational and communication constraints. Various
control strategies have been employed for path following, in-
cluding proportional-integral-derivative (PID) controllers, state
feedback controllers, and model predictive control (MPC) [6].
MPC has gained particular attention and has been widely
studied in the field of AVs [7]-[11].

Although MPC provides a systematic framework for han-
dling constraints and predicting future behavior, its perfor-
mance is heavily dependent on the proper selection of cost
function weights [12]. These weights determine the relative
importance of different objectives, such as minimizing lateral
error, steering effort, and steering rate. Selecting a single static
set of weights that performs well in all scenarios is challeng-
ing, as different driving conditions may require different trade-
offs. This motivates the need for a more adaptive approach,
where the controller can adjust its weighting strategy based
on the current AV state.

In recent years, RL has achieved remarkable success in
complex decision-making tasks [13]-[18]. In RL, the agent
relies solely on observed state transitions and corresponding
rewards to update its policy, without requiring prior knowledge
of the system dynamics [19]. When considering the task of
APS, it is challenging to mathematically define the reward
function for an autonomous system [20], [21]. Furthermore,
RL training can be extremely time-consuming, often requiring
days of interaction to converge. Nevertheless, to approximate
the global optimal policy, an RL agent typically explores
different policies and learns through trial and error, which
poses challenges in providing formal guarantees on the safety
of the resulting behaviors [22]. This issue becomes particularly
critical in safety-sensitive applications, where safety is often
characterized by the system’s stability.

Given the powerful data-driven optimization capabilities
of RL, combining RL with MPC introduces the ability to
incorporate system constraints explicitly, enabling safer and
more reliable control while still leveraging real-time data.
This paper proposes an RL-assisted MPC framework for APS.
This hybrid approach combines the adaptability of RL with
the predictive optimization capabilities of MPC. Rather than
training a full control policy from scratch, the RL agent
selects, at each time step, one of three predefined weight
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Fig. 1. Reference trajectory used for the parking maneuver, showing the AV’s
planned path from the starting position to the designated parking spot.
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Fig. 2. Kinematic bicycle model of the vehicle referenced at the rear axle
center.

configurations based on the AV current state, enabling the
controller to adapt to varying conditions and enhance path-
following performance. By leveraging the strengths of both
frameworks, the real-time optimization ability of MPC and
the adaptive decision-making capability of RL, the resulting
approach improves path-following behavior for APS without
requiring extensive retraining or manual weight tuning, and
avoids reliance on a single static set of weights.

The remainder of the paper is organized as follows. Section
IT presents the proposed methodology, including the RL-
assisted MPC framework and system design. Section III dis-
cusses the experimental results and performance evaluation.
Finally, Section IV concludes the paper and outlines directions
for future work.

II. METHODOLOGY

The objective is to allow an AV to follow a predefined path
during parking (Fig. 1) with minimal lateral deviation, while
ensuring smooth steering and stable heading transitions, all
within the limits of safety constraints. The AV operates in
a structured environment modeled using a kinematic bicycle
model (Fig. 2). The reference trajectory is generated using a
Bézier curve.

A. Béizer Curve

Bézier curves are widely used in trajectory planning tasks
due to their smoothness, controllability, and ability to precisely
interpolate between initial and final states. A Bézier curve
is a parametric curve defined by a set of control points,
where the trajectory is generated as a weighted sum of these
points using Bernstein polynomials. The most common form
for trajectory generation is the cubic Bézier curve, which
uses four control points and ensures smooth entry and exit
tangents aligned with the desired paths [23]. In the context
of APS, Bézier curves are particularly attractive because they
allow the vehicle to generate collision-free, smooth trajectories
with minimal computational cost [24]. Given their inherent
geometric properties, the generated path naturally satisfies
curvature continuity, which reduces the steering effort and
enhances trajectory tracking accuracy. The curve formulation
is flexible and can be easily adapted to various parking
scenarios by adjusting the positions of the control points [24].

In this work, Bézier curve are employed to construct the
reference parking path by specifying the initial vehicle position
(po), the parking target position (ps), and intermediate way-
points that define the maneuvering profile (p; and p2), defined
as follows.

p(t) = (1—t)3Py+3(1 —t)*tP, +3(1 —t)t* P, +t3P3. (1)
B. Vehicle Dynamics

In APS, due to the low-speed nature of the maneuvers, the
kinematic bicycle model provides a convenient and accurate
approximation of the vehicle dynamics [25] shown in Fig. 2.

The rear axle center velocity is given by:

v = X, COSY + Y, sin . 2)

The non-holonomic constraint equations for the front and rear
wheels are given as follows:

Zpsin(y +9) — grcos(p+6) =0

xpsin(¢) — y, cos(y) = 0. ©)
Combining (2) with (3) yields:
& = vcos(1) @

Ypr = vsin(y).
Based on the geometric relationship of the front and rear
wheels, the following expressions can be derived:

x5 =z, + Lcos(¢)

. &)
Yyr = yr + Lsin(y).
The steering angle can be represented as:
i
§ = arctan —w (6)
v

The kinematic bicycle model, referenced to the center of
the rear axle, can be described as follows:

T cos

yT = Sin ¢ v, (7)
J nod

¢ taL

where v is assumed to be constant.
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Fig. 3. Flowchart of RL-assisted MPC. d is the distance from the current AV
position to the target point. W represents a single set of weights.

C. RL-assisted MPC Control System Design

The MPC controller is designed to enable precise and
adaptive trajectory tracking for APS. It employs a predictive
vehicle model and solves a constrained optimization problem
at each control step, allowing real-time adjustment of control
inputs based on the predicted vehicle trajectory. This structure
allows the controller to adapt its behavior in real-time based
on the current AV states x,., y,, and .

The optimization process is subject to physical limitations
of the system—specifically, constraints on the steering angle.
By solving this constrained optimization problem, the MPC
computes an optimal control sequence u*, of which only the
first input is applied to the vehicle dynamics. In this paper
u represents 9. The updated vehicle state is then used in the
subsequent prediction cycle, enabling closed-loop control in a
receding horizon fashion until the parking task is complete or
terminated.

To enhance adaptability across varying conditions, an RL
agent is utilized. At each time step, the agent observes the
current observation, which consists of the vehicle heading
1 and the distance d between the vehicle’s current position
and the center of the parking spot. Based on this state,
the agent selects a set of weights W from three baselines
W € {wi,wz, w3} to be used in the MPC cost function.
The controller then computes a steering command J, which is
applied to the vehicle. This interaction produces updated states
for both the RL agent and the MPC controller. The process
repeats until the parking task is either successfully completed
or terminated as shown in Fig. 3.

The MPC problem is formulated as a constrained optimiza-
tion problem that is solved at each control step. Specifically,
the objective is to minimize a cost function J over a finite
prediction horizon P, (8a) subject to vehicle dynamics and
steering constraints (8c). The optimization problem consists
of three weighted terms, each serving a specific purpose in
shaping the vehicle’s behavior. The first term penalizes the
deviation from the reference path by minimizing the squared
Euclidean distance between the predicted vehicle position and
the corresponding reference point at each step. The second
term penalizes large control inputs by minimizing the squared
value of d, encouraging smoother and more stable maneuvers.

2
@ Reference points (x2,¥2)

® Current position
LR
e ’ .

(k. Vi)
[ ]

"”(’xl' Y1)

4

Fig. 4. Illustration of lateral deviation d,, from the reference path, computed
as the perpendicular distance from the vehicle’s current position to the segment
between two consecutive reference points.

The third term penalizes abrupt changes in control input by
minimizing the difference between successive steering an-
gles, thereby promoting steering smoothness. The optimization
problem computed at each control step is defined as follows

[6].

D p—1
' — . _ 2 2
min T=> A1 Xk = Xperll + DA - 03
k=1 k=0
p—1
+) A (06 — k1) (8a)
k=0
s.t.  Vehicle model (7) (8b)
—T m
<y < =
1S 0 < 1 (8c)

where X}, = [z, yx]? denote the vehicle position at time step
k, and let Xier k, = [Tret i, Yret.x) T represent the corresponding
reference point. The predicted steering input at time step k
is denoted by d, and the prediction horizon is given by p.
The cost function includes three weighting parameters: )\ for
lateral tracking error, A for steering effort, and A\q for steering
rate to encourage smoothness.

Since the MPC controller does not regulate the longitudinal
speed, lateral deviation from the reference path serves as
the primary metric for evaluating tracking performance. In
this work, the vehicle’s alignment with the reference path is
assessed by identifying the closest points ahead and behind the
current vehicle position. This is achieved through a custom
function that calculates the perpendicular distances to the
path, dynamically determining the lateral offset. This deviation
is then penalized within the cost function to ensure precise
trajectory tracking. The overall structure is illustrated in Fig.
4, and the mathematical formulation is as follows [6]:

zy —x1)(y1 — py) — (€1 — ) (Y2 — Y&)|
\/(IQ —x1)?2 + (y2 — y1)?
The RL reward function R at the time step ¢, is defined as:

v Il

9

if ¢ is terminal

- ‘dy‘>
R, = . 10
¢ {— (al -|dy| + ap - ‘¢D , otherwise, (19)
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Algorithm 1: RL-Assisted MPC

1 Initialize ¢, ¢, buffer D, and AV states;
2 for all episodes < M do

3 observe AV state S = ¢, d, x,vy;
4 fort=1,---,7 do
5 Following e, select weights
wi = argmaz,Qy(t,d, a);
6 Apply wy to MPC cost function;
7 Solve MPC and compute steering command &;
8 Step in the environment using J; and observe
Sii1, and 13
9 Store tuple ([t¢, di], wy, e, [YVi41,dry1]) in D;
10 Sample a random minibatch of
([¥i, di], wi, 74, [Yig1, diyr]) from D;
11 set y; =
ri,if ¢ + 1 terminates,
ri +ymax Qg ([¢ir1, dita], w'), otherwise.’
12 Update ¢ to minimize (y; — Q4 (¢4, di]))%
13 Every C steps, ¢~ < ¢;
14 end
15 end
where

oy @ lateral error reward weight
ap, ¢ heading error reward weight

E yaw rate acceleration (second derivative of heading).

The full control logic of the RL-assisted MPC is outlined
in Algorithm 1.

III. RESULTS

This section presents the evaluation of the proposed RL-
assisted MPC under four distinct reward weight configurations
(Cases 1-4), as defined in Table I. The controller’s perfor-
mance is compared against three baseline MPC configurations
using fixed cost function weights (wi, w2, and ws), detailed
in Table II. All experiments were conducted under identical
initial conditions and reference path to ensure a fair compar-
ison. Each RL training case corresponds to a specific setting
of the reward weights «; and «j, which satisfy a; + oy, = 1.
The RL agent was trained using the reward function defined
in (10).

Key evaluation metrics include maximum lateral deviation
over time (dy.mas), steering rate (Ad, Fig. 5), total variation
in steering input (TV-6), lateral deviation (d,,, Fig. 6), heading
acceleration (d?1), Fig. 7), and the total variation in steering
rate (TV-AJ), providing insights into tracking accuracy, con-
trol smoothness, and overall stability.

As shown in Fig. 5, the RL-assisted MPC produces no-
ticeably smoother steering profiles, particularly in Case 1
and Case 2, which exhibit reduced oscillation magnitudes
and fewer abrupt changes. This is quantitatively supported

TABLE I
REWARD WEIGHTS USED IN RL-ASSISTED MPC TRAINING CASES.

RL-assisted MPC [[ oq [ ap
Case 1 0.25 | 0.75
Case 2 0.35 | 0.65
Case 3 0.40 | 0.60
Case 4 0.45 | 0.55

TABLE II

WEIGHT SETS USED IN MPC COST FUNCTION FOR THE THREE
FIXED-WEIGHT BASELINE CONTROLLERS.

Weights U At l As L Ad
wl 6 2 0
w2 2 2 8
w3 1 0 5

TABLE III

PERFORMANCE METRICS ACROSS RL-ASSISTED MPC AND
FIXED-WEIGHT MPC CASES.

Controller H dy.masx l TV-AS l TV-8
RL-assisted MPC Case 1 1.0802 6.2146 2.1990
RL-assisted MPC Case 2 1.1187 8.3392 2.9875
RL-assisted MPC Case 3 1.1137 12.9124 | 3.6070
RL-assisted MPC Case 4 0.2208 11.0745 | 2.5419

MPC wl 0.1923 11.3171 | 2.8623

MPC w2 1.0923 7.5360 2.2434

MPC w3 2.5884 5.9796 1.6727

by TV-§ reported in Table III, where Case 1 achieves 2.1990
and Case 2 yields 2.9875, both lower than W1 (2.8623) and
W2 (2.2434). Although W3 attains the lowest TV-9 (1.6727),
this comes at the cost of significantly worse lateral tracking
performance, with dy ;mq, Of 2.5884 meters more than ten
times higher than Case 4 (0.2208), as seen in Fig. 6. In terms
of lateral accuracy, Cases 1-3 offer comparable or slightly
higher tracking errors than the best baseline (W1: 0.1923 m),
but Case 4 demonstrates a clear improvement with dy ,,q, Of
only 0.2208 m. Furthermore, heading smoothness illustrated
in Fig. 7—is best in Case 2, which combines moderate «
and ay,. This case exhibits visibly reduced heading jerk and
minimized spikes, confirming that balanced reward weighting
improves maneuver stability. Overall the RL-assisted MPC
provides a mechanism to adaptively switch weight sets based
on the vehicle’s state, which can lead to improved overall
maneuver stability and comparable tracking performance, yet
with occasional increases in steering rate when aggressive
adjustments are beneficial for trajectory correction to minimize
lateral error.

Fig. 8 shows the action selection patterns of the RL agent for
each of the four training cases, where each action corresponds
to one of the three predefined MPC weight sets. The temporal
distribution of actions reflects how the agent adapts its control
strategy in response to the vehicle’s state during different
phases of the parking maneuver. In Case 1 and Case 2,
which place greater emphasis on heading stability, the agent
shows a tendency to remain with smoother-weight configu-
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Fig. 5. Steering rate AJ over time for RL-assisted MPC Cases and baseline
controllers.

rations, particularly during turning and alignment segments.
In contrast, Case 4, which prioritizes lateral tracking, exhibits
more frequent switching between weight sets, suggesting a
more reactive control strategy to minimize deviation. These
variations highlight the agent’s capacity to modulate control
behavior in real-time and emphasize the role of reward design
in shaping policy adaptation.

Finally, the proposed RL-assisted MPC framework demon-
strates notable advantages over traditional static-weight MPC
configurations. Across all reward settings, the RL-assisted
controller achieved consistently lower steering input variabil-
ity (TV-) and smoother heading transitions. While lateral
tracking accuracy varied across cases, Case 4 achieved the
lowest maximum lateral deviation (dy.,mqz) among all RL
configurations and outperformed two of the three baseline
controllers, while remaining very close to the best-performing
baseline. The ability to adapt cost weights dynamically based
on the vehicle’s state enabled the RL agent to respond effec-
tively across different phases of the maneuver including entry,
alignment, and final positioning. These results underscore
the potential of integrating model predictive control with
reinforcement learning for real-time, adaptive control in APS.
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Fig. 6. Lateral deviation dy, over time for RL-assisted MPC Cases and
baseline controllers.
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Fig. 7. Heading acceleration A2 over time for RL-assisted MPC Cases and
baseline controllers.
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Fig. 8. Action selection over time for the RL-assisted MPC Cases.

IV. CONCLUSIONS

This paper presented an RL-assisted MPC framework that
dynamically adapts cost function weights to improve trajec-
tory tracking and control smoothness in autonomous parking
systems. By leveraging the predictive capabilities of MPC
and the adaptive decision-making of reinforcement learning
(RL), the proposed approach enables real-time adjustment
of control behavior without manual weight tuning or offline
re-optimization. Simulation results demonstrate that the RL-
assisted MPC controller consistently outperforms static-weight
MPC configurations in terms of steering smoothness and
heading stability. While lateral tracking performance varied
across reward configurations, the best-performing RL-assisted
MPC Case achieved lower maximum lateral deviation than
two of the three baseline controllers and remained very close
to the best-performing baseline. These findings highlight the
potential of hybrid learning-based control for enhancing adapt-
ability, generalization, and maneuver stability in structured
parking environments. Future work will focus on expand-
ing the experimental evaluation to include diverse parking
scenarios, such as varying initial vehicle positions, target
locations, and obstacle configurations. This extension will
allow a more comprehensive assessment of the robustness and
generalizability of the proposed RL-assisted MPC framework
in real-world applications.
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