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Abstract—This paper proposes a reinforcement learning-
assisted model predictive control (RL-assisted MPC) framework
to improve autonomous vehicle parking performance. A Deep
Q-Network (DQN) agent is trained to dynamically select the cost
function weights of an MPC controller, enabling real-time adapta-
tion based on the vehicle’s current state. The hybrid framework
leverages the predictive optimization capabilities of MPC and
the adaptive decision-making strength of RL. Experimental
evaluations demonstrate that the proposed RL-assisted MPC
framework achieves comparable lateral tracking accuracy, while
consistently providing smoother steering behavior and improved
heading stability compared to baseline controllers using static
MPC weights. The results highlight the potential of integrating
RL with model-based control for enhancing robustness and
adaptability in automated parking systems.

Index Terms—autonomous parking, reinforcement learning,
nonlinear MPC, deep Q-Network, adaptive control

I. INTRODUCTION

The rising number of vehicles on the roads each year has

significantly increased the demand for parking spaces, making

parking a time-consuming and energy-draining task, especially

in densely populated urban areas [1]. Additionally, this surge

in vehicles also escalates the probability of accidents, result-

ing in substantial losses and damages [2]. Advanced Driver

Assistance Systems (ADAS) have been developed to address

these challenges, incorporating various features, including

autonomous parking systems (APS), to enhance safety and

convenience [3].

The architecture of APS is generally comprised of three

key components: parking spot detection, path planning, and

path following [3]. Path planning and path following represent

two fundamental components in the behavioral control of

autonomous vehicles (AVs) [4]. Path planning is performed

to generate a feasible trajectory while satisfying safety con-

straints, whereas a controller is subsequently employed to

accurately track this path by accounting for the vehicle’s cur-

rent state and applying appropriate control inputs. Extensive

research has been devoted to the development of effective path

planning strategies [5]. However, path following remains a

challenging task due to the highly dynamic nature of AVs and

the limitations in onboard computation and communication

resources. Path-following controllers are required to generate
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accurate control commands in real-time while operating under

these computational and communication constraints. Various

control strategies have been employed for path following, in-

cluding proportional-integral-derivative (PID) controllers, state

feedback controllers, and model predictive control (MPC) [6].

MPC has gained particular attention and has been widely

studied in the field of AVs [7]–[11].

Although MPC provides a systematic framework for han-

dling constraints and predicting future behavior, its perfor-

mance is heavily dependent on the proper selection of cost

function weights [12]. These weights determine the relative

importance of different objectives, such as minimizing lateral

error, steering effort, and steering rate. Selecting a single static

set of weights that performs well in all scenarios is challeng-

ing, as different driving conditions may require different trade-

offs. This motivates the need for a more adaptive approach,

where the controller can adjust its weighting strategy based

on the current AV state.

In recent years, RL has achieved remarkable success in

complex decision-making tasks [13]–[18]. In RL, the agent

relies solely on observed state transitions and corresponding

rewards to update its policy, without requiring prior knowledge

of the system dynamics [19]. When considering the task of

APS, it is challenging to mathematically define the reward

function for an autonomous system [20], [21]. Furthermore,

RL training can be extremely time-consuming, often requiring

days of interaction to converge. Nevertheless, to approximate

the global optimal policy, an RL agent typically explores

different policies and learns through trial and error, which

poses challenges in providing formal guarantees on the safety

of the resulting behaviors [22]. This issue becomes particularly

critical in safety-sensitive applications, where safety is often

characterized by the system’s stability.

Given the powerful data-driven optimization capabilities

of RL, combining RL with MPC introduces the ability to

incorporate system constraints explicitly, enabling safer and

more reliable control while still leveraging real-time data.

This paper proposes an RL-assisted MPC framework for APS.

This hybrid approach combines the adaptability of RL with

the predictive optimization capabilities of MPC. Rather than

training a full control policy from scratch, the RL agent

selects, at each time step, one of three predefined weight
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Parking Trajectory

Staring position

Target location

Fig. 1. Reference trajectory used for the parking maneuver, showing the AV’s
planned path from the starting position to the designated parking spot.

Fig. 2. Kinematic bicycle model of the vehicle referenced at the rear axle
center.

configurations based on the AV current state, enabling the

controller to adapt to varying conditions and enhance path-

following performance. By leveraging the strengths of both

frameworks, the real-time optimization ability of MPC and

the adaptive decision-making capability of RL, the resulting

approach improves path-following behavior for APS without

requiring extensive retraining or manual weight tuning, and

avoids reliance on a single static set of weights.

The remainder of the paper is organized as follows. Section

II presents the proposed methodology, including the RL-

assisted MPC framework and system design. Section III dis-

cusses the experimental results and performance evaluation.

Finally, Section IV concludes the paper and outlines directions

for future work.

II. METHODOLOGY

The objective is to allow an AV to follow a predefined path

during parking (Fig. 1) with minimal lateral deviation, while

ensuring smooth steering and stable heading transitions, all

within the limits of safety constraints. The AV operates in

a structured environment modeled using a kinematic bicycle

model (Fig. 2). The reference trajectory is generated using a

Bézier curve.

A. Béizer Curve
Bézier curves are widely used in trajectory planning tasks

due to their smoothness, controllability, and ability to precisely

interpolate between initial and final states. A Bézier curve

is a parametric curve defined by a set of control points,

where the trajectory is generated as a weighted sum of these

points using Bernstein polynomials. The most common form

for trajectory generation is the cubic Bézier curve, which

uses four control points and ensures smooth entry and exit

tangents aligned with the desired paths [23]. In the context

of APS, Bézier curves are particularly attractive because they

allow the vehicle to generate collision-free, smooth trajectories

with minimal computational cost [24]. Given their inherent

geometric properties, the generated path naturally satisfies

curvature continuity, which reduces the steering effort and

enhances trajectory tracking accuracy. The curve formulation

is flexible and can be easily adapted to various parking

scenarios by adjusting the positions of the control points [24].
In this work, Bézier curve are employed to construct the

reference parking path by specifying the initial vehicle position

(p0), the parking target position (p3), and intermediate way-

points that define the maneuvering profile (p1 and p2), defined

as follows.

p(t) = (1− t)3P0 +3(1− t)2tP1 +3(1− t)t2P2 + t3P3. (1)

B. Vehicle Dynamics
In APS, due to the low-speed nature of the maneuvers, the

kinematic bicycle model provides a convenient and accurate

approximation of the vehicle dynamics [25] shown in Fig. 2.
The rear axle center velocity is given by:

v = xr cosψ + yr sinψ. (2)

The non-holonomic constraint equations for the front and rear

wheels are given as follows:

ẋf sin(ψ + δ)− ẏf cos(ψ + δ) = 0

xr sin(ψ)− yr cos(ψ) = 0.
(3)

Combining (2) with (3) yields:

ẋr = v cos(ψ)

ẏr = v sin(ψ).
(4)

Based on the geometric relationship of the front and rear

wheels, the following expressions can be derived:

xf = xr + L cos(ψ)

yf = yr + L sin(ψ).
(5)

The steering angle can be represented as:

δ = arctan
Lψ̇

v
. (6)

The kinematic bicycle model, referenced to the center of

the rear axle, can be described as follows:⎡
⎣ẋr

ẏr
ψ̇

⎤
⎦ =

⎡
⎣cosψsinψ

tan δ
L

⎤
⎦ v, (7)

where v is assumed to be constant.
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Fig. 3. Flowchart of RL-assisted MPC. d is the distance from the current AV
position to the target point. W represents a single set of weights.

C. RL-assisted MPC Control System Design

The MPC controller is designed to enable precise and

adaptive trajectory tracking for APS. It employs a predictive

vehicle model and solves a constrained optimization problem

at each control step, allowing real-time adjustment of control

inputs based on the predicted vehicle trajectory. This structure

allows the controller to adapt its behavior in real-time based

on the current AV states xr, yr, and ψ.

The optimization process is subject to physical limitations

of the system—specifically, constraints on the steering angle.

By solving this constrained optimization problem, the MPC

computes an optimal control sequence u∗, of which only the

first input is applied to the vehicle dynamics. In this paper

u represents δ. The updated vehicle state is then used in the

subsequent prediction cycle, enabling closed-loop control in a

receding horizon fashion until the parking task is complete or

terminated.

To enhance adaptability across varying conditions, an RL

agent is utilized. At each time step, the agent observes the

current observation, which consists of the vehicle heading

ψ and the distance d between the vehicle’s current position

and the center of the parking spot. Based on this state,

the agent selects a set of weights W from three baselines

W ∈ {w1, w2, w3} to be used in the MPC cost function.

The controller then computes a steering command δ, which is

applied to the vehicle. This interaction produces updated states

for both the RL agent and the MPC controller. The process

repeats until the parking task is either successfully completed

or terminated as shown in Fig. 3.

The MPC problem is formulated as a constrained optimiza-

tion problem that is solved at each control step. Specifically,

the objective is to minimize a cost function J over a finite

prediction horizon P , (8a) subject to vehicle dynamics and

steering constraints (8c). The optimization problem consists

of three weighted terms, each serving a specific purpose in

shaping the vehicle’s behavior. The first term penalizes the

deviation from the reference path by minimizing the squared

Euclidean distance between the predicted vehicle position and

the corresponding reference point at each step. The second

term penalizes large control inputs by minimizing the squared

value of δ, encouraging smoother and more stable maneuvers.

Fig. 4. Illustration of lateral deviation dy from the reference path, computed
as the perpendicular distance from the vehicle’s current position to the segment
between two consecutive reference points.

The third term penalizes abrupt changes in control input by

minimizing the difference between successive steering an-

gles, thereby promoting steering smoothness. The optimization

problem computed at each control step is defined as follows

[6].

min
δ

J =

p∑
k=1

λt · ‖Xk −Xref,k‖2 +
p−1∑
k=0

λs · δ2k

+

p−1∑
k=0

λd · (δk − δk−1)
2 (8a)

s.t. Vehicle model (7) (8b)

−π

4
≤ δ ≤ π

4
, (8c)

where Xk = [xk, yk]
T denote the vehicle position at time step

k, and let Xref,k = [xref,k, yref,k]
T represent the corresponding

reference point. The predicted steering input at time step k
is denoted by δk, and the prediction horizon is given by p.

The cost function includes three weighting parameters: λt for

lateral tracking error, λs for steering effort, and λd for steering

rate to encourage smoothness.

Since the MPC controller does not regulate the longitudinal

speed, lateral deviation from the reference path serves as

the primary metric for evaluating tracking performance. In

this work, the vehicle’s alignment with the reference path is

assessed by identifying the closest points ahead and behind the

current vehicle position. This is achieved through a custom

function that calculates the perpendicular distances to the

path, dynamically determining the lateral offset. This deviation

is then penalized within the cost function to ensure precise

trajectory tracking. The overall structure is illustrated in Fig.

4, and the mathematical formulation is as follows [6]:

Y =
|(x2 − x1)(y1 − py)− (x1 − xk)(y2 − yk)|√

(x2 − x1)2 + (y2 − y1)2
. (9)

The RL reward function R at the time step t, is defined as:

Rt =

{− |dy| , if t is terminal

−
(
αl · |dy|+ αh ·

∣∣∣ψ̈∣∣∣) , otherwise,
(10)
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Algorithm 1: RL-Assisted MPC

1 Initialize φ, φ−, buffer D, and AV states;

2 for all episodes < M do
3 observe AV state S = ψ, d, x, y;

4 for t = 1, · · · , T do
5 Following ε, select weights

wt = argmaxaQφ(ψ, d, a);
6 Apply wt to MPC cost function;

7 Solve MPC and compute steering command δt;
8 Step in the environment using δt and observe

St+1, and rt;
9 Store tuple ([ψt, dt], wt, rt, [ψt+1, dt+1]) in D;

10 Sample a random minibatch of

([ψi, di], wi, ri, [ψi+1, di+1]) from D;

11 set yi ={
ri, if i+ 1 terminates,

ri + γmax
w′

Qφ−
(
[ψi+1, di+1], w

′), otherwise.
;

12 Update φ to minimize (yi −Qφ([ψi, di]))
2;

13 Every C steps, φ− ← φ;

14 end
15 end

where

αl : lateral error reward weight

αh : heading error reward weight

ψ̈ : yaw rate acceleration (second derivative of heading).

The full control logic of the RL-assisted MPC is outlined

in Algorithm 1.

III. RESULTS

This section presents the evaluation of the proposed RL-

assisted MPC under four distinct reward weight configurations

(Cases 1–4), as defined in Table I. The controller’s perfor-

mance is compared against three baseline MPC configurations

using fixed cost function weights (w1, w2, and w3), detailed

in Table II. All experiments were conducted under identical

initial conditions and reference path to ensure a fair compar-

ison. Each RL training case corresponds to a specific setting

of the reward weights αl and αh, which satisfy αl + αh = 1.

The RL agent was trained using the reward function defined

in (10).

Key evaluation metrics include maximum lateral deviation

over time (dy.max), steering rate (Δδ, Fig. 5), total variation

in steering input (TV-δ), lateral deviation (dy , Fig. 6), heading

acceleration (d2ψ, Fig. 7), and the total variation in steering

rate (TV-Δδ), providing insights into tracking accuracy, con-

trol smoothness, and overall stability.

As shown in Fig. 5, the RL-assisted MPC produces no-

ticeably smoother steering profiles, particularly in Case 1

and Case 2, which exhibit reduced oscillation magnitudes

and fewer abrupt changes. This is quantitatively supported

TABLE I
REWARD WEIGHTS USED IN RL-ASSISTED MPC TRAINING CASES.

RL-assisted MPC αl αh

Case 1 0.25 0.75
Case 2 0.35 0.65
Case 3 0.40 0.60
Case 4 0.45 0.55

TABLE II
WEIGHT SETS USED IN MPC COST FUNCTION FOR THE THREE

FIXED-WEIGHT BASELINE CONTROLLERS.

Weights λt λs λd

w1 6 2 0
w2 2 2 8
w3 1 0 5

TABLE III
PERFORMANCE METRICS ACROSS RL-ASSISTED MPC AND

FIXED-WEIGHT MPC CASES.

Controller dy.max TV-Δδ TV-δ

RL-assisted MPC Case 1 1.0802 6.2146 2.1990

RL-assisted MPC Case 2 1.1187 8.3392 2.9875

RL-assisted MPC Case 3 1.1137 12.9124 3.6070

RL-assisted MPC Case 4 0.2208 11.0745 2.5419

MPC w1 0.1923 11.3171 2.8623

MPC w2 1.0923 7.5360 2.2434

MPC w3 2.5884 5.9796 1.6727

by TV-δ reported in Table III, where Case 1 achieves 2.1990

and Case 2 yields 2.9875, both lower than W1 (2.8623) and

W2 (2.2434). Although W3 attains the lowest TV-δ (1.6727),

this comes at the cost of significantly worse lateral tracking

performance, with dy.max of 2.5884 meters more than ten

times higher than Case 4 (0.2208), as seen in Fig. 6. In terms

of lateral accuracy, Cases 1–3 offer comparable or slightly

higher tracking errors than the best baseline (W1: 0.1923 m),

but Case 4 demonstrates a clear improvement with dy.max of

only 0.2208 m. Furthermore, heading smoothness illustrated

in Fig. 7—is best in Case 2, which combines moderate αl

and αh. This case exhibits visibly reduced heading jerk and

minimized spikes, confirming that balanced reward weighting

improves maneuver stability. Overall the RL-assisted MPC

provides a mechanism to adaptively switch weight sets based

on the vehicle’s state, which can lead to improved overall

maneuver stability and comparable tracking performance, yet

with occasional increases in steering rate when aggressive

adjustments are beneficial for trajectory correction to minimize

lateral error.

Fig. 8 shows the action selection patterns of the RL agent for

each of the four training cases, where each action corresponds

to one of the three predefined MPC weight sets. The temporal

distribution of actions reflects how the agent adapts its control

strategy in response to the vehicle’s state during different

phases of the parking maneuver. In Case 1 and Case 2,

which place greater emphasis on heading stability, the agent

shows a tendency to remain with smoother-weight configu-
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Fig. 5. Steering rate Δδ over time for RL-assisted MPC Cases and baseline
controllers.

rations, particularly during turning and alignment segments.

In contrast, Case 4, which prioritizes lateral tracking, exhibits

more frequent switching between weight sets, suggesting a

more reactive control strategy to minimize deviation. These

variations highlight the agent’s capacity to modulate control

behavior in real-time and emphasize the role of reward design

in shaping policy adaptation.

Finally, the proposed RL-assisted MPC framework demon-

strates notable advantages over traditional static-weight MPC

configurations. Across all reward settings, the RL-assisted

controller achieved consistently lower steering input variabil-

ity (TV-δ) and smoother heading transitions. While lateral

tracking accuracy varied across cases, Case 4 achieved the

lowest maximum lateral deviation (dy.max) among all RL

configurations and outperformed two of the three baseline

controllers, while remaining very close to the best-performing

baseline. The ability to adapt cost weights dynamically based

on the vehicle’s state enabled the RL agent to respond effec-

tively across different phases of the maneuver including entry,

alignment, and final positioning. These results underscore

the potential of integrating model predictive control with

reinforcement learning for real-time, adaptive control in APS.
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Fig. 6. Lateral deviation dy over time for RL-assisted MPC Cases and
baseline controllers.
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Fig. 7. Heading acceleration Δ2ψ over time for RL-assisted MPC Cases and
baseline controllers.
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Fig. 8. Action selection over time for the RL-assisted MPC Cases.

IV. CONCLUSIONS

This paper presented an RL-assisted MPC framework that

dynamically adapts cost function weights to improve trajec-

tory tracking and control smoothness in autonomous parking

systems. By leveraging the predictive capabilities of MPC

and the adaptive decision-making of reinforcement learning

(RL), the proposed approach enables real-time adjustment

of control behavior without manual weight tuning or offline

re-optimization. Simulation results demonstrate that the RL-

assisted MPC controller consistently outperforms static-weight

MPC configurations in terms of steering smoothness and

heading stability. While lateral tracking performance varied

across reward configurations, the best-performing RL-assisted

MPC Case achieved lower maximum lateral deviation than

two of the three baseline controllers and remained very close

to the best-performing baseline. These findings highlight the

potential of hybrid learning-based control for enhancing adapt-

ability, generalization, and maneuver stability in structured

parking environments. Future work will focus on expand-

ing the experimental evaluation to include diverse parking

scenarios, such as varying initial vehicle positions, target

locations, and obstacle configurations. This extension will

allow a more comprehensive assessment of the robustness and

generalizability of the proposed RL-assisted MPC framework

in real-world applications.
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