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Abstract—While cryptography is used to protect the content
of secret information (message) by making it undecipherable,
behaviors (as opposed to information) may not be encrypted,
and may only be protected by partially or fully hiding through
creation of ambiguity by providing covers that generate indis-
tinguishable observations from secrets. Having a cover together
with partial observability does cause ambiguity about the system
behaviors to be kept secret, yet some information about secrets
may still be leaked due to statistical difference between the
occurrence probabilities of the secrets and their covers. One
possible quantification of statistical difference between two distri-
butions is based on their Jenson-Shannon divergence (JSD). We
propose a computation of JSD for systems modeled as partially-
observed Markov chains (POMC). Since an adversary is likely
to discriminate more if he/she observes for a longer period, our
goal is to evaluate the worst-case loss of secrecy as obtained in
limit over longer and longer observations. Illustrative example is
provided to demonstrate the proposed computation approach.

Keywords—Partially-observed Markov chains (POMC), Jenson-
Shannon divergence (JSD), Secrecy quantification.

I. INTRODUCTION

The rapid progress in information and communication
technology has made it possible for an adversary to eavesdrop
and/or attack confidential or private communication. While
cryptography is used to protect the content of secret in-
formation (message) by making it undecipherable, the same
technique may not be used to hide behaviors which may not
be encrypted. In such cases, secrecy can instead be attained
through creation of ambiguity, caused for example by partial
observation that ambiguates secrets from covers. Researchers
in the field of security and privacy have explored many
techniques for hiding secrets based on ambiguation schemes
such as, Steganography and Watermarking [1], [2], Network
level Anonymization [3], and Software Obfuscation [4].

Various notions of information secrecy have been ex-
plored in literature. References [5], [6], [7] defined the non-
interference for input-output systems as a property in which
the outputs that are observable to an adversary should not
depend on any secret input so that the adversary does not
deduce anything about the secret input by observing the output.
Non-interference is a logical notion that is either satisfied or
violated, and as such it does not allow the quantification of
the degree to which a system may violate the property. To
circumvent this limitation, the notion is enriched for prob-
abilistic systems for which the amount of interference can
be quantified in terms of the mutual information between the
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inputs and the outputs [5]. This however is only an average
case measure, and a worst case measure can be obtained by
replacing entropy with min-entropy in the definition of mutual
information [7]. For secrecy over sequences of inputs/outputs,
[8] requires that the execution of behaviors constituting a
secret must not be revealed to an observer by masking those
behaviors through indistinguishable behaviors that are non-
secret, known as cover. This is indeed analogous to the notion
of non-interference, which by virtue of being logical has the
same limitation that it cannot quantify the degree to which a
system is interfering (or leaks information).

For probabilistic DESs, where each discrete transition is
associated with a certain occurrence probability, more powerful
notions of secrecy can be defined. For example, [9] used
Jensen-Shannon divergence between the distributions of a
secret versus its cover as a way to quantify the secrecy. The
computation of Jensen-Shannon divergence is not known in
general: Only an approximation algorithm for upper bounding
the values of JSD was provided in [9]. Another attempt to
generalize secrecy from logical to stochastic DESs is provided
in [10], where, alike the setting of mutual information based
characterization of information leakage, the authors consider
the difference between the prior and posterior distributions
(before and after any observations) of the secret states, and
require it to be upper bounded. The corresponding verification
problem turns out to be undecidable. In another paper [11],
the same authors proposed the notion of Step-Based Almost
Current-State Opacity requiring the probability of revealing
the secret must be upper bounded at each time step. This
notion is decidable, but stringent since it is defined for each
individual step. In contrast, another definition of Sτ -secrecy
proposed by us [12], bounds the probability of revealing the
secret over the set of all behaviors, as opposed to for each step.
We showed that Sτ -Secrecy can be viewed as a generalization
of the logical secrecy defined in [8], and that it is a variant
of the divergence used in [9]. The above mentioned works
on secrecy (also referred to opacity in literatures), along with
related articles have been reviewed in a recent survey [13]. The
work reported in [14] also uses JSD measure for determining
statistical difference in Markovian models of genetic sequences
from phylogenetically proximal organisms, which however is
not related to secrecy as no information hiding through partial
observation is involved.

In this paper, we propose a JSD based quantification to
measure the secrecy loss in stochastic discrete event sys-
tems. Different from the above mentioned works, we consider
Markovian generators of arbitrary long sequences and that are
partially-observed, and provide a recursive method for JSD
computation: Given the distribution with respect to length-
(n−1) sequences, and the length-1 dynamics of the underlying
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partially-observed model, it computes the JSD of length-(n)
sequences. Under certain conditions, this recursion reaches a
fixed point, measuring worst case statistical difference that is
defined over arbitrary long sequences. Since JSD is always
bounded between 1 and 0, this worst case value is also
bounded. In this paper, we derive the above recursion, and
next construct an observer model of the given POMC, which
we then use to develop a state-based computation of the
fixed point JSD measure. The computation of JSD for a
POMC is challenging since a finite-state Markov chain under
partial observations is potentially infinite-state (with the state-
space being the conditional state distributions following the
observations). However, a finite-state observer representation
is possible, which we construct and employ for divergence
computation. This observer model is not a Markov chain model
since the transition probabilities are no longer scalars, rather
matrices, not necessarily square.

Rest of the paper is organized as follows. Section II
presents notation and preliminaries. Divergence based secrecy
quantification of information-flow secrecy is presented in Sec-
tion III, whereas Section IV presents an observer based com-
putation of worst-case JSD measure resulting from arbitrary
long observations. Section V presents example to illustrate the
approach, while Section VI concludes the paper.

II. NOTATIONS AND PRELIMINARIES

A. Stochastic DESs

For an event set Σ, define Σ := Σ ∪ {ε}, where ε denotes
“no-event”. The set of all finite length event sequences over
Σ, including ε is denoted as Σ∗, and Σ+ := Σ∗ − {ε}. A
trace is a member of Σ∗ and a language is a subset of Σ∗.
We use s ≤ t to denote if s ∈ Σ∗ is a prefix of t ∈ Σ∗, and
|s| to denote the length of s or the number of events in s.
For L ⊆ Σ∗, its prefix-closure is defined as pr(L) := {s ∈
Σ∗|∃t ∈ Σ∗ : st ∈ L} and L is said to be prefix-closed (or
simply closed) if pr(L) = L, i.e., whenever L contains a trace,
it also contains all the prefixes of that trace. For s ∈ Σ∗ and
L ⊆ Σ∗, L\s := {t ∈ Σ∗|st ∈ L} denotes the set of traces in
L after s.

A stochastic DES can be modeled by a stochastic automa-
ton G = (X,Σ, α, x0) that is an initialized labeled Markov
chain, where X is the set of states, Σ is the finite set of
events, x0 ∈ X is the initial state, and α : X × Σ ×
X → [0, 1] is the probability transition function [15], and
∀x ∈ X,

∑
σ∈Σ

∑
x′∈X α(x, σ, x′) = 1. G is non-stochastic

if α : X × Σ × X → {0, 1}, and a non-stochastic DES
is deterministic if ∀x ∈ X,σ ∈ Σ,

∑
x′∈X α(x, σ, x′) ≤ 1.

The transition probability function α can be generalized to
α : X×Σ∗×X in a natural way. Define the language generated
by G as L(G) := {s ∈ Σ∗ | ∃x ∈ X,α(x0, s, x) > 0}.
For a given G, a component C = (XC , αC) of G is a
“subgraph” of G, i.e., XC ⊆ X and ∀x, x′ ∈ XC and
σ ∈ Σ, αC(x, σ, x′) = α(x, σ, x′), whenever the latter is
defined. C is said to be a strongly connected component
(SCC) or irreducible if ∀x, x′ ∈ XC , ∃s ∈ Σ∗ such that
αC(x, s, x′) > 0. A SCC C is said to be closed if for each
x ∈ XC ,

∑
σ∈Σ

∑
x′∈XC αC(x, σ, x′) = 1. The states which

belong to a closed SCC are recurrent states and the remaining
states (that do not belong to any closed SCC) are transient
states. Another way to identify recurrent versus transient states

is to consider the steady-state state distribution π∗ as the fixed-
point of π∗ = π∗Ω, where π∗ is a row-vector with same size
as number of states, and Ω is the transition matrix with ijth
entry being the transition probability

∑
σ∈Σ α(i, σ, j). (In case

Ω is periodic with period d 6= 1, we consider the fixed-point
of π∗ = π∗Ωd). Then any state i is recurrent if and only if
the ith entry of π∗ is nonzero. Identifying the set of recurrent
states can be done polynomially, by the algorithm presented
in [16].

The events executed by a DES can be partially observed
by an observer (i.e., an adversary). The limited observation
capability of an observer can be represented as an observation
mask, M : Σ → ∆, where ∆ is the set of observed symbols
and M(ε) = ε. An event σ is unobservable if M(σ) = ε. The
set of unobservable events is denoted as Σuo and the set of
observable events is then given by Σ− Σuo. The observation
mask can be generalized in natural way to Σ∗ with M(ε) = ε
and ∀s ∈ Σ∗, σ ∈ Σ,M(sσ) = M(s)M(σ).

B. Secret/non-secret behaviors and refined plant

Suppose K ⊆ Σ∗ models the secret behaviors (traces),
whereas the remaining traces in L −K can be viewed as its
cover. Let the stochastic automaton G = (X,Σ, α, x0) with
generated language L(G) = L be the system model, and the
deterministic automaton R = (Y,Σ, β, y0) which specifies the
secret behaviors K be such that L(R) = K. Then a refinement
of G with respect to R, denoted GR, can be used to capture the
property-satisfying/violating traces in form of the reachability
of certain non-secret states (the state has D in it’s second
coordinate), and is given by GR := (X × Y ,Σ, γ, (x0, y0)),
where Y = Y ∪ {D}, and ∀(x, y), (x′, y′) ∈ X × Y , σ ∈
Σ, γ((x, y), σ, (x′, y′)) = α(x, σ, x′) if the following holds:

(y, y′ ∈ Y ∧ β(y, σ, y′) > 0) ∨ (y = y′ = D)

∨(y′ = D ∧
∑
y∈Y

β(y, σ, y) = 0),

and otherwise γ((x, y), σ, (x′, y′)) = 0. Then it can be
seen that the refined plant GR has the following properties:
(1) L(GR) = L(G); (2) any property-satisfying trace
s ∈ L(G) but not in L(R) transitions the refinement GR
to a non-secret state; (3) for each s ∈ L(G) = L(GR),∑
x∈X α(x0, s, x) =

∑
(x,y)∈X×Y γ((x0, y0), s, (x, y)),

i.e., the occurrence probability of each trace in GR is
the same as that in G. For (x, y), (x′, y′) ∈ X × Y ,
and δ ∈ ∆, define the set of traces originating at
(x, y), terminating at (x′, y′) and executing a sequence
of unobservable events followed by a single observable
event with observation δ as LGR((x, y), δ, (x′, y′)) :=
s ∈ Σ∗|s = uσ,M(u) = ε,M(σ) = δ, γ((x, y), s, (x′, y′)) > 0.
Define α(LGR((x, y), δ, (x′, y′))) :=∑
s∈LGR ((x,y),δ,(x′,y′)) γ((x, y), s, (x′, y′)), and denote

it as θi,δ,j , i.e., it is the probability of all traces
originating at i = (x, y), terminating at j = (x′, y′)
and executing a sequence of unobservable events
followed by a single observable event with observation
δ. Also define λij =

∑
σ∈Σuo

γ((x, y), σ, (x′, y′)) as
the probability of transitioning from (x, y) to (x′, y′)
while executing a single unobservable event. Then
θi,δ,j =

∑
k λikθk,δ,j +

∑
σ∈Σ:M(σ)=δ γ((x, y), σ, (x′, y′)),

where the first term on the right hand side (RHS) corresponds
to transitioning in at least two steps (i to intermediate k



Fig. 1. (a) Stochastic automaton G; (b) deterministic secret specification R;
(c) refinement GR;

unobservably, and k to j with a single observation δ at
the end), whereas, the second term on RHS corresponds to
transitioning in exactly one step [17]. Thus, for each δ ∈ ∆,
all the probabilities {θi,δ,j |i, j ∈ X × Y } can be found by
solving the following matrix equation [18]:

Θ(δ) = ΛΘ(δ) + Γ(δ), (1)

where Θ(δ),Λ and Γ(δ) are all |X × Y | × |X × Y | square
matrices whose ijth elements are given by θi,δ,j , λij and∑
σ∈Σ:M(σ)=δ γ((x, y), σ, (x′, y′)), respectively.

Example 1: Fig. 1(a) is an example of a stochastic
automaton G. The set of states is X = {0, 1, 2} with initial
state x0 = 0, event set Σ = {a, b, c}. A state is depicted
as a node, whereas a transition is depicted as an edge
between its origin and termination states, with its event name
and probability value labeled on the edge. The observation
mask M is such that M(c) = ε and for all other events
σ ∈ {a, b}, M(σ) = σ. Suppose R is given in Fig. 1(b), i.e.,
K = L(R) = ab∗, L − K = ca∗ ∪ (ca∗b)+ ∪ (ca∗b)+ab∗.
Then the refinement GR automaton is shown in
Fig. 1(c). Let the state space of GR be Y =
y1 = (0, 0), y2 = (2, 1), y3 = (1, D), y4 = (0, D), Y5 = (2, D).
Then, by solving (1) we get for Θ(a) the following
entries: Θ(1, 2) = Θ(4, 5) = 0.5,Θ(1, 3) = Θ(4, 3) =
0.375,Θ(3, 3) = 0.75, and zeros elsewhere. Similarly, we
can solve for Θ(b) entries as follows: Θ(1, 4) = Θ(4, 4) =
0.125,Θ(2, 2) = Θ(5, 5) = 1,Θ(3, 4) = 0.25, and zeros
elsewhere. Note that the size of |Θ(a)| = |Θ(b)| = 5 × 5
matrices.

In [8] a logical version of secrecy was defined, which is
satisfied whenever each secret can be masked by a cover,
and vice-versa, with non-zero probability. A weaker version
considered in [12], allows some secrets/covers to be non-
masked, but limits the probability of such traces to be a small
number. In the next section a new approach for measuring the
level of secrecy is introduced utilizing the notion of JSD.

III. DIVERGENCE BASED SECRECY QUANTIFICATION

For any n ∈ N, and a length-n observation o ∈ ∆n, let
pn(o) denote the probability of observation o. Then since the

occurrences of observations of length n are mutually disjoint,∑
o∈∆n pn(o) = 1, i.e., pn is a probability distribution over

∆n. Then we write its entropy as:

H(pn) = −
∑
o∈∆n

pn(o) log pn(o)

= H(pn−1)−
∑

o∈∆n−1

pn−1(o)
∑
δ∈∆

p(δ|o) log p(δ|o) (2)

We define two more probability distributions over ∆n, proba-
bility that an observation o ∈ ∆n is generated by some secret
in K, denoted psn(o), versus that is generated by some cover
in L−K, denoted pcn(o):

psn(o) :=
Pr(s ∈ K ∩M−1(o))

Pr(s ∈ K ∩M−1(∆n))
=:

p̃sn(o)

λsn
,

pcn(o) :=
Pr(s ∈ (L−K) ∩M−1(o))

Pr(s ∈ (L−K) ∩M−1(∆n))
=:

p̃cn(o)

λcn
.

Note λsn and λcn are the probabilities of secrets and covers,
respectively, of length n, and λsn + λcn = 1 for all n ∈ N.
Then the entropy of psn and pcn are given, respectively, by:

H(psn) = −
∑
o∈∆n

psn(o) log psn(o) (3)

H(pcn) = −
∑
o∈∆n

pcn(o) log pcn(o) (4)

The ability of an intruder to identify secret versus cover
behaviors based on observations of length n, depends on the
disparity between the two distributions psn versus pcn: If psn and
pcn are identical, i.e., with “zero disparity”, there is no way to
statistically tell apart secrets from covers, and in that case there
is perfect secrecy. However, when psn and pcn are different, then
one could characterize the ability of an intruder to discriminate
secrets from covers, based on length-n observations, using the
JSD between psn and pcn, denoted D(psn, p

c
n). This JSD is given

by the following weighted sum of a pair of KL-divergences
between, respectively, psn and pcn, and their weighted sum:

D(psn, p
c
n) = λsnDKL(psn, λ

s
np
s
n + λcnp

c
n)

+λcnDKL(pcn, λ
s
np
s
n + λcnp

c
n)

= λsn
∑
o∈∆n

psn(o) log
psn(o)

λsnp
s
n(o) + λcnp

c
n(o)

+λcn
∑
o∈∆n

pcn(o) log
pcn(o)

λsnp
s
n(o) + λcnp

c
n(o)

= H[λsnp
s
n + λcnp

c
n]− λsnH(psn)− λcnH(pcn). (5)

where DKL represents the Kullback-Leibler (KL) divergence.
Note that JSD is symmetric in its arguments and bounded by
0 and 1. An intruder is likely to discriminate more if he/she
observes for a longer period, and accordingly, our goal is to
evaluate the worst-case loss of secrecy as obtain in the limit:
limn→∞D(psn, p

c
n). This worst-case JSD provides an upper

bound to quantification of the amount of information leaked
about secrets.

A. Recursive Characterization

We first develop a recursive computation for D(psn, p
c
n),

relating it to distributions of length-(n− 1) observations, and
divergence of length-1 distributions. For o ∈ ∆∗ and δ ∈ ∆,



define the distributions of secret versus cover upon a single
observation δ following a history of observation o:

ps(δ|o) :=
Pr(s ∈ K ∩M−1(oδ))

Pr(s ∈ K ∩M−1(o{∆}))

=:
p̃s(δ|o)∑
δ∈∆ p̃s(δ|o)

=
p̃s(δ|o)
λs|o

, and (6)

pc(δ|o) :=
Pr(s ∈ (L−K) ∩M−1(oδ))

Pr(s ∈ (L−K) ∩M−1(o{∆}))

=:
p̃c(δ|o)∑
δ∈∆ p̃c(δ|o)

=
p̃c(δ|o)
λc|o

. (7)

Then note also that λc|o + λs|o = 1, and the JSD of ps(·|o)
and pc(·|o), denoted for short as ps|o and pc|o respectively,
satisfies:

D(ps|o, pc|o) = H[λs|ops|o + λc|opc|o]− λs|oH(ps|o)

−λc|oH(pc|o) (8)

= −
∑
δ∈∆

p(δ|o) log p(δ|o) +
∑
δ∈∆

p̃s(δ|o) log ps(δ|o)

+
∑
δ∈∆

p̃c(δ|o) log pc(δ|o), (9)

where p(δ|o) := λs|ops|o + λc|opc|o = p̃s(δ|o) + p̃c(δ|o). By
substituting ps(δ|o) in (9) with p̃s(δ|o)

λs|o
as in (6) and pc(δ|o) in

(9) with p̃c(δ|o)
λc|o

as in (7), we have

D(ps|o, pc|o) = −
∑
δ∈∆

p(δ|o) log p(δ|o) +H({λs|o, λc|o})

+
∑
δ∈∆

p̃s(δ|o) log p̃s(δ|o) +
∑
δ∈∆

p̃c(δ|o) log p̃c(δ|o).

Then

D(ps|o, pc|o)−H({λs|o, λc|o}) = −
∑
δ∈∆

p(δ|o) log p(δ|o)

+
∑
δ∈∆

p̃s(δ|o) log p̃s(δ|o) +
∑
δ∈∆

p̃c(δ|o) log p̃c(δ|o)

Then we have

D(psn, p
c
n) = H({λsn, λcn})

+
∑

o∈∆n−1

pn−1(o){−H({λs|o, λc|o}) +D(ps|o, pc|o)} (10)

B. State Distribution based characterization

We have characterized the JSD computation following
observations of length n, and next we map it to a computation
based on the state-distribution following an observation. Each
observation o ∈ ∆∗ results in a conditional state distribution
π(o), which can be computed recursively as follows: for any
o ∈ ∆∗, δ ∈ ∆: π(ε) = π0 and π(oδ) = π(o)×Θ(δ)

||π(o)×Θ(δ)|| , where
π0 is the initial state distribution. Let Π denote the set of all
such conditional state distributions, and for each π ∈ Π and
n ∈ N, denote Pn(π) = Pr(o ∈ ∆n : π(o) = π), which
is the probability that the set of all observations of length n,
upon which the conditional state distribution is π. Then the
divergence of (10) can be rewritten as:

D(psn, p
c
n) = H({λsn, λcn})

+
∑
π∈Π

Pn−1(π){−H({λs|π, λc|π}) +D(ps|π, pc|π)}, (11)

where for each π ∈ Π, ps|π = ps(·|π), pc|π =
pc(·|π), λs|π, λc|π are defined as follows, in which the no-
tations Is and Ic denote indicator column vectors of same
size as number of states, with binary entries to identify the
secret versus cover states (states reached by traces in K versus
L−K):

p̃s(δ|π) := πΘ(δ)Is, p̃c(δ|π) := πΘ(δ)Ic

λs|π :=
∑
δ∈∆

p̃s(δ|π), λc|π :=
∑
δ∈∆

p̃c(δ|π)

ps(δ|π) :=
p̃s(δ|π)

λs|π
, pc(δ|π) :=

p̃c(δ|π)

λc|π
.

In the limit when n → ∞, if the distribution Pn(·) over Π
converges to P ∗(·), then the limit of D(psn, p

c
n) exists (see for

example [19] for a condition under which such a convergence
is guaranteed).

IV. OBSERVER BASED COMPUTATION

Let Obs be an observer automaton with state set Z ⊆
2X×Y , so that each node z ∈ Z of the observer is a subset
of the system states, i.e., z ⊆ (X,Y ), and we use |z| to
denote the number of system states in z. Obs is initialized
at node z0 = {(x0, y0)}, and there is a transition labeled with
δ ∈ ∆ from node z to z′ if and only if every element of z′ is
reachable from some elements of z along a trace that ends in
the only observation δ, i.e., z′ = {(x′, y′) ∈ X×Y : ∃(x, y) ∈
z, LGR((x, y), δ, (x′, y′)) 6= ∅}. Associated with this transition
is the transition probability matrix Θz,δ,z′ of size |z| by |z′|,
and a submatrix of Θ matrix introduced earlier, whose ijth
element is θi,δ,j , which is the transition probability from ith
element (x, y) of z to jth element (x′, y′) of z′ while produc-
ing the observation δ, and equals α(LGR((x, y), δ, (x′, y′))).

Associated with each observation o ∈ ∆∗, there is a
reachable state distribution π(o) as discussed earlier. Let the
state z be reached in Obs following observation o. Then
obviously the number of positive elements of π(o) is the
same as the number of elements in z. Then with a slight
abuse of notation, we also use π(o) to denote the row-vector
containing only positive elements, and of same size as the
number of elements in the node reached by o in Obs. Then
π(o) can also be recursively computed as follows: for any
o ∈ ∆∗, δ ∈ ∆: π(ε) = 1 and π(oδ) =

π(o)×Θzo,δ,zoδ
||π(o)×Θzo,δ,zoδ ||

,
where zo and zoδ are the nodes reached in Obs following o
and oδ respectively. Then it can be seen that along any cycle in
Obs, the distribution upon completing the cycle is a function
of the distribution upon entering the cycle, through a sequence
of transition matrix-multiplications and their normalizations. In
case of steady-state, those two distributions will be the same,
namely, a fixed point of that function. In the following, we
assume the existence of such steady-state:

Assumption 1: Assume that for any sufficiently long ob-
servations o1 ≤ o2, if Obs reaches the same node following
o1 and o2, then π(o1) = π(o2).

The following procedure computes the worst-case loss of
secrecy, under Assumption 1.

1) Construct a (
∑
z |z|)× (

∑
z |z|) square matrix Θ̃, whose

ijth block is the |zi| × |zj | matrix
∑
δ Θzi,δ,zj . Compute



the fix point distribution associated with Θ̃ by solving
π∗ = π∗Θ̃, where π∗ is a row vector of size

∑
z |z|. For

each zi ∈ Z, let p(zi) be the summation of the ith block
of π∗, then zi is recurrent if p(zi) > 0. Also note that for
each z ∈ Z, exists a sufficiently large N such that p(z) =∑
o∈∆N :o reaches z pN (o). In other words, p(z) computes

the probability of all sufficiently long observations that
reach the observer state z.

2) Obtain λs as the summation of the elements of π∗

corresponding to the secret states, i.e., λs := π∗Is, and
λc = 1− λs.

3) For a set of recurrent nodes {z1, z2, . . . , zn} that form
a SCC, define a set of distributions {π∗z1 , π

∗
z2 , . . . , π

∗
zn}

to be a set of steady state distributions if the following
holds:

∀i, j, δ, for which Θzi,δ,zj is defined,

π∗zj =
π∗ziΘzi,δ,zj

||π∗ziΘzi,δ,zj ||
. (12)

Then π∗zi represents a steady state conditional distribu-
tion following a single sufficiently long observation, that
reaches zi. Due to the fixed-point nature of π∗zi , any
other longer observation that also reaches zi also induces
the same conditional distribution π∗zi . There may exist
multiple set of steady state distributions for a given set of
recurrent nodes, denoted say as {{π∗z1,k, . . . , π

∗
zn,k
}, k ∈

N}. Then under Assumption 1, for any sufficiently long
observation that reaches a recurrent node z, there exists
k ∈ N such that π(o) = π∗z,k. Denote p(z, k) := Pr[{o |
o reaches z and π(o) = π∗z,k}].
Then the following formulas compute D(psn, p

c
n) as n→

∞, under Assumption 1.
4) Let Isz′ and Icz′ be indicator column vectors with binary

entries of size |z′| for identifying within z′, the secret and
cover states, respectively. For each steady state distribu-
tion π∗z,k of each recurrent node z, define:

p̃s(δ|π∗z,k) := π∗z,kΘz,δ,z′Isz′ , p̃c(δ|π∗z,k) := π∗z,kΘz,δ,z′Icz′
λs|π

∗
z,k :=

∑
δ∈∆

p̃s(δ|π∗z,k), λc|π
∗
z,k :=

∑
δ∈∆

p̃c(δ|π∗z,k)

ps(δ|π∗z,k) :=
p̃s(δ|π∗z,k)

λs|π
∗
z,k

, pc(δ|π∗z,k) :=
p̃c(δ|π∗z,k)

λc|π
∗
z,k

5) Then, applying (11), the JSD between psn and pcn when
n→∞ is given by:

lim
n→∞

D(psn, p
c
n) = H({λs, λc})

+
∑

z:z is recurrent

∑
k∈N

p(z, k){−H({λs|π
∗
z,k , λc|π

∗
z,k})

+D(ps|π
∗
z,k , pc|π

∗
z,k)}, (13)

where JSD D(ps|π
∗
z,k , pc|π

∗
z,k) of ps(δ|π∗z,k) and

pc(δ|π∗z,k) can be computed in a similar way as (8).
6) When the set of steady state distributions is unique, then

in that case, k = 1 and we have: p(z, k) = p(z) in (13)
above.

V. ILLUSTRATIVE EXAMPLE

Consider the models of Fig.(2). The following computation
illustrates the steps given in previous section.

Fig. 2. System model

Fig. 3. Observer

1) In this example
∑
z |z| = 8 and so Θ̃ is a 8 × 8 matrix

with entries:
Θ̃(1, 2) = Θ̃(1, 3) = Θ̃(1, 5) = 0.1, Θ̃(3, 4) = Θ̃(3, 7) =
0.5, Θ̃(1, 4) = Θ̃(2, 6) = Θ̃(5, 5) = 0.7, Θ̃(2, 5) =
Θ̃(5, 8) = 0.3, Θ̃(4, 4) = Θ̃(6, 6) = Θ̃(7, 7) = Θ̃(8, 8) =
1, and zeros elsewhere. and

π∗ = [ 0 0 0 0.75 0 0.07 0.05 0.13 ] .

Therefore p(z0) = p(z1) = 0, p(z2) = 0.75, p(z3) = 0.12
and p(z4) = 0.13.

2) Here

Is = [ 1 1 0 0 1 1 0 1 ]
T

Ic = [ 0 0 1 1 0 0 1 0 ]
T

And so λs = 0.2 and λc = 0.8.
3) Here z2, z3 and z4 are recurrent nodes, and each of

them forms a SCC. We have π∗z2 = [1 0], π∗z4 = [1],
and while there are multiple solutions to the equation
set π∗z3 =

π∗z3
Θz3,a,z3

π∗z3
Θz3,a,z3

and π∗z3 =
π∗z3

Θz3,b,z3
π∗z3

Θz3,b,z3
, only

π∗z3 = [0.5833 0.4167] is reachable. Thus each recurrent
set of nodes is a singleton set, and each with a unique
fixed-point distribution. So, for each recurrent node z,
k = 1 in definition of p(z, k), and hence p(z, k) = p(z).



4) Here Isz2 = [0 1]T , Icz2 = [1 0]T , Isz3 = [1 0]T , Icz3 =
[0 1]T , Isz4 = [1]T and Icz4 = [0]T . For z2 and π∗z2 ,

p̃s(a|π∗z2) = π∗z2Θz2,a,z4Isz4 = 0

p̃s(b|π∗z2) = π∗z2Θz2,b,z2Isz2 = 0

p̃c(a|π∗z2) = π∗z2Θz2,a,z4Icz4 = 0

p̃c(b|π∗z2) = π∗z2Θz2,b,z2Icz2 = 1

λs|π
∗
z2 =

∑
δ∈∆

p̃s(δ|π∗z2) = 0

λc|π
∗
z2 =

∑
δ∈∆

p̃c(δ|π∗z2) = 1

pc(b|π∗z2) =
p̃c(b|π∗z2)

λc|π
∗
z2

= 1

ps(a|π∗z2) = pc(a|π∗z2) = ps(b|π∗z2) = 0

For z3 and π∗z3 ,

p̃s(a|π∗z3) = 0.175, p̃s(b|π∗z3) = 0.4083

p̃c(a|π∗z3) = 0.125, p̃c(b|π∗z3) = 0.2917

λs|π
∗
z3 = 0.5833, λc|π

∗
z3 = 0.4167

ps(a|π∗z3) = 0.3, ps(b|π∗z3) = 0.7

pc(a|π∗z3) = 0.3, pc(b|π∗z3) = 0.7

For z4 and π∗z4 ,

p̃s(a|π∗z4) = 0.3, p̃s(b|π∗z4) = 0.7

p̃c(a|π∗z4) = 0, p̃c(b|π∗z4) = 0

λs|π
∗
z4 = 1, λc|π

∗
z4 = 0

ps(a|π∗z4) = 0.3, ps(b|π∗z4) = 0.7

pc(a|π∗z4) = pc(b|π∗z4) = 0

5) Therefore we have,

lim
n→∞

D(psn, p
c
n) = H({λs, λc}) +

∑
z:p(z)>0

p(z)

{−H({λs|π
∗
z , λc|π

∗
z}) +D(ps|π

∗
z , pc|π

∗
z )},

= 0.7219− 0.1176 = 0.6043

Remark 1: Note that the ability to quantify the secrecy
loss may provide a good indication of how secure the system
is; for instance for the above example, 0.6043 may or may
not be an acceptable level of secrecy loss depending on the
application. For example cache memory side channel attacks
were explored in [20]. Our computation shows that no amount
of secret could be revealed through the side-channel if the
cache line is periodically evicted by the processor.

VI. CONCLUSION

In this paper we presented a quantification of the level of
information-flow secrecy loss in partially-observed stochastic
systems modeled as partially-observed labeled Markov chains,
where information about the system secrets may be revealed
through the side-channel of observable inputs/outputs. The
statistical difference between the influence of secrets versus
covers on the observables, in the form of the Jensen Shannon
Divergence measure, is employed to quantify the loss of
secrecy. We proposed the computation of the “limiting” JSD
as a measure of worst case secrecy loss, resulting from their
longer and longer observations. We also presented a state-
based approach for computing the fixed-point or limiting

JSD. The computation of JSD is challenging since a finite-
state Markov chain under partial observations is potentially
infinite-state (with the state-space being the conditional state
distributions following the observations), and while a finite-
state observer model is possible, the model is no longer
a Markov chain (since it does not possess scalar transition
probabilities).
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