
Online Failure Diagnosis of Stochastic Discrete Event Systems

Jun Chen, Student Member, IEEE and Ratnesh Kumar, Fellow, IEEE

Abstract— This paper deals with the detection of (permanent)
fault in the setting of stochastic discrete-event systems (DESs)
under partial observability of events. Prior works have only
studied the verification of the stochastic diagnosability (S-
Diagnosability) property. To the best of our knowledge, this
is a first paper that investigates the online detection schemes
and also introduces the notions of their missed detections (MDs)
and false alarms (FAs), and we establish that S-Diagnosability
is a necessary and sufficient condition for achieving any desired
levels of MD and FA rates. Next we provide a detection scheme,
that can achieve the specified MD and FA rates, based on
comparing a suitable detection statistic, that we define, with a
suitable detection threshold, that we algorithmically compute.
We also algorithmically compute the corresponding detection
delay bound. The detection scheme also works for non-S-
Diagnosable systems, with the difference that in this case only
any FA rate can be met, and there exists a minimum MD rate
that increases as FA rate is decreased.

I. INTRODUCTION

The problem of failure detection in discrete-event systems
(DESs) has been widely studied [1]-[9]. The notion of
stochastic diagnosability, S-Diagnosability, was proposed in
[5] (where it is referred as AA-diagnosability). A neces-
sary and sufficient test for checking S-Diagnosability that
has a polynomial complexity was presented in [1]. These
prior works have only studied the verification of the S-
Diagnosability property; a technique online fault detection
hasn’t yet been examined in literature. To the best of our
knowledge, this is a first paper that investigates the online
detection schemes for stochastic DESs and also introduces
the notions of their missed detections (MDs) and false alarms
(FAs). Due to the probabilistic nature of the problem, MDs
and FAs are possible even for S-Diagnosable systems, and we
establish that S-Diagnosability is a necessary and sufficient
condition for achieving any desired levels of MD and FA
rates.

Next we present a detection scheme, that can achieve the
specified MD and FA rates, based on comparing a suitable
detection statistic with a suitable detection threshold that we
algorithmically compute. We also algorithmically compute
the corresponding detection delay bound. The idea is that
given any observation (of partially observed events), the
detector recursively computes the conditional probability of
the nonoccurrence of a fault and issues a “fault” decision if
the probability of the nonoccurrence of a fault falls below
an appropriately chosen threshold, and issues “no-decision”
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otherwise. We show that the existence of a detector for
any desired MD and FA rates is a necessary and sufficient
condition for the system to be S-Diagnosable. Algorithms
for determining the detection scheme parameters of detec-
tion threshold and detection delay bound for the specified
MD and FA rates requirement are also presented, based
on the construction of an extended observer. Our detection
strategy works for S-Diagnosable system as well as non-
S-Diagnosable systems in the same manner. For a non-S-
Diagnosable system an arbitrary performance requirement is
achievable only for the FA rate, whereas a lower bound exists
for the achievable MD rate that is a function of the FA rate,
and increases as FA rate is decreased. A variant of the above
mentioned algorithm is also presented to compute an upper
bound for the minimum achievable MD rate for a non-S-
Diagnosable system.

The rest of this paper is organized as following. The
notations and some preliminaries are presented in Section II,
followed by the proposed online fault detector and algorithms
in Section III. Section IV concludes the paper.

II. NOTATIONS AND PRELIMINARIES

A. Stochastic DESs

For an event set Σ, define Σ := Σ∪{ε}, where ε represents
“no-event”, and Σ∗ denotes the set of all finite length event
sequences over Σ, including ε. A member of Σ∗ is called
a trace. Denote as s ≤ t if s ∈ Σ∗ is a prefix of t ∈ Σ∗,
and use |s| to denote the number of events in s or the length
of s. A subset of Σ∗ is called language. For L ⊆ Σ∗, its
prefix-closure, denoted as pr(L), is defined as pr(L) := {s ∈
Σ∗|∃t ∈ L : s ≤ t}. L is said to be prefix-closed (or simply
closed) if pr(L) = L, i.e., whenever L contains a trace, it
also contains all the prefixes of that trace. For s ∈ Σ∗ and
L ⊆ Σ∗, L\s denotes the set of traces in L after s and is
defined as L\s := {t ∈ Σ∗|st ∈ L}.

A stochastic DES can be modeled as a stochastic automa-
ton G which is denoted by G = (X,Σ, α, x0), where X
is the set of states, Σ is the finite set of events, x0 ∈ X
is the initial state, and α : X × Σ × X → [0, 1] is
the transition probability function [10], satisfying: ∀x ∈
X,

∑
σ∈Σ

∑
x′∈X α(x, σ, x′) = 1. G is said to be non-

stochastic if α : X × Σ × X → {0, 1}, and a non-
stochastic DES is said to be deterministic if ∀x ∈ X,σ ∈
Σ,

∑
x′∈X α(x, σ, x′) ≤ 1. The transition probability func-

tion α can be extended from domain X × Σ × X to
X × Σ∗ × X recursively as follows: ∀xi, xj ∈ X, s ∈
Σ∗, σ ∈ Σ, α(xi, sσ, xj) =

∑
xk∈X α(xi, s, xk)α(xk, σ, xj),

and α(xi, ε, xj) = 1 if xi = xj and 0 otherwise. Define a
transition in G as a triple (xi, σ, xj) ∈ X × Σ × X where
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Fig. 1. Stochastic automaton G for Example 1.

α(xi, σ, xj) > 0 and define the language generated by G as
L(G) := {s ∈ Σ∗ | ∃x ∈ X,α(x0, s, x) > 0}.

The observations of events are filtered through an obser-
vation mask, M : Σ → ∆, satisfying M(ε) = ε, where
∆ is the set of observed symbols. An event σ is said to
be unobservable if M(σ) = ε, and the set of unobservable
events is denoted as Σuo and the set of observable events
is then denoted by Σ − Σuo. The observation mask can be
extended from domain Σ to Σ∗ inductively as following:
M(ε) = ε and ∀s ∈ Σ∗, σ ∈ Σ,M(sσ) = M(s)M(σ).

Example 1: Fig. 1 is an example of a stochastic automaton
G. The set of states is X = {0, 1, 2, 3} with initial state
x0 = 0, event set Σ = {a, b, c, f}. A state is depicted as a
node, whereas a transition is depicted as an edge between
its origin and termination states, with its event name and
probability value labeled on the edge. The observation mask
M is such that M(f) = ε and otherwise M(σ) = σ.

B. Faulty/nonfaulty Behaviors and Refined Plant

For a stochastic automaton G = (X,Σ, α, x0), its
faulty/nonfaulty behaviors can be modeled by partitioning
the events set Σ into faulty events Σf ⊆ Σ versus nonfaulty
events Σ−Σf where the set of faulty events Σf are assumed
to be unobservable. Then the overall behaviors of G is given
by its generated language L(G), whereas the set of nonfaulty
behaviors of G is given by K = L(G) ∩ (Σ − Σf )∗. The
remaining behaviors L−K are called the faulty behaviors.
Another approach to describing the faulty/nonfaulty behav-
iors of a given stochastic automaton G is to specify the
nonfaulty behaviors K in form of a deterministic automaton
R = (Q,Σ, β, q) such that L(R) = K, [11]. Then the
refinement of G with respect to R, denoted as refined plant
GR, can be used to capture the traces violating the given
specification in form of the reachability of a faulty state and
is given by GR := (Y,Σ, γ, (x0, q0)), where Y = X × Q
and Q = Q ∪ {F}, and ∀(x, q), (x′, q′) ∈ X × Q, σ ∈
Σ, γ((x, q), σ, (x′, q′)) = α(x, σ, x′) if the following holds:

(q, q′ ∈ Q ∧ β(q, σ, q′) > 0)

∨(q = q′ = F ) ∨

q′ = F ∧
∑
q∈Q

β(q, σ, q) = 0

 ,

and otherwise γ((x, q), σ, (x′, q′)) = 0.
Then it can be seen that the refined plant GR has the

following properties: (1) the generated language of the
refined plant GR is the same as the one generated by G, i.e.

Fig. 2. Deterministic nonfault specification of system G in Fig. 1.

L(GR) = L(G); (2) any trace (system behavior) in L(G)
but not in L(R) transitions the refined plant GR to a faulty
state (a state containing F as its second coordinate); (3) the
probability of occurrence of each trace in GR is the same as
that in G, i.e.,

∑
x∈X α(x0, s, x) =

∑
y∈Y γ((x0, q0), s, y).

For yi, yj ∈ Y and δ ∈ ∆, define the set of traces
originating at yi, terminating at yj and executing a sequence
of unobservable events followed by a single observable
event with observation δ as LGR(yi, δ, yj) := {s ∈ Σ∗ |
s = uσ,M(u) = ε,M(σ) = δ, γ(yi, s, yj) > 0}. Define
α(LGR(yi, δ, yj)) :=

∑
s∈LGR (yi,δ,yj) γ(yi, s, yj) and de-

note it as µi,δ,j for short, i.e., it is the probability of all traces
originating at yi, terminating at yj and executing a sequence
of unobservable events followed by a single observable event
with observation δ. Also define λij =

∑
σ∈Σuo

γ(yi, σ, yj) as
the probability of transitioning from yi to yj while executing
a single unobservable event. Then it can be seen that µi,δ,j =∑
k λikµk,δ,j +

∑
σ∈Σ:M(σ)=δ γ(yi, σ, yj), where the first

term on RHS corresponds to transitioning in at least two steps
whereas the second term on RHS corresponds to transitioning
in exactly one step. Thus for each δ ∈ ∆, given the values
{λij |i, j ∈ Y } and {

∑
σ∈Σ:M(σ)=δ γ(yi, σ, yj)|i, j ∈ Y }, all

the probabilities {µi,δ,j |i, j ∈ Y } can be found by solving
the following matrix equation (see for example [12] for a
similar matrix equation):

µ(δ) = λµ(δ) + γ(δ), (1)

where µ(δ), λ and γ(δ) are all |Y | × |Y | square ma-
trices whose ijth elements are given by µi,δ,j , λij and∑
σ∈Σ:M(σ)=δ γ(yi, σ, yj), respectively.
Example 2: For system presented in Fig. 1, the determin-

istic nonfault specification R is given in Fig. 2. Then the
refined plant GR is shown in Fig. 3. Let the state space of GR
be Y = {y1 = (0, 0), y2 = (1, 1), y3 = (2, 2), y4 = (3, F )}.
By solving matrix equations (1), we get

µ(a) =

 0 1 0 0
0 0 0 .05
0 0.1 0 0
0 0 0 .5



µ(b) =

 0 0 0 0
0 0 .9 .05
0 0 0 0
0 0 0 .5



µ(c) =

 0 0 0 0
0 0 0 0
0 0 .9 0
0 0 0 0

 .
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Fig. 3. The refined plant of system G in Fig. 1, when the deterministic
nonfault specification R is given in Fig. 2.

III. STOCHASTIC DIAGNOSABILITY AND ONLINE
DETECTION

A. Stochastic Diagnosability of DESs

Let us recall the definition of S-Diagnosability [1] (re-
ferred as AA-diagnosability in [5]):

Definition 1: Given a stochastic DES G = (X,Σ, α, x0),
deterministic nonfault specification R = (Q,Σ, β, q0) with
generated languages L = L(G) and K = L(R), (L,K)
is said to be Stochastically Diagnosable, or simply S-
Diagnosable, if

(∀τ > 0 ∧ ∀ρ > 0)(∃n ∈ N)(∀s ∈ L−K)

Pr(t : t ∈ L\s, |t| ≥ n, PN (st) > ρ) < τ,

where PN : L − K → [0, 1] is a map that assigns to each
faulty trace s ∈ L−K, the probability of s being ambiguous,
which is the probability of all nonfaulty traces, conditioned
by the fact that ambiguity can only arise from the system
traces that produce the same observation as s, and is given
by:

PN (s) := Pr(u ∈ K|M(u) = M(s))

=
Pr(u ∈ K : M(u) = M(s))

Pr(u ∈ L : M(u) = M(s))
.

Note in the definition of PN (s), “|” denotes the condition-
ing operation. Polynomial complexity algorithm for checking
S-Diagnosability was also given in [1].

Example 3: By applying algorithm in [1] one can show
that system in Fig. 3 is S-Diagnosable. As can be seen, after
a fault occurs, and if one continues to observe the system
for enough number of transitions, then with high probability
two consecutive a or two consecutive b will be observed,
resolving the ambiguity that a fault occurred.

Here we present a new characterization of S-
Diagnosability which states that the S-Diagnosability
is lost if and only if there exists an indistinguishable pair of
faulty and nonfaulty traces such that all future observations
have identical probability of being faulty versus nonfaulty.

Theorem 1: (L,K) is not S-Diagnosable if and only if:

(∃s ∈ L−K, s′ ∈ K s.t. M(s) = M(s′))(∀o ∈ ∆∗)

Pr(t : t ∈ L\s,M(t) = o)

= Pr(t : t ∈ K\s′,M(t) = o).

Remark 1: While the definition of S-Diagnosability ap-
plies to the set of faulty traces L − K, Theorem 1 is
symmetric with respect to faulty and nonfaulty traces, and
thus suggests that notion of diagnosability can also be defined
for nonfaulty traces: s ∈ K is not diagnosable if and only if
there exists s′ ∈ L−K ∩M−1M(s) such that for all future
observations o ∈ ∆∗, Pr(M−1(o)∩K\s) = Pr(M−1(o)∩
L\s′). We denote the set of all non-diagnosable nonfaulty
traces as Knd ⊆ K. Clearly, for a S-Diagnosable system,
Knd = ∅.

B. Computation of Likelihood of No-fault

When the system executes a trace s ∈ L, an observation
o = M(s) is received by a fault detector. In order to issue
a fault-decision versus no-decision for the observation o =
M(s), we propose the detector compute the likelihood of no-
fault, and issue a fault-decision if this likelihood of no-fault is
below a suitable threshold, and otherwise issue no-decision.
In this subsection we present how this likelihood can be
recursively computed. With a slight abuse of notation, we
denote the no-fault likelihood function PN : M(L)→ [0, 1]
and define it to be the conditional probability of nonoccur-
rence of a fault following any observation o ∈M(L):

PN (o) :=
Pr(u ∈ K : M(u) = o)

Pr(u ∈ L : M(u) = o)
.

Note that PN (o) is the probability of nonfaulty traces con-
ditioned by the fact that ambiguity can only arise from
the system traces that produce the observation o. In order
to recursively compute PN we proceed as follows. For a
given refined plant GR whose state space is partitioned into
nonfaulty states versus faulty states, we define a nonfault
indication binary column vector Inf ∈ {0, 1}|Y |×1, where
an entry of 1 indicates a nonfaulty state. Also define state
distribution vector π : M(L) → [0, 1]

1×|Y |, i.e., for each
o ∈M(L), π(o) is the state distribution of GR following the
observation o. Then π(·) is recursively computed as follows:
π(ε) = [1, 0, . . . , 0], and for any o ∈M(L), δ ∈ ∆,

π(oδ) =
π(o)µ(δ)

||π(o)µ(δ)||
,

where µ(δ) is computed by solving matrix equations (1),
and ‖ · ‖ is simply the sum of all vector elements. Then for
an observation o, PN (o) is simply given by

PN (o) = π(o)Inf ,

where note that π(o) and hence also PN (o) are recursively
computed.

Example 4: In the system of Fig. 3, the indication vector
is given as Inf = [1, 1, 1, 0]T , and the state distribution
vector is initialized as π(ε) = [1, 0, 0, 0]. If o = aba, then
PN (o) = 0.783; if o = ababc, then PN (o) = 1; if o = abaa,
then PN (o) = 0.
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C. Online Detection Scheme

For issuing online detection decision, we propose a detec-
tor, D : M(L)→ F ∪{ε} that for each observation in M(L)
issues either a “fault (F )” decision or “no-decision (ε)” by
comparing the likelihood of no-fault to a suitable threshold,
as follows:

∀o ∈M(L), [D(o) = F ]⇔ [∃o ≤ o : PN (o) ≤ ρD], (2)

where ρD is the detection threshold, appropriately chosen to
meet the desired FA rate requirement. Note by definition, if
a detection decision is F , then it remains F for all future
observations, i.e., the detector “does not change its mind”,
which is expected for the case of permanent faults.

Note a false alarm occurs if the detector D issues F while
the refined plant is in a nonfaulty state; and dually a missed
detection occurs if the detector D fails to issue a F decision
within an appropriate delay bound nD after the occurrence
of a fault. In other words, letting PmdD and P faD denote the
MD and FA rates respectively of a detector D, then

PmdD := Pr(st ∈ L−K : s ∈ L−K,
|t| ≥ nD, PN (M(st)) > ρD), (3)

P faD := Pr(s ∈ K : PN (M(s)) ≤ ρD). (4)

Example 5: For the refined plant of Fig. 3 which is S-
Diagnosable, suppose we set the threshold ρD = 0.8. Then
any nonfaulty trace in a(bc+a)∗ba ⊂ K will be false-alarmed
(PN (ababa) = 0.783 < ρD), and thus, P faD |ρD=0.8 =
Pr(u ∈ a(bc+a)∗ba) = 47.37%. On the other hand if we set
ρD = 0.5, then any nonfaulty trace in a(bc+a)∗baba ⊂ K
will be false-alarmed (PN (ababa) = 0.488 < ρD), and
thus, P faD |ρD=0.5 = Pr(u ∈ a(bc+a)∗baba) = 4.26%.
Now supposing that 4.26% FA rate is acceptable, we fix the
detection threshold ρD to 0.5. If the detection delay bound is
set to be nD = 3, then any faulty trace s ∈ a(bc+a)∗fbab ∈
L−K will be miss-detected and thus the MD rate is given
by PmdD |ρD=0.5,nD=3 = 6.58%. On the other hand if the
detection delay bound is set to be nD = 4, then any faulty
trace s ∈ L−K can be detected, i.e., PmdD |ρD=0.5,nD=4 = 0.

The following theorem provides insight into the signifi-
cance of the S-Diagnosability property for the purpose of on-
line fault detection, by showing its necessity and sufficiency
for the existence of an online detector that can achieve any
desired levels of MD and FA rates.

Theorem 2: (L,K) is S-Diagnosable if and only if for any
FA rate requirement φ > 0 and MD rate requirement τ > 0,
there exist a detection threshold ρD > 0 and a delay bound
nD such that P faD ≤ φ and PmdD ≤ τ .

D. Algorithms for ρD and nD
In this subsection we provide algorithms for computing

the parameters ρD and nD so as to achieve the desired
level of MD and FA rates. In order to compute detection
threshold ρD for a given FA rate requirement φ, Algorithm 1
constructs an extended observer tree that for each observation
sequence estimates the states, with the estimate labeled by
the observation, and each state in the estimate labeled by the

probability of reaching it. These probability labels are then
used to compute the probability PN for each observation,
or equivalently, of each node of the extended observer tree.
The tree extends to a depth so that if no detection decision
are made for any of the nodes (equivalently, corresponding
unique observations) in the tree, then the FA rate caused
by the detection decisions at the future successors is upper
bounded by the desired rate φ. The existence of such a depth
is guaranteed by Theorem 3, and to ensure no detection
decision for any of the nodes in T , we simply choose the
detection threshold to be smaller than the minimum PN value
among all nodes of T (recall by (2) that a detection decision
is only issued when the PN value falls below the threshold).

Algorithm 1: For a given refined plant GR and a FA rate
requirement φ, do the following:

1) Identify all the states in X × Q from which a faulty
state in GR is reachable, and denote this set of states as
Y1 (these are nonfaulty states from where faulty states
are reachable). Identify all the states in X×Q−Y1 that
appear as the second coordinates of states in bi-closed
SCCs that violate the condition (III) in [1, Theorem 4]
and denote this set of states as Y2 (these are nonfaulty
nondiagnosable states), and also identify Y3 = X×Q−
Y1 − Y2 (there are nonfaulty diagnosable states).

2) Iteratively construct an extended observer tree T
with set of nodes, Z = Z × M(L), where Z =

2((X×Q)×(0,1]), and the depth of tree grows by 1 in
each iteration until the stopping criterion is satisfied—
see below. Then each node of T is of the form z =
(z, o(z)), where z = {((xi, qi), pi)} ⊆ (X × Q) ×
(0, 1] and o(z) ∈ M(L), and each node z corre-
sponds to a unique observation o(z). The tree T is
rooted at z0 = {((0, 0), 1), ε}. z2 ∈ Z is a δ-child
(δ ∈ ∆ = M(Σ) − {ε}) of z1 ∈ Z if and only if
o(z2) = o(z1)δ and for every ((x2, q2), p2) ∈ z2, it
holds that p2 =

∑
((x1,q1),p1)∈z1

∑
s∈Σ∗:M(s)=δ p1 ×

γ((x1, q1), s, (x2, q2)). It can be seen that ((x2, q2), p2)
is included in z2 if and only if p2 is the probability of
reaching (x2, q2) following the observation o(z2).

For each node z = (z, o(z)), define:

PN (z) :=

∑
((x,q),p)∈z,q 6=F p∑

((x,q),p)∈z p
.

(Note here PN is defined over the states of the ex-
tended observer T , while earlier it was defined over
the observed traces.) Then PN (z) = PN (o(z)) is the
conditional probability of no-fault given the observation
o(z). The tree is terminated at a uniform depth so the
set of leaf nodes Zm ⊆ Z satisfy:
• (z, z′ ∈ Zm) ⇒ (|o(z)| = |o(z′)| =: d1) (each

terminal node is reached after the same number of
observations, which guarantees the uniformity of
the depth of T , which we denote as d1), and

• (((x, q), p) ∈ z ∩ Y2 × (0, 1], z ∈ Zm) ⇒
(∃z′ ∈ Z)(o(z′) ≤ o(z), |o(z)| − |o(z′)| > |X ×
Q|, PN (z′) = PN (z)) (if a terminal node contains
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an element in Y2, then it must be part of a cycle in
which probability of no-fault has stopped decreas-
ing, and so there is no gain of further extending
the tree since by choosing the threshold to be less
than the converged value, we can ensure that no
decisions are made and so no false alarm would
occur for the observation leading to this terminal
node), and

•
∑
z∈Zm

∑
((x,q),p)∈z:(x,q)∈Y1

p +∑
z∈Zm:PN (z)≤ρmin

∑
((x,q),p)∈z:(x,q)∈Y3

p < φ,
where ρmin := minz∈Z:PN (z)6=0 PN (z) (for states
in Y1 contained in terminal nodes, their added
probabilities (i.e., the first term on the LHS)
equals Pr(K1 ∩ Σ>d1), which upper bounds
the FA rate of their successors (see proof of
Theorem 2); for the states in Y3 contained in the
terminal nodes having PN ≤ ρmin, their added
probabilities (i.e., the second term on the LHS)
equals Pr(s ∈ K3 ∩Σ>d1 : PN (s) ≤ ρmin), which
upper bounds the FA rate of their successors (see
proof of Theorem 2); by our selection of threshold
ρD—see step 3 below, none of the nodes in T has
decision and hence no false alarms, so the overall
FA rate is given by the rate of false alarms of the
future successors of the terminal nodes, which is
required to be less than φ).

3) Return any ρD < ρmin. (Note that with this choice
of ρD, all observations included in T will have no
detection decisions (and so no false alarms either), and
only their extensions can have detection decisions (some
of which may be false alarms). But by construction, the
probability of those extensions is upper bounded by φ,
as desired.)

The following theorem guarantees the correctness of Al-
gorithm 1.

Theorem 3: There exists d1 ∈ N such that Algorithm 1
terminates with tree depth d1 and returns a threshold ρD
under which the overall FA rate is upper bounded by φ.

Now that we have provided an algorithm to compute the
detection threshold ρD that meets the FA rate φ, we next
present an algorithm to compute the delay bound nD to
satisfy the given MD rate τ . In order to compute delay bound
nD, Algorithm 2 constructs a refined version of the extended
observer tree that for each observation sequence estimates
the states and their probabilities, with the refinement that
keeps track of the number of post-fault transitions executed
for each state in the estimated state-set. The tree extends
to a depth so that if no missed detections occur for any
of the nodes in the tree, then the MD rate caused by the
future successors is upper bounded by the desired rate τ .
For S-Diagnosable systems, the existence of such a depth is
guaranteed by Theorem 4, and to ensure no missed detection
for any of the nodes in T , we simply choose nD to be greater
than the maximum number of post fault transitions among all
nodes of T (recall from (3) that a missed detection occurs
only if a fault remains undetected beyond nD number of
transitions).

Algorithm 2: For a given refined plant GR, a detection
threshold ρD and a MD rate requirement τ , do the following:

1) Iteratively construct a refined extended observer
tree T with set of nodes, Z = Z × M(L), where
Z = 2((X×Q)×(0,1]×N) (N = {0, 1, 2, . . . }), and
the depth of T grows by 1 in each iteration until
the stopping criterion is satisfied—see below. As
in Algorithm 1, each node of T is of the form
z = (z, o(z)), where z = {((xi, qi), pi, ni)} ⊆
(X × Q) × (0, 1] × N and o(z) ∈ M(L). The tree T
is rooted at z0 = {((0, 0), 1, 0), ε}. z2 ∈ Z is a δ-child
(δ ∈ ∆ = M(Σ) − {ε}) of z1 ∈ Z if and only if
o(z2) = o(z1)δ, and for every ((x2, q2), p2, n2) ∈ z2,
it holds that p2 =

∑
((x1,q1),p1,n1)∈z1∑

s∈Σ∗:M(s)=δ,#post-fault(s,(x1,q1))+n1=n2
p1 ×

γ((x1, q1), s, (x2, q2)). Here “#post-fault” counts
the number of events in s beyond a fault as follows: if
q1 = F , it returns the value |s|, and otherwise it returns
the number of transitions executed in s after a faulty
state is reached. It can be seen that ((x2, q2), p2, n2)
is included in z2 if and only if p2 is the probability of
reaching x2 following the observation o(z2) and n2 is
the number the post-fault transitions executed.

For each node z = (z, o(z)), define:

PN (z) :=

∑
((x,q),p,n)∈z,q 6=F p∑

((x,q),p,n)∈z p
.

A branch of the tree is terminated if a detection decision
has been made (PN value smaller than ρD), and the tree
itself is terminated at a uniform depth so the set of leaf
nodes Zm ⊆ Z satisfy:
• PN (z) ≤ ρD (for these nodes detection decision

can be issued, implying these nodes will have no
missed detections), or

•
∑
z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1∨q=F p <

τ (for these nodes, no detection decision will be
issued, and by the choice of nD in step 2 below
there is no missed detection yet; so their added
probabilities upper bounds the MD rate of their fu-
ture successors, and the stopping criterion requires
that this to be below the desired value τ ).

2) Return any nD > max((x,q),p,n)∈z,z∈Z n, and let d2

denote the depth of tree T . Note that with this choice
of nD all faulty traces, whose observations are included
in T , are not miss-detected. So clearly that the MD rate
PmdD is upper bounded by PmdD given by:

PmdD :=
∑

z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1∨q=F

p

(5)
The following theorem guarantees the correctness of Al-

gorithm 2.
Theorem 4: For S-Diagnosable systems, there exists d2 ∈

N such that Algorithm 2 terminates with tree depth d2 and
returns a delay bound nD under which the overall MD rate
is upper bounded by τ .
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Note that if the system is not S-Diagnosable, the termina-
tion of Algorithm 2 is not guaranteed. A modified version
of the algorithm guaranteeing termination is presented below
in Algorithm 3 that finds an upper bound for the minimum
achievable MD rate for a given detection threshold.

E. Non-S-Diagnosable Systems

Theorem 2 guarantees arbitrary performance level could
be achieved by detector D if the system is S-Diagnosable;
this may not be true when the system is not S-Diagnosable.
For given φ and τ , let ρD be chosen so that P faD ≤ φ,
and let SndD ⊆ L −K be the set of non-diagnosable faulty
traces for which there exists a MD rate τ ′ > 0 such that the
condition PrmdD (SndD ) = Pr(st : s ∈ SndD , t ∈ L\s, |t| ≥
nD, PN (st) > ρD) < τ ′ is not satisfied by any nD ∈ N.
Then for the traces in (L−K)−SndD there exists a detection
delay bound nD so that ∀s ∈ (L − K) − SndD , Pr(t : t ∈
L\s, |t| ≥ nD, PN (st) > ρD) < τ ′, and so the overall MD
rate is upper bounded by:

PmdD =
∑

s∈L−K
PrmdD (s)Pr(s)

< τ ′Pr(L−K − SndD ) + PrmdD (SndD )

≤ τ ′ + PrmdD (SndD ).

Thus for non-S-Diagnosable systems, while any desired
FA rate φ > 0 can be always achieved by an appropriate
choice of ρD > 0, a MD rate τ > 0 can only be achieved
if τ ′ + PrmdD (SndD ) ≤ τ . Since nD can be chosen to make
τ ′ arbitrarily small, a MD rate τ > 0 can be achieved if and
only if PrmdD (SndD ) < τ . This is captured in the following
theorem, which generalizes Theorem 2 to the case of non-
S-Diagnosable systems.

Theorem 5: Given a stochastic, nonfault specification-
refined plant GR with generated language L and nonfault
behavior K, FA rate requirement φ > 0 and MD rate
requirement τ > 0, there exists a detection threshold ρD > 0
such that P faD ≤ φ, and for this detection threshold there
exists a detection delay bound nD such that PmdD ≤ τ if
and only if PrmdD (SndD ) ≤ τ , where SndD ⊆ L − K is the
set of faulty traces for which there exists τ ′ > 0 such that
the condition Pr(st : s ∈ SndD , t ∈ L\s, |t| ≥ nD, PN (st) >
ρD) < τ ′ is not satisfied by any nD ∈ N.

Note that for fixed ρD, PrmdD (SndD ) is also fixed and
serves as a lower bound for MD rate that the detection
scheme can achieve. Next we present a variant of Algorithm
2 that for a fixed threshold ρD computes an upper bound for
PrmdD (SndD ).

Algorithm 3: For a given refined plant GR and a threshold
ρD, do the following:

1) Iteratively construct a refined extended observer tree T
as in the step 1 of Algorithm 2 by adding an extra level
of depth in each iteration;

2) For each depth of the tree T , set nD = 1 +
max((x,q),p,n)∈z,z∈Z n and compute an upper bound

PmdD for MD rate PmdD according to (5);

3) If the upper bound PmdD doesn’t decrease while nD
computed in step 2 gets doubled over any two iteration
steps (not necessarily consecutive), stop and return this
upper bound.

IV. CONCLUSION

In this paper, the problem of online fault diagnosis for
stochastic DESs was studied. An online detector based
on recursive likelihood computation was proposed, whose
existence for achieving any arbitrary performance require-
ment was shown to be equivalent to the S-Diagnosability
property. Algorithms for computing the detector parameters
of detection threshold and delay bound so as to achieve a
given performance requirement of false alarm and missed
detection rates were presented, using a proposed procedure
for constructing an extended observer. It was also shown
that our detection strategy works for S-Diagnosable as well
as non-S-Diagnosable systems in the same manner. For
S-Diagnosable systems it is possible to achieve arbitrary
performance for FA and MD rates, while for a non-S-
Diagnosable system an arbitrary performance is achievable
only for the FA rate, whereas a lower bound exists for the
achievable MD rate that is a function of the FA rate, and
increases as FA rate is decreased. A variant of the algorithm
for the S-Diagnosable case was used to compute an upper
bound for the minimum achievable missed detection rate for
a non-S-Diagnosable system.
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