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Abstract: This paper studies the mining of patterns for predicting critical events from observed
ordered event data, where the observations can contain interleaving from non-predictor and
other predictor event sequences. These are characteristics of many practical applications such as
monitoring in power systems or telecommunication networks, as well as computational biology.
For settings where system behaviors are affected by noise, a critical event can sometimes occur
without its predictor executed prior to it, and we propose algorithm to recursively compute the
frequency that a predictor candidate precedes the critical event. This we use for identifying a
predictor, and study the performance of such a scheme. We also consider the noise-free settings,
in which a critical event occurs only after the execution of its predictor, and propose an algorithm
to recursively compute the set of maximal predictors for each critical event.

Keywords: Pattern mining, finite automata, alarm monitoring, common subsequence,
algorithm.

1. INTRODUCTION

For certain monitoring applications such as failure diagno-
sis (Chen and Kumar (2013a,b,c)) and failure prediction
(Kumar and Takai (2010); Chen and Kumar (2014b)),
knowledge of system model is essential for any detection
algorithm. However, in many scenarios, such as business
processes, offline determination of a detailed model de-
scribing a certain process is challenging and many times
impossible since the system may be overly complex, e.g.,
vast legacy software. The task is further complicated by
the fact that, there exists discrepancy between a prescrip-
tive model describing how process is expected to work and
a driving model according to which the system evolves.
Thus even the prescriptive models may not be used (while
driving models are overly complex to obtain). Therefore,
instead of performing offline process/workflow modeling,
there have been efforts towards online process/workflow
mining, where the idea is to develop a model describing
the underlying process, given the workflow logs in terms
of ordered event data. See the next section for literature
information on workflow/process mining.

The task of mining workflow/system model is computa-
tionally hard (Hsu et al. (2012)), and instead, the simpler
problem of pattern mining intends to find certain sequence
patterns that precede certain critical events. Such pre-
dictor pattern identification problem has many real-world
applications such as alarm log processing in power sys-
tems and telecommunication networks, and genetic motif
discovery in computational biology (e.g., Liu et al. (1995),
Chudova and Smyth (2002) and Bailey and Elkan (1995)).
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The authors Agrawal and Srikant (1995); Pei et al. (2004);
Han et al. (1999) and Cheng et al. (2005) study a type
of pattern mining problem where a pattern is simply a
repetitive sequence of events, not necessarily associated
with a critical event.

In this paper, we study the mining of patterns for pre-
dicting critical events from observed ordered event data,
where the observations can contain interleaving from non-
predictor and other predictor event sequences. Two dif-
ferent scenarios, noisy and noise-free, are considered. In
the settings where system behaviors are affected by noise,
there is a non-zero probability that a critical event can
occur without being preceded by its predictor. We propose
an algorithm to recursively compute the frequency that a
predictor candidate precedes the critical event. A candi-
date is deemed to be a predictor for certain critical event
if its frequency of occurrence preceding to that critical
event is above a user-specified confidence level and it is
“maximal”, i.e., none of its supersequence is a predictor
candidate.

We also consider the noise-free settings, in which a critical
event can occur only after the execution of its predictor,
and the predictor mining reduces to finding the maximal
common subsequences, which has been studied by Hunt
and Szymanski (1977); Hirschberg (1975); Allison and Dix
(1986). We propose another recursive algorithm to com-
pute the set of maximal predictors for each critical event.
The related work by Wang and Johnson (2007) considers
a similar problem of pattern mining from event sequence
log, where the patterns are assumed to be contiguous
event sequences of the system model. In this paper, we
relax such assumption about contiguity by allowing inter-
leaving among the predictors as well as the non-predictor
sequences.
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The contributions of this paper are summarized as follows:

• Compared to prior works, we allow the observed
ordered event data to contain interleaving from non-
predictor and other predictor event sequences;
• We propose recursive algorithms for mining predictor

patterns for both noisy and noise-free settings;
• For noisy setting, we provide the existence of a

bound for the length of event log that guarantees the
proposed algorithm to output correct predictor within
a desired error probability.

The rest of this paper is organized as follows: Section 2
briefly describes some related work on process mining.
The notation and some preliminaries are presented in
Section 3. The formulation of the pattern mining problem
is presented in Section 4, which also provides the recursive
algorithm for the computing the predictors in setting
of noisy observations. Section 5 considers the noise-free
observations and provides an algorithm to recursively
compute the set of maximal predictors for each critical
event. The paper is concluded in Section 6 with directions
for future work.

2. RELATED WORK ON PROCESS MINING

While pattern mining attempts to discover the signatures
for critical events, process mining or model identification
(Cabasino et al. (2011)) is a more ambitious endeavor
that tries to uncover the entire process model. Being again
driven by the observed ordered event data, it is a related
topic of research, and here we provide a short summary
for interested readers. An algorithm to extract a process
model in form of a Petri net from event sequence log was
introduced in van der Aalst et al. (2003, 2004), where the
set of underlying model that can be extracted from event
sequence log is also given. Cook and Wolf (1998) investi-
gated the process mining problem in the context of soft-
ware engineering processes, under the framework of gram-
mar inference by Gold (1967, 1978) and Angluin (1987).
Cook and Wolf (1998) presented several approaches: i)
RNet, which is based on neural network; ii) Ktail, which
outputs a finite state automaton whose state space is given
by the set of equivalence classes of traces that have the
same k-step extensions; and iii) Markov method, which as-
sumes that the underlying model is Markovian with order
at most 2, whose dependencies are statistically deduced
when the occurrence frequencies of contiguity for event
pairs is above a user-specified threshold.

As indicated by Cook and Wolf (1998), the process min-
ing can be cast into a grammar inference problem as in
Gold (1967, 1978) and Angluin (1987). An algorithm for
grammar inference, called L∗ algorithm, was proposed by
Angluin (1987) which requires a membership oracle as well
as an equivalence oracle, the former of which identifies the
membership of a given trace while the latter can confirm
the correctness of a postulated grammar and return a
counterexample if the postulate is false. The stochastic
grammar identification was addressed in Carrasco and
Oncina (1994) by merging the equivalent nodes in a com-
plete prefix tree, where two nodes are deemed equivalent if
they have equivalent successors and the distance between
their distributions over the set of successors is within a
tolerance. The identification of stochastic grammar can

also be addressed in the framework of source identification.
Cybenko and Crespi (2011) consider the identification of a
hidden Markov model from the observed symbols sequence
using nonnegative matrix factorization. The proposed al-
gorithm in Cybenko and Crespi (2011) computes a fre-
quency matrix by computing, for each pair of sequence
of observed symbols, the occurrence frequency that the
first sequence of the pair is followed immediately by the
second sequence of that pair. The order of the hidden
Markov model as well as the state transition matrix are
then estimated from this frequency matrix, by computing
its positive rank and nonnegative matrix factorization,
which in general is approximated by optimizing an ob-
jective function consisting of a type of divergence. It turns
out that (see Hsu et al. (2012)) identification of hidden
Markov models from data is computationally hard. Hence
the literature also explores the simpler problem of order es-
timation of a Markov model. Merhav et al. (1989) studied
the estimation of the order of a fully observable Markov
process, whereas Liu and Narayan (1994) investigated
the order estimation of hidden Markov model. The order
estimation problem examines the dependency of data in
the observed sequence with its preceding history, and is
relevant for data compression (source coding) for storage
and communication.

3. NOTATIONS AND PRELIMINARIES

For an event set Σ, define Σ := Σ ∪ {ε}, where ε denotes
“no-event”. The set of all finite length event sequences over
Σ, including ε, is denoted as Σ∗. A trace is a member of
Σ∗, i.e., a trace is a sequence of events, and a language is a
subset of Σ∗. We use s ≤ t to denote that s ∈ Σ∗ is a prefix
of t ∈ Σ∗, pr(s) to denote the set of all prefixes of s, and |s|
to denote the length of s or the number of events in s. For
σ ∈ Σ and s ∈ Σ∗, we use σ ∈ s to denote that the event
σ is an element of the trace s. For ∼∈ {<,≤, >,≥,=}
and n ∈ N, where N denotes the set of all nonnegative
integers, define Σ∼n := {s ∈ Σ∗ | |s| ∼ n} and denote Σ=n

as Σn for simplicity. For any s = σ1 . . . σ|s| ∈ Σ∗, denote

as s−1 := σ|s| . . . σ1 for the reverse of s. t ∈ Σ≤|s| is said to
be a subsequence of s, denoted t� s, if there exists indices
1 ≤ i1 ≤ . . . ≤ i|t| ≤ |s| such that t = σi1 . . . σi|t| , and in
this case we also call s as a supersequence of t. t is said to be
a common subsequence of s1 and s2 if t� s1 and t� s2.
The interleaving product of a pair of traces s, t ∈ Σ∗,
denoted s 1 t, is defined recursively as follows: ε 1 ε := ε;
∀s, s′ ∈ Σ∗, σ, σ′ ∈ Σ : sσ 1 s′σ′ := (sσ 1 s′).σ′ +
(s 1 s′σ′)σ. The interleaving product of two languages
L1 and L2 is given by, L1 1 L2 := {s 1 t | s ∈ L1, t ∈ L2}.
A finite state automaton is a tuple G = (X,Σ, α,X0),
where X is the set of states, Σ is the set of events, α : X×
Σ → 2X is the transition function, and X0 ⊆ X is the
set of initial states. G is deterministic if |X0| = 1, i.e., a
unique initial state, and ∀x ∈ X,σ ∈ Σ, |α(x, σ)| ≤ 1 and
|α(x, ε)| = 0, i.e., each state has at most one transition on
each event and no transition on “no-event”; otherwise G
is called nondeterministic. A path of G is a sequence of
transitions (x1, σ1, x2, . . . , σn−1, xn) such that σi ∈ Σ and
xi+1 ∈ α(xi, σi) for each 1 ≤ i ≤ n − 1. A path is called
a cycle if xn = x1. For any x ∈ X, define the ε-closure of
x, denoted as ε∗G(x), as the set of all states that can be
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reached by zero or more ε transitions from state x, which
can be recursively defined as:

x ∈ ε∗G(x); x′ ∈ ε∗G(x)⇒ α(x′, ε) ⊆ ε∗G(x).

Then the transition function α can be generalized to α :
X×Σ∗ → 2X recursively as follows: ∀x ∈ X, s ∈ Σ∗, σ ∈ Σ,

α(x, ε) = ε∗G(x); α(x, sσ) = ε∗G(α(α(x, s), σ)).

We define the language generated by G as L(G) := {s ∈
Σ∗ | ∃x0 ∈ X0, α(x0, s) 6= ∅}. Given an automaton
G = (X,Σ, α,X0), G′ = (X ′,Σ′, α′, X ′0) is said to be a
subautomaton of G if X ′ ⊆ X, Σ′ ⊆ Σ, X ′0 ⊆ X0 and
∀x ∈ X ′, σ ∈ Σ′, α′(x, σ) ⊆ α(x, σ).

4. PROBLEM FORMULATION AND APPROACH

Suppose the process generating the observed event se-
quence is driven by a finite state automaton G =
(X,Σ, α,X0), but this model is unknown, and so the
predictor-patterns must be learned by monitoring the sys-
tem evolution. A subset of event set Σθ ⊆ Σ is desig-
nated as critical events that indicate certain key events
of interest (e.g., occurrence of fault, structure variation of
DNA sequence). For each critical event θ ∈ Σθ, define an
ordered sequence of events πθ ∈ Σ∗ as a predictor-pattern
(or simply predictor) for θ, if all traces in L(G), ending
in critical event θ, contain πθ as a subsequence. Note that
the notion of predictor can be useful for the purpose of
fault detection (see for example Jiang and Kumar (2004,
2006); Chen and Kumar (2014a)) and fault prediction
(see for example Genc and Lafortune (2009), Kumar and
Takai (2010) and Chen and Kumar (2014b)). The formal
definition of predictor is given as:

Definition 1. An ordered event sequence πθ is a predictor
for θ ∈ Σθ, if ∀uθsθ ∈ L(G) such that θ 6∈ s, it holds
that πθ is a subsequence of s, namely, πθ � s. If the
underlying model is subject to probabilistic distribution,
then given µ ≤ 1, an ordered event sequence πθ is a
predictor if ∀uθsθ ∈ L(G) such that θ 6∈ s, it holds that
Pr(πθ � s) ≥ µ. Moreover, πθ is a maximal predictor for
θ ∈ Σθ if none of its supersequence is a predictor for θ.

Note that, unlike Wang and Johnson (2007), the definition
of predictor requires it to be a subsequence, instead of a
subtrace (i.e., a contiguous subsequence), of the language
L(G). If we use a “cyclical” automaton Gθ with a single
cycle over the trace πθθ, i.e., L(Gθ) = pr((πθθ)

∗), then
L(G) can be seen as a subset of the interleaving product
of {L(Gθ), θ ∈ Σθ} and (Σ − Σθ)

∗. Note that Gθ is
not necessarily a subautomaton of G. Also, the example
illustrates that while the system is executing a trace,
events from predictor versus non-predictor subsequences
can interleave.

Example 1. An example of automaton G is given in Fig.
1, with Σ = {a, b, c, e1, e2} and Σθ = {e1, e2}. The
maximal predictor for e1 is πe1 = ac and the max-
imal predictor for e2 is πe2 = bcb. There two pre-
dictors can be represented by the cyclical automata in
Fig. 2. One example of the observed event log is ` =
ace1cbbcbe2cace1bbbcbe2aabace1aace1be2, where πe1 and
πe2 and non-predictor events are all interleaved.

Fig. 1. System G.

Fig. 2. Cyclical automata: (a) Ge1 ; (b) Ge2 .

If some critical events can only occur for a finite number
of times, then the system may not generate sufficient data
for mining its predictor, and so we assume G is such that
every critical event can be repeated infinitely often and
has at least one predictor. In fact, our proposed algorithm
is capable of mining only the “ergodic” behavior of the
underlying process. Then the objective is to identify πθ
for each θ ∈ Σθ given an event trace or log ` generated by
G (whose model as we mentioned above is unknown).

4.1 Approach for noisy pattern mining

Given an observed event sequence log `, to mine the
dependency between critical event θ ∈ Σθ and certain
subsequence (as predictor candidate), we first remove all
critical events in Σθ − θ from `, and denote the resulting
event sequence as `θ. Let nθ be the number of occurrence
of θ in `θ. Then there exists traces sθ1, s

θ
2, . . . , s

θ
nθ
, sθnθ+1 ∈

(Σ − Σθ)
∗ such that sθ1θs

θ
2θ . . . s

θ
nθ
θsθnθ+1 = `θ, i.e., sθk

is the longest subsequence of non-critical events of `θ
between the (k − 1)th and kth critical event θ. Denote
m := maxθ∈Σθ,k=1,...,nθ |sθk|. For each θ ∈ Σθ and s ∈ (Σ−
Σθ)
≤m, compute

f`(s, θ) =
|{sθk | s� sθk}|

nθ
, (1)

which is the fraction that a subsequence s ∈ (Σ − Σθ)
≤m

appears prior to θ in the observed event sequence `θ. Then
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we propose the following as an estimator for the set of
maximal predictors for θ ∈ Σθ:

π̂θ := {s ∈ (Σ− Σθ)
≤m | f`(s, θ) ≥ ν,

6 ∃t 6= s such that (f`(t, θ) ≥ ν) ∧ (s� t)}, (2)

where ν is a confidence level chosen to be smaller than the
one used in Definition 1 (see the proof for Theorem 1).

According to Definition 1, a given critical event can have
multiple maximal subsequences as predictors. Therefore
π̂θ as defined in (2) is a set, and not necessarily a unique
element.

The following algorithm recursively computes f`(s, θ) for
each θ ∈ Σθ and s ∈ (Σ − Σθ)

≤m. The algorithm simply
updates the above frequency at the arrival of each critical
event, and otherwise simply tracks the trace that the
system executes, starting from the last critical event until a
new critical event. There are three inputs to the algorithm,
namely, the event set Σ, the set of critical event Σθ ⊆ Σ
and an event log `, and one output, namely, estimator π̂θ
as the set of maximal predictors for each θ ∈ Σθ.

Algorithm 1. For given event set Σ and critical event sets
Σθ ⊆ Σ:

1 Initialization:
• ∀θ ∈ Σθ:sθ := ε, nθ := 0,mθ := 1.

2 Upon arrival of new σ ∈ Σ− Σθ, do:
• ∀θ ∈ Σθ: sθ := sθσ.

3 Upon arrival of new θ ∈ Σθ, do:
• mθ := max{mθ, |sθ|},∀s ∈ (Σ− Σθ)

≤mθ :

f`(s, θ) :=


nθf`(s, θ) + 1

nθ + 1
if s� sθ

nθf`(s, θ)

nθ + 1
otherwise,

where on the right side f`(s, θ) is taken to be zero
if it is undefined.
• sθ := ε, nθ := nθ + 1.

4 At any point of time, the estimator of maximal predictor
is given by (2).

Remark 1. For each newly arrived non-critical event σ ∈
Σ − Σθ, the complexity for updating sθ is O(|Σθ|) and
for an event log ` the overall complexity for this step
is O(|`| × |Σθ|). For each newly arrived critical event
θ ∈ Σθ, it has O(|Σ − Σθ|m) predictor candidates, and
needs O(m2|Σ−Σθ|m) to update f`(s, θ) for each predictor
candidate s (complexity for checking whether s � sθ is
O(|s| × |sθ|) ≤ O(m2)). Therefore for an event log ` the
overall complexity for this step is O(n × |Σθ| × m2|Σ −
Σθ|m), where n := maxθ nθ. Since n ≤ |`|, it follows that
the complexity for processing an event log ` is given by
O(|`| × |Σθ| × m2|Σ − Σθ|m), where the parameter m is
upper bounded by the number of events G can execute
between a pair of same critical events.

To evaluate the performance of Algorithm 1, we assume
that for a particular θ ∈ Σθ, a true maximal predictor
exists, denoted as πθ, i.e., the probability of πθ occurring
prior to θ exceeds µ.

Theorem 1. Assume the underlying model G is ergodic.
Then for any critical event θ ∈ Σθ and positive τ , there
exists n ∈ N, such that for an event log ` longer than n, the
probability of outputting true predictor πθ by Algorithm

1 is greater than 1− τ , i.e., Pr(πθ ∈ π̂θ) > 1− τ ; while the
probability of outputting a non-predictor t by Algorithm 1
is smaller than τ , i.e., Pr(t ∈ π̂θ) < τ for all non-predictor
t.

Proof. According to the law of large numbers (Hacking
(1983)), for any positive ε1,

lim
|`|→∞

Pr(|f`(πθ, θ)− µ| > ε1) = 0,

i.e., for any error bound τ1, if we choose ν ≤ µ− ε1, then
there exists n1, such that for |`| > n1, Pr(f`(πθ, θ) > ν) ≥
Pr(f`(πθ, θ) > µ− ε1) ≥ Pr(|f`(πθ, θ)−µ| ≤ ε1) > 1− τ1.
Then with probability larger than 1− τ1, Algorithm 1 will
output πθ as a predictor. On the other hand, for a non-
predictor t, the probability of t occurring prior to θ is
µ′ < µ (otherwise t itself will be deemed as a predictor
according to Definition 1). Then similarly, according to
the law of large numbers, for any positive ε2,

lim
|`|→∞

Pr(|f`(t, θ)− µ′| > ε2) = 0,

i.e., for any error bound τ2, if we choose ν > µ′ + ε2, then
there exists n2, such that for |`| > n2, Pr(f`(t, θ) > ν) <
Pr(f`(t, θ) > µ′ + ε2) ≤ Pr(|f`(t, θ) − µ′| > ε2) < τ2.
Then with probability smaller than τ2, Algorithm 1 will
output t as a predictor. Therefore letting µ′ < ν < µ and
n := max(n1, n2) we have that, with probability larger
than 1 − τ where τ := min(τ1, τ2), Algorithm 1 outputs
a correct predictor, whereas with probability smaller than
τ , it outputs a non-predictor, as desired.

5. PATTERN MINING IN NOISE-FREE SETTING

In previous section, we proposed a general algorithm to
recursively estimate the set of maximal predictors for
each critical event θ ∈ Σθ. Note in the noise-free case,
a predictor always precedes a critical event, and so the
estimator (2) reduces to that of determining the set of
maximal common subsequences of sθ1, s

θ
2, . . . , s

θ
nθ

. Finding
the longest common subsequence of two given sequences
has been studied in the context of bit-string operations in
Hunt and Szymanski (1977); Hirschberg (1975); Allison
and Dix (1986). For example, Hirschberg (1975) gave
quadratic complexity algorithm for finding the maximal
common subsequence of two given sequences. Allison and
Dix (1986) further reduced the complexity by considering
the capability of a computation unit. Next in this section,
we first reproduce the algorithm from Allison and Dix
(1986) and then adopt it for recursive computation of the
estimator (2) for its online use.

For each σ ∈ Σ − Σθ and s ∈ (Σ − Σθ)
∗, sσ-trace

is a binary trace of length |s| where “1” indicates that
the corresponding element of s−1 is σ. Given s and t =
σ1σ2 . . . σ|t| ∈ (Σ−Σθ)

∗, construct a |t| × |s| matrix Mt,s,
such that each row is a binary vector of length |s| and the
ith row is given by

rowi = r ∧ ((r − (rowi−1 ⇐ 1)) 6= r), where

r= rowi−1 ∨ sσi -trace,

where 6= denotes the non-equivalence operation and
rowi−1 ⇐ 1 is the logical left-shift of rowi−1 with the left-
most bit discarded and the right-most bit supplemented by
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a “1”. The Mt,s matrix is then used to construct another

matrix M̂t,s with size |t| × |s| and ijth element given by

M̂t,s(i, j) :=
∑

k=1,...,j

Mt,s(i, k).

Given two event sequences s and t and their M̂t,s matrix,
the set of common subsequences of s and t, which we
denote below as Cs,t, can be found by the algorithms
proposed in Hunt and Szymanski (1977); Allison and Dix
(1986), and which is used in Algorithm 2.

Example 2. (Reproduced from Allison and Dix (1986)).
For Σ− Σθ = {A,C,G, T} and

s−1 = GTCTTACATCCGTTCG,

the four sσ-traces of s are given as:

s−1 : G T C T T A C A T C C G T T C G
sA-trace : 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
sC-trace : 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0
sG-trace : 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
sT -trace : 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0

Let t = TAGCTTAAGATCTTGT , then the M̂t,s matrix
is given in Fig. 3.

Fig. 3. M̂t,s Matrix for Example 2.

Next we adopt the above algorithm for recursive com-
putation of the estimator (2). The algorithm maintains
a set of maximal predictors Cθ for each critical event
θ, and which it updates only when a new critical event
arrives, by comparing the existing maximals in Cθ against
the trace executed following the last critical event. Then
we propose the following as an estimator for the set of
maximal predictors for θ ∈ Σθ:

π̂θ := {s ∈ Cθ |6 ∃t ∈ Cθ, t 6= s : s� t}. (3)

Algorithm 2. Assume without of loss generality that the
very first event in ` is a non-critical event.

1 Initialization:
• ∀θ ∈ Σθ: sθ := ε, nθ := 0;

2 Upon arrival of new σ ∈ Σ− Σθ, do:
• ∀θ ∈ Σθ: sθ := sθσ.

3 Upon arrival of new θ ∈ Σθ, do:
• update Cθ according to

Cθ :=



{sθ} if nθ = 0{
t ∈

⋃
s∈Cθ

Cs,sθ |

6 ∃t′ ∈
⋃
s∈Cθ

Cs,sθ , t
′ 6= t : t� t′

}
otherwise

• sθ := ε, nθ := nθ + 1.

As with Algorithm 1, the above algorithm takes as input
the event set Σ, the critical event set Σθ ⊆ Σ and an event
log `, and outputs an estimator π̂θ for the set of maximal
predictors for each θ ∈ Σθ.

Remark 2. As in Algorithm 1, the overall complexity for
updates when a non-critical event arrives is O(|`| × |Σθ|).
Now for the update step when a critical event arrives,
note that for θ ∈ Σθ, |Cθ| ≤ m2, and each trace in Cθ is
upper bounded in length by m; the newly arrived sequence
satisfies: |sθ| ≤ m, and so the complexity of this step that
finds common sequences between sθ and each trace of Cθ is
O(m4). Therefore for an event log ` the overall complexity
of for this step is O(n × |Σθ| ×m4), where n := maxθ nθ.
Since n ≤ |`|, it follows that the complexity for processing
an event log ` is O(|`|×|Σθ|×m4), where the parameter m
is upper bounded by the number of events G can execute
between a pair of same critical events.

6. CONCLUSION

In this paper, we studied the problem of pattern mining for
predicting critical events from the observed log of ordered
event data. We considered the general framework in which
a predictor can be of any length, and the observations
can contain interleaving from non-predictor and other
predictor event sequences. This generalizes the work of
Wang and Johnson (2007) who assumed that predictor-
patterns must be subtraces (executed contiguously) as op-
posed to subsequences (need not be executed contiguously)
of system traces. We proposed recursive algorithms for
computing the set of maximal predictors for critical events
for setting with or without noise. For the setting with
noise, a critical event may not always be preceded by its
predictor, and our algorithm outputs the set of “maximal”
event sequences whose frequency of occurrence preceding
to critical event is higher than a user-specified confidence
level. We showed the existence of a lower bound on the
length of an observed ordered event log that allows the
discovery of a predictor with a desired accuracy. In the
noise-free settings, a critical event can occur only after the
execution of its predictor. We proposed an algorithm to
recursively compute the set of maximal predictors for each
critical event. Future work will focus on the performance
analysis of the proposed mining algorithms, in terms of
ability to discover predictor-patterns as measured by the
probabilities of false-negatives/false-positives.
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