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Abstract— Unlike information, behaviors cannot be en-
crypted and may instead be protected by providing covers that
generate indistinguishable observations from behaviors needed
to be kept secret. Such a scheme may still leak information
about secrets due to statistical difference between the occur-
rence probabilities of the secrets and their covers. Jensen-
Shannon Divergence (JSD) is a possible means of quantifying
statistical difference between two distributions and was used
to measure such information leak as in our earlier work [1].
This paper studies secrecy quantification in stochastic partially-
observed discrete event systems in the presence of distributed
collusive attackers/observers, each with its own local partial
observability, generalizing the setting of single observer in [1].
The local observers collude and exchange their observations
over communication channels that introduce bounded delays.
We propose a method to compute the JSD-based secrecy
measure in this distributed setting by introducing bounded-
delay channel models to extend the system model to capture
the effect of exchange of observations, and to measure the
distributed secrecy loss.

I. INTRODUCTION
Growing progress in information and communication tech-

nologies has led to growth in eavesdropping and tampering
of private communication or behaviors. In contrast to in-
formation, behaviors cannot be encrypted, and their secrecy
can instead be attained through introduction of covers that
ambiguate secrets in presence of partial observation. Many
techniques for hiding secrets based on ambiguation schemes
have been proposed as, Steganography and Watermarking,
Network level Anonymization, and Software Obfuscation.

Also, various notions of information secrecy have also
been explored in literature. For example, [2] examines non-
interference, requiring that secrets (private variables) do not
interfere with or influence the observables (public variables).
Non-interference is a logical notion, but for stochastic sys-
tems, the mutual information between the private and public
variables can be used to quantify the level of interference,
and hence loss of secrecy [2]. Mutual information is only an
average case measure, and a worst case measure can also be
defined, using for example min-entropy [3]. Extension of the
notion of non-interference over behaviors (sequences) was
explored in [4], requiring that every secret behavior must be
masked by a cover behavior.

For information leakage over sequences of observations
from a stochastic systems, mutual information can again be
used to quantify the level of secrecy loss, and as shown in
[1], it can be related to a certain Jensen-Shannon Divergence
(JSD) computation, and can be used to measure the disparity
between the distributions of a secret versus its cover as
a way to quantify the secrecy [5]. In a similar spirit, [6]
considered mutual information between the secret states
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and the observed behaviors, and required it to be upper
bounded. Checking this is undecidable, and [7] proposed a
stronger notion, requiring the probability of revealing secrets
to remain upper bounded at each time step. In contrast, Sτ -
secrecy [8] bounds the probability of revealing secrets over
the set of all behaviors, as opposed to for each step. More
related works on secrecy can be found in a recent survey [9].

The work presented here extends our prior work on secrecy
quantification for partially-observed discrete event systems
(PODESs) in [1] from a centralized single observer/attacker
setting to a distributed and collusive setting of multiple
observers/attackers that have their own personal observations,
and also collude by exchanging their observations over chan-
nels, that introduce delays that are bounded. Our goal then is
to quantify the level of loss of secrecy in such a distributed
collusive setting. We accomplish this by introducing channel
models and extending the system model by including in it
all incoming channel models as in [10]. We then compute
the JSD-based secrecy measure with respect to the extended
model.

II. NOTATION AND PRELIMINARIES
A. Stochastic PODESs

For an event set Σ, define Σ := Σ∪ {ε}, where ε denotes
“no-event”. The set of all finite length event sequences over
Σ, including ε is denoted as Σ∗, Σ+ := Σ∗ − {ε}, and Σn

is the set of event sequences of length n ∈ N. A trace is
a member of Σ∗ and a language is a subset of Σ∗. We use
s ≤ t to denote if s ∈ Σ∗ is a prefix of t ∈ Σ∗, and |s|
to denote the length of s or the number of events in s. For
L ⊆ Σ∗, its prefix-closure is defined as pr(L) := {s ∈
Σ∗|∃t ∈ Σ∗ : st ∈ L} and L is said to be prefix-closed
(or simply closed) if pr(L) = L, i.e., whenever L contains
a trace, it also contains all the prefixes of that trace. For
s ∈ Σ∗ and L ⊆ Σ∗, L\s := {t ∈ Σ∗|st ∈ L} denotes the
set of traces in L after s.

A stochastic PODES can be modeled by a stochastic
automaton G = (X,Σ, α, x0), where X is the set of states,
Σ is the finite set of events, x0 ∈ X is the initial state, and
α : X×Σ×X → [0, 1] is the probability transition function
[11], and ∀x ∈ X,

∑
σ∈Σ

∑
x′∈X α(x, σ, x′) = 1. A non-

stochastic PODES can be modeled as the same 4-tuple, but
by replacing the transition function with α : X ×Σ×X →
{0, 1}, and a non-stochastic DES is deterministic if ∀x ∈
X,σ ∈ Σ,

∑
x′∈X α(x, σ, x′) ∈ {0, 1}. The transition proba-

bility function α can be generalized to α : X ×Σ∗×X in a
natural way: ∀xi, xj ∈ X, s ∈ Σ∗, σ ∈ Σ, α(xi, sσ, xj) =∑
xk∈X α(xi, s, xk)α(xk, σ, xj), and α(xi, ε, xj) = 1 if

xi = xj and 0 otherwise. Define the language generated
by G as L(G) := {s ∈ Σ∗ | ∃x ∈ X,α(x0, s, x) > 0}.
For a given G, a component C = (XC , αC) of G is a
“subgraph” of G, i.e., XC ⊆ X and ∀x, x′ ∈ XC and
σ ∈ Σ, αC(x, σ, x′) = α(x, σ, x′) whenever the latter
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Fig. 1. (a) Distributed secrecy system architecture to (b) equivalent system
architecture.

is positive, and αC(x, σ, x′) = 0 otherwise. C is said to
be a strongly connected component (SCC) or irreducible
if ∀x, x′ ∈ XC , ∃s ∈ Σ∗ such that αC(x, s, x′) > 0.
A SCC C is said to be closed if for each x ∈ XC ,∑
σ∈Σ

∑
x′∈XC αC(x, σ, x′) = 1. The states which belong

to a closed SCC are recurrent states and the remaining states
(that do not belong to any closed SCC) are transient states.
Another way to identify recurrent versus transient states is
to consider the steady-state state distribution π∗ as the fixed-
point of π∗ = π∗Ω, where π∗ is a row-vector with the same
size as X , and Ω is the transition matrix with ijth entry
being the transition probability

∑
σ∈Σ α(i, σ, j). (In case Ω

is periodic with period d 6= 1, we consider the set of fixed-
points of π∗ = π∗Ωd). Then any state i is recurrent if and
only if there exists a reachable fixed point π∗ such that the
ith entry of π∗ is nonzero. Identifying the set of recurrent
states can be done polynomially, by the algorithm presented
in [12].
B. d-delaying&masking communication channel

Fig. 1(a) shows the architecture of a system with dis-
tributed observers/attackers, where it is assumed for simplic-
ity and without loss of any generality that there are two local
observers at two local sites I = {1, 2}. Each site has three
modules [10]: (i) observation mask Mi : Σ→ ∆i, where ∆i

is the set of locally observed symbols and Mi(ε) = ε (Mi

can be extended to Σ∗ as follows: Mi(ε) = ε, and ∀s ∈
Σ∗, σ ∈ Σ,Mi(sσ) = Mi(s)Mi(σ)), (ii) communication
channels C

(d)
ij , j 6= i, i, j ∈ I, which are lossless and

order-preserving, but introduce delays bounded by d, and
(iii) observer Obsi, that tracks the system “information-
state” following the arrival of its local observations and
the communicated observations received from other sites
j ∈ I, j 6= i.

The communication channel is a “delay-block” with d-
bounded communication delay that holds the transmitted
information in First-In-First-Out (FIFO) manner for at most
d delay steps. Accordingly, since there can be at most d
events executed by system G between the transmission and
the reception of a message on a channel, the channel has
a maximum queue length d + 1. Also, the channel queue
evolves whenever a system event occurs, or a transmitted
observation is delivered to a destination observer, where
such arrival and departure events occur asynchronously. Ac-
cordingly, the d-delaying&masking non-stochastic channel
model from site-i to site-j (i 6= j, i, j ∈ I) is of the
form, C(d)

ij = (Q
(d)
ij ,Σ ∪∆i, β

(d)
ij , q0), with the elements as

follows. Q(d)
ij ⊆ Σ∗ denotes the set of states, which are the

Fig. 2. (a) Stochastic PODES G; (b) C(0)
12 ; (c) C(1)

12 ; (d) C(1)
21 .

event traces executed in the system but their observed values
pending to be delivered at the destination. For q ∈ Q(d)

ij , it
holds that |q| ≤ d+1. Σ∪∆i is the event set of C(d)

ij , where
Σ is its set of input events and ∆i is its set of output events.
Without loss of generality, we assume that Σ∩∆i = ∅, and
∆i ∩ ∆j = ∅, (j 6= i) (otherwise, we can simply rename
some of the symbols). q0 = ε is the initial state, whereas the
transition function β(d)

ij is defined as follows:
1) “Arrival” due to an event execution in the system: ∀q ∈

Q
(d)
ij ,∀σ ∈ Σ, if |q| ≤ d, then β(d)

ij (q, σ) = qσ,
2) “Departure” due to a reception at the destination ob-

server: ∀q ∈ Q(d)
ij ,∀δi ∈ ∆i, if Mi(head(q)) = δi, then

β
(d)
ij (q, δi) = q\head(q),

3) Undefined, otherwise,
where head(q) is the first event in trace q, and the after
operator “\” in q\head(q) returns the trace after removing
the initial event head(q) from the trace q.

Example 1: A system model G is shown in Fig. 2(a), with
L(G) = a+ ∪ ba∗ ∪ uba+. Suppose the observation masks
of two local sites are defined as follows:
• M1(a) = a′, M1(b) = M1(u) = ε, and
• M2(b) = b′, M2(a) = M2(u) = ε.

For delay d = 0, Fig. 2(b) shows the model C(0)
12 , and for

delay d = 1, Fig. 2(c) and Fig. 2(d) show the models C(1)
12

and C
(1)
21 , respectively. If we follow the trace bab′ in C

(1)
21 ,

the states ε, b, ba and a are traversed sequentially. This
corresponds to the situation in which site-2 sends out its
observation b′ to site-1 following the execution of ba in the
system, whereas the observation of event a is pending to be
received at site-1.

Next, since the operations of masking and delaying can
be interchanged, the behaviors under the schematic of Fig.
1(a) are equivalent to those of Fig. 1(b). Then, it is clear
that the distributed setting of Fig. 1(a) can be converted to a
decentralized setting of Fig. 1(b), having an extended system
G(d) and local observers having the extended observation
masks {Mi}, defined below. The extended system is given
by G(d) = G‖i,j∈I,i6=jC(d)

ij , whereas the extended system
model Gi at site-i (i ∈ I) includes the system model and only
the incoming channel models: Gi = G‖j∈I−{i}C

(d)
ji . The

extended system Gi “generates” events in Σ ∪j 6=i ∆j , which
are observed by site-i observer Obsi through an extended
observation mask Mi : Σ ∪j∈I−{i} ∆j → ∆ = ∪i∈I∆i.
Mi acts the same as Mi for events in Σ, whereas it is an
identity mask for events in ∆j (j 6= i). Formally, it is defined
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as follows: Mi(σ) :=

{
Mi(σ), σ ∈ Σ,
σ, σ ∈ ∆j (j 6= i).

C. Secret/non-secret behaviors and refined extended plant
Certain plant behaviors may be considered sensitive and

hence secret, whereas the remaining behaviors act as cover
for the secrets. Letting L = L(G), suppose K ⊂ L models
the secret behaviors (also called specifications), while the
remaining traces in L − K act as its cover. K may be
modeled by a deterministic acceptor R = (Y,Σ, β, y0) such
that L(R) = K. By introducing a dump state D in R,
and completing its transition function, we can obtain R =
(Y ,Σ, β, y0), where Y = Y ∪D, and ∀y, y′ ∈ Y , σ ∈ Σ,

β(y, σ, y′) :=

 β(y, σ, y′) if (y, y′ ∈ Y ) ∧ (β(y, σ, y′) > 0),
1 if [(y = y′ = D)
∨ (y′ = D ∧

∑
y∈Y β(y, σ, y) = 0)].

Then, the extended plant model at site-i (i ∈ I) can be refined
with respect to the specification to identify the secret and
cover behaviors as states in the refined plant, and is given
by GRi = G||j∈I−{i}C

(d)
ji ||R.

Next, we assign probabilities to transitions in GRi as
follows. For each state in GRi , the transition is either one of
the system events, or at most one of channel j (j 6= i) events
(either arrival or departure of that channel). Suppose at a sys-
tem GRi state, with vector of all incoming channel lengths ~k,
the system event is picked with probability p0

~k
, and suppose

the channel j (j 6= i) event can occur with probability pj~k
such that, p0

~k
+
∑
j 6=i p

j
~k

= 1. We also require that when all
channels are empty (~k = ~0), p0

~k
= 1 (so no channel output

can occur when channels are empty), when all channels are
full (~k =

−−−→
d+ 1), p0

~k
= 0 (so no channel input can occur

when channels are full), and if channel j has higher queue
length than channel j′ (~kj ≥ ~k′j), then it can be expected that
pj~k
≥ pj

′

~k
(channel j event is more likely than channel j′ event

when channel j has more number of pending observations).
With this choice of selection probability of events, refined
extended system model at each site-i is given by a product
of the plant model and all the incoming channel models:
GRi = (X × (Πj 6=iQ

(d)
ji ) × Y ,Σ ∪j 6=i ∆j , γ, (x0, ~q0, y0)),

where Y = Y ∪ {D}, and ∀(x, ~q, y), (x′, ~q′, y′) ∈ X ×
(Πj 6=iQ

(d)
ji )× Y , σ ∈ Σ ∪j 6=i ∆j ,

γ((x, ~q, y), σ, (x′, ~q′, y′)) =

{
α(x, σ, x′)× p0

~k
if σ ∈ Σ,

pj~k
if σ ∈ ∪j 6=i∆j ,

if the following holds: (y, y′ ∈ Y ∧ β(y, σ, y′) > 0) ∨
(y = y′ = D) ∨ (y′ = D ∧

∑
y∈Y β(y, σ, y) =

0), and otherwise, γ((x, ~q, y), σ, (x′, ~q′, y′)) = 0.
The appendix describes the computation of an observer

transition structure for GRi that can be used to track its
evolution over only its observed symbols ∆ := ∪i∈I∆i, and
also the associated transition matrices {Θ(δ) | δ ∈ ∆}.

Example 2: Continuing Example 1, suppose the delay
bound d = 1, so there are three possibilities for the length
of the only channel, ~k = {0, 1, 2}. Let p0

0 = 1, p0
1 =

0.5, p0
2 = 0 (implying p2

0 = 1 − p0
0 = 0, p2

1 = 1 − p0
1 =

0.5, p2
2 = 1 − p0

2 = 1). Fig. 3 shows the extended plant
model G1 at site-1. Suppose R is given in Fig. 4(a), i.e.,
K = L(R) = a+ ∪ ba∗. Then, the refinement GR1 is shown
in Fig. 4(b). So for example, at the initial state (0, ε, 0), the
channel is empty, and no channel events occur at this state

Fig. 3. Extended plant model G1 at site-1.

Fig. 4. (a) Specification for secrets R; (b) refined plant model GR
1 .

(p2
0 = 0 while p0

0 = 1). Then, for any plant event σ ∈ Σ,
γ((0, ε, 0), u, (2, u,D)) = α(0, u, 2) × p0

0 = 0.7 × 1 = 0.7,
γ((0, ε, 0), b, (1, b, 1)) = α(0, b, 1)×p0

0 = 0.2×1 = 0.2, and
γ((0, ε, 0), a, (1, a, 1)) = α(0, a, 1) × p0

0 = 0.1 × 1 = 0.1.
Whereas, at state (2, u,D), there is observation u queued
up in the channel. Thus, either the plant can execute a new
event b ∈ Σ, with probability γ((2, u,D), b, (3, ub,D)) =
α(2, b, 3)×p0

1 = 1×p0
1 = 0.5, or a channel event can occur,

with probability γ((2, u,D), ε, (2, ε,D)) = p2
1 = 0.5. The

remaining state transitions can be computed similarly. The
models G2 and GR2 at site-2 can be generated in a manner
similar to G1 and GR1 , respectively.

III. JENSEN-SHANNON DIVERGENCE BASED
DISTRIBUTED SECRECY QUANTIFICATION

In in our earlier work [1], we presented a way to compute
JSD-based measure of secrecy for stochastic PODES when
there is a single observer by computing the JSD between
the conditional distributions of secrets versus covers over
observations of common length, and its “limiting” value
as this common length approaches infinity. The JSD-based
measure can continue to be used for secrecy loss quan-
tification in the distributed collusive setting. To compute
the secrecy loss in the distributed setting, resulting from
the aggregated observations at any site-i (i ∈ I), which
include it’s own immediate observations and the delayed
communicated observations from other distributed sites, the
JSD computation can be carried out over the refined extended
system model GRi , following the method introduced in [1],
and repeated below for the sake of completeness.

We begin by summarizing some relevant information
theoretic notations. Given a probability distribution p over
discrete set A, the entropy of p is defined as H(p) =
−
∑
a∈A p(a) log p(a). Given two probability distributions

p and q over A, the Kullback-Leibler (KL) divergences
between p and q, denoted as DKL(p, q), is defined as
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DKL(p, q) =
∑
a∈A p(a) log p(a)

q(a) . Given λ1 > 0 and λ2 > 0
satisfying λ1 + λ2 = 1, the Jensen-Shannon Divergence
(JSD) between p and q under the weights (λ1, λ2), is defined
as D(p, q) = λ1DKL(p, λ1p + λ2q) + λ2DKL(q, λ1p +
λ2q), which is equivalent to D(p, q) = H(λ1p + λ2q) −
λ1H(p) − λ2H(q) (for more details, refer to [13], [14]).
Given two probability distributions p over A and q over
B, the mutual information between p and q is defined as
I(p, q) =

∑
a∈A,b∈B Pr(a, b) log Pr(a,b)

p(a)q(b) . Mutual informa-
tion can also be equivalently defined as I(p, q) = H(p) −
H(p|q), where the conditional entropy H(p|q) is given as
H(p|q) = −

∑
a∈A p(a)

∑
b∈B Pr(b|a) logPr(b|a).

At each site i ∈ I , given a length-n aggregated ob-
servation o ∈ ∆n, let pn(o) denote its probability. Then,
since the occurrences of observations of length n are mu-
tually disjoint,

∑
o∈∆n pn(o) = 1, i.e., pn is a prob-

ability distribution over ∆n. Then we write its entropy
as: H(pn) = −

∑
o∈∆n pn(o) log pn(o) = H(pn−1) −∑

o∈∆n−1 pn−1(o)
∑
δ∈∆ p(δ|o) log p(δ|o). Observations in

∆n can be generated by secrets (behaviors in K) or by covers
(behaviors in L−K), and so we define two more probability
distributions over ∆n: probability that an observation o ∈ ∆n

is generated by some secret in K, denoted psn(o), versus that
is generated by some cover in L−K, denoted pcn(o):

psn(o) :=
Pr(s ∈ K ∩ΠΣ(M−1

i (o)))

Pr(s ∈ K ∩ΠΣ(M−1
i (∆n)))

,

pcn(o) :=
Pr(s ∈ (L−K) ∩ΠΣ(M−1

i (o)))

Pr(s ∈ (L−K) ∩ΠΣ(M−1
i (∆n)))

,

where ΠΣ(·) denotes the natural projection to the event set
Σ. Further, define λsn := Pr(s ∈ K ∩ ΠΣ(M−1

i (∆n))) to
be the probability of secrets and λcn := Pr(s ∈ (L −K) ∩
ΠΣ(M−1

i (∆n))) to be the probability of covers, respectively,
generating length-n observation. Then it is easy to show that
λsn + λcn = 1 for all n ∈ N.

The ability of an intruder at site i ∈ I to identify secret
versus cover behaviors based on observations of length n,
depends on the disparity between the two distributions psn
versus pcn: If psn and pcn are identical, i.e., with “zero dispar-
ity”, there is no way to statistically tell apart secrets from
covers, and in that case there is perfect secrecy. However,
when psn and pcn are different, then one could characterize
the ability of an intruder to discriminate secrets from covers,
based on length-n observations, using the JSD between psn
and pcn under the weights (λsn, λ

c
n), denoted Di(p

s
n, p

c
n) =

H(λsnp
s
n + λcnp

c
n)− λsnH(psn)− λcnH(pcn).

The following theorem from [1] shows that the JSD mea-
sure is indeed a useful measure of information revealed, as it
equals the mutual information between the observations pn
and the status (whether secret or cover) of system executions.
This status can be captured by a bi-valued random variable
Λn, defined for each n ∈ N, such that Pr(Λn = s) = λsn
and Pr(Λn = c) = λcn.

Theorem 1 ([1]): The JSD between psn and pcn equals the
mutual information between Λn and pn, i.e.,

Di(p
s
n, p

c
n) = I(Λn, pn).

At site i ∈ I , an intruder is likely to discriminate more
if he/she observes for a longer period, and accordingly, our
goal is to evaluate the worst-case loss of secrecy as obtain in
the limit: limn→∞Di(p

s
n, p

c
n). This worst-case JSD provides

an upper bound to the amount of information leaked about
secrets.

In order to numerically compute JSD at each site i ∈ I ,
[1] maps the JSD computation to a computation based on the
state-distribution of the observer, following each observation.
Each observation o ∈ ∆∗ results in a conditional state
distribution π(o), which can be computed recursively as
follows: for any o ∈ ∆∗, δ ∈ ∆: π(ε) = π0 and π(oδ) =
π(o)×Θ(δ)
||π(o)×Θ(δ)|| [15], where π0 is the initial state distribution,
whereas the computation of transition matrix Θ(δ) is given
in the appendix. Let Π denote the set of all such conditional
state distributions, and for each π ∈ Π and n ∈ N, denote
Pn(π) = Pr(o ∈ ∆n : π(o) = π), which is the probability
that the set of all observations of length n, upon which the
conditional state distribution is π. For a state distribution π,
define the following notations:

λs|π :=
∑
δ∈∆

πΘ(δ)Is, λc|π :=
∑
δ∈∆

πΘ(δ)Ic

ps|π(δ) :=
πΘ(δ)Is

λs|π
, pc|π(δ) :=

πΘ(δ)Ic

λc|π
,

where Is and Ic denote indicator column vectors of same
size as number of states, with binary entries to identify the
secret versus cover states (states reached by traces in K
versus L−K). Then, as shown in Lemma 4 of [1],
Di(p

s
n, p

c
n) = H({λsn, λcn})+∑

π∈Π

Pn−1(π)

[
−H({λs|π, λc|π}) +Di(p

s|π, pc|π)

]
. (1)

In the limit when n → ∞, if the distribution Pn(·)
over Π converges to P ∗(·), then limn→∞Di(p

s
n, p

c
n) exists.

See for example [16] for a condition under which such
a convergence is guaranteed: It requires the system to be
ergodic (period equals 1 and irreducible) and the existence
of a finite sequence e1, . . . , em such that Θ(e1) . . .Θ(e2) is
a nonzero subrectangular matrix.

At each site i ∈ I , the computation of limn→∞Di(p
s
n, p

c
n)

using (1), requires the computation of limn→∞ Pn−1(π)
which can be accomplished with the help of an extended
observer introduced in [1]. An extended observer tracks the
possible system states following each observation, and also
allows the computation of the corresponding state distri-
bution. We let Obsi be an extended observer automaton
with state set Z ⊆ 2X×(Πj 6=iQ

(d)
ji )×Y , so that each node

z ∈ Z of the observer is a subset of the refined extended
system states, i.e., z ⊆ (X, (Πj 6=iQ

(d)
ji ), Y ), and we use

|z| to denote the number of system states in z. Obsi is
initialized at node z0 = {(x0, ~q0, y0)}, and there is a
transition labeled with δ ∈ ∆ from node z to z′ if and only
if every element of z′ is reachable from some elements of
z along a trace that ends in the only observation δ, i.e.,
z′ = {(x′, ~q′, y′) ∈ X × (Πj 6=iQ

(d)
ji ) × Y : ∃(x, ~q, y) ∈

z, LGRi ((x, ~q, y), δ, (x′, ~q′, y′)) 6= ∅}. Associated with this
transition is the transition probability matrix Θz,δ,z′ of size
|z| by |z′| (a submatrix of Θ(δ) matrix given in the ap-
pendix), whose ijth element is θi,δ,j , which is the transition
probability from ith element (x, ~q, y) of z to jth element
(x′, ~q′, y′) of z′ while producing the observation δ, and
equals α(LGRi ((x, ~q, y), δ, (x′, ~q′, y′))).

Example 3: Consider the refined extended plant model of
Fig. 4(b) at site-1, where M1(a) = a′, M1(b) =M1(u) =
ε, while the extended mask function is the identity function
over the received observations, ∆2 = {b′}. Then, Fig. 5
shows the extended observer Obs1.
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Fig. 5. Observer Obs1 for the system of Fig. 4(b).
Associated with each observation o ∈ ∆∗, there is a

reachable state distribution π(o) as discussed earlier. Let the
state z be reached in Obsi following observation o. Then,
obviously the number of positive elements of π(o) is the
same as the number of elements in z. Then with a slight
abuse of notation, we also use π(o) to denote the row-vector
containing only positive elements, and of same size as the
number of elements in the node reached by o in Obsi. Then
π(o) can also be recursively computed as follows: for any o ∈
∆∗, δ ∈ ∆: π(ε) = 1 and π(oδ) =

π(o)×Θzo,δ,zoδ
||π(o)×Θzo,δ,zoδ ||

, where
zo and zoδ are the nodes reached in Obsi following o and oδ
respectively. Then it can be seen that along any cycle in Obsi,
the distribution upon completing the cycle is a function of
the distribution upon entering the cycle, through a sequence
of transition matrix-multiplications and their normalizations.
In case of steady-state, those two distributions will be the
same, namely, a fixed point of that function. The following
assumption is made as in [1].

Assumption 1 ([1]): Assume that for any sufficiently long
observations o1 ≤ o2, if Obsi reaches the same node
following o1 and o2, then π(o1) = π(o2).

The as shown in [1], the following procedure computes the
worst-case loss of secrecy at site i ∈ I , limn→∞Di(p

s
n, p

c
n),

under Assumption 1.
Algorithm 1:

1) Construct a (
∑
z |z|)×(

∑
z |z|) square matrix Θ̃, whose

ijth block is the |zi|×|zj | matrix
∑
δ Θzi,δ,zj . Compute

the fix point distribution associated with Θ̃ by solving
π∗ = π∗Θ̃, where π∗ is a row vector of size

∑
z |z|.

For each zi ∈ Z, let p(zi) be the summation of the ith
block of π∗, then zi is recurrent if p(zi) > 0. Also note
that for each z ∈ Z, exists a sufficiently large N such
that p(z) =

∑
o∈∆N :o reaches z pN (o). In other words,

p(z) computes the probability of all sufficiently long
observations that reach the observer state z.

2) Obtain λs as the summation of the elements of π∗
corresponding to the secret states, i.e., λs := π∗Is, and
λc = 1− λs.

3) For a set of recurrent nodes {z1, z2, . . . , zn}
that form a SCC, define a set of distributions
{π∗z1 , π

∗
z2 , . . . , π

∗
zn} to be a set of steady state

distributions if ∀i, j, δ, such that Θzi,δ,zj is defined,

the following holds: π∗zj =
π∗zi

Θzi,δ,zj
||π∗ziΘzi,δ,zj ||

, i.e., π∗zi
represents a steady state conditional distribution
following a single sufficiently long observation, that
reaches zi. Note that in this case, any other extension of
o that also reaches zi will induce the same conditional

distribution π∗zi . There may exist multiple sets of
steady state distributions for a given set of recurrent
nodes, denoted say as {{π∗z1,k, . . . , π

∗
zn,k
}, k ∈ N}.

Then, if steady-state always exists, for any sufficiently
long observation that reaches a recurrent node z,
there exists k ∈ N such that π(o) = π∗z,k. Denote
p(z, k) := Pr[{o | o reaches z and π(o) = π∗z,k}].

4) Let Isz′ and Icz′ be indicator column vectors with binary
entries of size |z′| for identifying within z′, the secret
and cover states, respectively. For each steady state
distribution π∗z,k of each recurrent node z, define:

λs|π
∗
z,k :=

∑
δ∈∆

π∗z,kΘz,δ,z′Isz′

λc|π
∗
z,k :=

∑
δ∈∆

π∗z,kΘz,δ,z′Icz′

ps|π
∗
z,k(δ) :=

π∗z,kΘz,δ,z′Isz′
λs|π

∗
z,k

pc|π
∗
z,k(δ) :=

π∗z,kΘz,δ,z′Icz′
λc|π

∗
z,k

.

5) Then, applying (1), the JSD between psn and pcn when
n→∞ is given by:
lim
n→∞

Di(p
s
n, p

c
n) = H({λs, λc})

+
∑

z:z is recurrent

∑
k∈N

p(z, k){−H({λs|π
∗
z,k , λc|π

∗
z,k})

+Di(p
s|π∗z,k , pc|π

∗
z,k)}. (2)

6) When the set of steady state distributions is unique, then
in that case, k = 1 and we have: p(z, k) = p(z) in (2)
above.

Example 4: We revisit Example 3. Then based on Obs1,
the following computation illustrates the steps of JSD com-
putation at site-1.

1)
∑
z |z| = 14 and so Θ̃ is a 14× 14 matrix and

π∗ = [ 0 0 0 0 0 0 0.05 0.05 0 0 0.1 0.1 0.35 0.35].

Therefore, p(z0) = p(z1) = p(z2) = 0, p(z3) = 0.1,
p(z4) = 0, and p(z5) = 0.9.

2) Here
Is = [ 1 1 1 0 1 0 1 1 1 0 1 1 0 0 ]

T

Ic = [ 0 0 0 1 0 1 0 0 0 1 0 0 1 1 ]
T
.

And so, λs = 0.3 and λc = 0.7.
3) Here z3, and z5 are recurrent nodes, and each of them

forms a SCC. We have π∗z3 = [0.5 0.5], and while
there are multiple solutions to the equation set π∗z5 =
π∗z5

Θz5,a′,z5
||π∗z5Θz5,a′,z5 ||

, only π∗z5 = [0.11 0.11 0.39 0.39] is
reachable. Thus, each set of recurrent nodes is a single-
ton set, and each with a unique fixed-point distribution.
Therefore, for each recurrent node z, p(z, k) = p(z).

4) Here Isz3 = [1 1]T , Icz3 = [0 0]T , Isz5 = [1 1 0 0]T ,
Icz5 = [0 0 1 1]T . For z3 and π∗z3 ,

λs|π
∗
z3 = 1, λc|π

∗
z3 = 0

ps|π
∗
z3 (a′) =

π∗z3Θz3,a′,z3Isz3
λs|π

∗
z3

= 1

ps|π
∗
z3 (b′) = pc|π

∗
z3 (b′) = pc|π

∗
z3 (a′) = 0.

For z5 and π∗z5 ,
λs|π

∗
z5 = 0.22, λc|π

∗
z5 = 0.78
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Fig. 6. Model GR for system of Fig. 2(a) under no collusion; (b) Observer
under no collusion.

ps|π
∗
z5 (a′) =

π∗z5Θz5,a′,z5Isz5
λs|π

∗
z5

= 1

ps|π
∗
z5 (b′) = pc|π

∗
z5 (b′) = 0

pc|π
∗
z5 (a′) =

π∗z5Θz5,a′,z5Icz5
λc|π

∗
z5

= 1.
5) Then, we have

lim
n→∞

D1(psn, p
c
n) = H({λs, λc}) +

∑
z:p(z)>0

p(z)

{−H({λs|π
∗
z , λc|π

∗
z}) +D1(ps|π

∗
z , pc|π

∗
z )} = 0.197.

In contrast, when there is no collusion among observers (so
there is no communication among the two sites), Fig. 6(a)
and Fig. 6(b) show, respectively, the refined plant GR (no
incoming channels and so identical refined model at all sites)
and the corresponding site-1 observer structure. The JSD
value, computed in same manner as above but with respect
to the observer structure of Fig. 6(b), is simply Zero, i.e.,
no amount of secrets is revealed under no collusion. This is
because for every observation, the probability of it coming
from secrets in K vs from covers in L − K is exactly the
same.

IV. CONCLUSION
In this paper we studied the problem of secrecy loss

quantification in partially-observed discrete event systems
(PODESs) in the presence of distributed collusive attack-
ers/observers. The information about system secrets is re-
vealed additionally through the side-channel of observations
being exchanged among local observers over bounded delay
communications. We proposed a method to compute the se-
crecy loss in this distributed collusive setting, by introducing
bounded-delay channel models as in [10] to extend the sys-
tem model to capture the effect of exchange of observations,
and employing the JSD computation from our earlier work
[1] on the extended model to arrive at the measure for secrecy
loss. Examples were provided to illustrate our approach.
Future work will involve developing a software tool for JSD
computation, and performing application studies. Knowing
the JSD value can help an engineer to perform secrecy
analysis of a system, and revisit its design to make it improve
its level of secrecy if needed.

APPENDIX
We describe the computation of an observer transition

structure to track the evolution of GRi over only its observed
symbols ∆ := ∪i∈I∆i, and the associated transition ma-
trices {Θ(δ) | δ ∈ ∆}. Given the refined extended plant
model at a site-i, GRi , and its extended observation mask
Mi : Σ ∪j∈I−{i} ∆j → ∆ = ∪i∈I∆i, define the set
of traces originating at (x, ~q, y)) ∈ X × (Πj 6=iQ

(d)
ji ) × Y ,

terminating at (x′, ~q′, y′)) ∈ X × (Πj 6=iQ
(d)
ji ) × Y and

executing a sequence of unobservable events followed by
a single observable event with observation δ ∈ ∆ as:
LGRi ((x, ~q, y), δ, (x′, ~q, y′)) := {s ∈ (Σ ∪j∈I−{i} ∆j)

∗|s =

uσ,Mi(u) = ε,Mi(σ) = δ, γ((x, ~q, y), s, (x′, ~q′, y′)) >
0}. Define its probability, α(LGRi ((x, ~q, y), δ, (x′, ~q′, y′))) :=∑
s∈LGR

i
((x,~q,y),δ,(x′,~q′,y′)) γ((x, ~q, y), s, (x′, ~q′, y′)), and de-

note it as θ(x,~q,y),δ,(x′,~q′,y′). Also define λ(x,~q,y),(x′,~q′,y′) =∑
σ∈Σuo

γ((x, ~q, y), σ, (x′, ~q′, y′)) as the probability of
transitioning from (x, ~q, y) to (x′, ~q′, y′) while execut-
ing a single unobservable event. Then, letting i =
(x, ~q, y) and j = (x′, ~q′, y′), θi,δ,j =

∑
k λi,kθk,δ,j +∑

σ∈Σ∪j∈I−{i}∆j :Mi(σ)=δ γ(i, σ, j), where the first term on
the right hand side (RHS) corresponds to transitioning in at
least two steps (i to intermediate k unobservably, and k to j
with a single observation δ at the end), whereas, the second
term on RHS corresponds to transitioning in exactly one step
[15]. Thus, for each δ ∈ ∆, all the probabilities {θi,δ,j |i, j ∈
X×(Πj 6=iQ

(d)
ji )×Y } can be found by solving the following

matrix equation [17]: Θ(δ) = ΛΘ(δ) + Γ(δ), where Θ(δ),Λ

and Γ(δ) are all |X×(Πj 6=iQ
(d)
ji )×Y |×|X×(Πj 6=iQ

(d)
ji )×Y |

square matrices whose ijth elements are given by θi,δ,j , λi,j
and

∑
σ∈Σ∪j∈I−{i}∆j :Mi(σ)=δ γ(i, σ, j), respectively.
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