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Abstract— Providing a resiliency measure for power systems
is one of the challenges towards its Dynamic Security Assess-
ment. This paper introduces a resiliency measure, called Level-
of-Resilience (LoR), determined by examining: (i) the Region-
of-Stability-Reduction (RoSR), as the RoS evolves under attack
and recovery actions as captured by a “modal-RoS”, (ii) the
eventual Level-of-Performance-Reduction (LoPR), as measured
by percentage of reduction of load served, and (iii) Recovery-
Time (RT), which is the time system takes to detect and recover
from an attack or a fault. We illustrate our measure by
comparing resiliency level of two power systems under two
different attack scenarios.

I. INTRODUCTION

Resiliency can be defined as “ability to withstand adverse
events”. Their quantification allows system designers to as-
sess its security. Various measures of power system resilience
have been investigated throughout literature. For instance,
the average efficiency of the network [1], adapted to the
case of the North American power grid, is used by [2] to
quantify the performance of grid operations before and after
the occurrence of breakdowns. This measure is based on
the most efficient path between the generation substation
i and the distribution substation j, where path efficiency
between two nodes i and j is the harmonic composition of
the efficiencies of the component edges. Then, the damage
caused by a failure is defined as the normalized efficiency
loss.

The duration of unscheduled outages due to failure of
distribution system (i.e., excluding outages due to failure
of generation or transmission systems) is proposed in [3]
as a resilience measure. The authors hypothesize that the
resilience of power distribution systems depends on two main
factors: one is the power distribution infrastructure (including
the environment within which it operates and interactions
between the two). Second factor is the priority given to
restoration by the power company (including the effective-
ness of the power company’s response). A resilience factor
and uncertainty-weighted resilience measure proposed by [4]
are implemented via the set of resilience capacities: absorp-
tive capacity, adaptive capacity, and recovery and restorative
capacity. A system-level measure to quantify the resilience
of smart grid is also proposed by [5], which integrates five
resilience indices: expected hazard frequency, initial failure
scale, maximum impact level, recovery time and recovery
cost. This measure can be computed by normalizing the
difference between the annual targeted performance area and
the annual impact area.

Roege et al. [6] identified resilience measures to provide
guidance for energy systems planning, design, investment,
and operation. Recommendations are presented using a
matrix format to provide a structured and comprehensive
framework relevant to a system’s energy resilience. Each cell
within the matrix correlates how can a system’s ability to
[plan/prepare, absorb, recover and adapt] to an energy-related
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change be improved by measures taken in the [physical,
information, cognitive and social] domain. A recent survey
[7] summarized resilience measures of energy distribution
systems. The building blocks of resilience are: inputs avail-
able to support resilience, capacities, which are the ways in
which inputs are organized to support resilience, capabil-
ities of what tasks can be performed, the performance and
outcomes that describe what is produced by an engineered
system. These building blocks address the goal of reducing
the damage from disasters.

The main contribution of this paper is to introduce the
notion of Level-of-Resilience (LoR) as a way to compare
the resiliency of different systems, subject to various attack
scenarios. An adverse event can affect both system’s stability
and performance, and whose recovery time is also another
important metric. Accordingly, in our present work, we
consider size of Region-of-Stability (RoS), the Level-of-
Performance (e.g., load served in case of a power system),
and Recovery-Time as part of resilience metric. When sub-
jected to adverse events, the RoS evolves under attack and
recovery actions which we capture as a “modal-RoS”. This
evolution of RoS is computed following the approach of
[8] based on level set reachability analysis. This, along
with the Level-of-Performance-Reduction (LoPR), due to
system attacks and as measured in terms of percentage of
reduction of load served, and the Recovery-time (RT) from
faults/attacks are used to compare the Level-of-Resilience
(LoR).

II. POWER SYSTEM DYAMICS AND TRANSIENT
STABILITY TO LARGE DISTURBANCES

A power system consists of: (i) generator (PV) buses,
for which generator real power and voltage magnitude are
specified, (ii) load (PQ) buses, for which real and reactive
load powers are specified, and occasionally (iii) a slack bus,
for which the voltage magnitude and phase are specified
(typically zero phase is used, making this bus as a reference).
The dynamics at a generator bus can be modeled by a pair
of differential equations that are referred to as the swing
equations [9]. The swing equations for generator i in an
interconnected power system are expressed as:

δ̇i = ωi (1)
Miω̇i = −Diωi + Pm,i − Pe,i i = 1, ...n, (2)

where the electrical power of generator i satisfies:

Pe,i =

n∑
j=1

|Ei| × |Ej |

×[Gij cos(δi − δj) +Bij sin(δi − δj)], (3)

In (1), (2), Mi is inertia constant; Di is damping constant,
Pm,i is mechanical power input; Pe,i is the electrical power
output; δi is angle of internal complex voltage of ith ma-
chine; and ωi is rotor angle velocity of the ith machine
with respect to the reference frequency of the power system

Proceedings of the 13th International Workshop on Discrete Event
Systems, Xi'an, China, May 30 - June 1, 2016

We_1_A.5

978-1-5090-4190-9/16/$31.00 ©2016 IEEE 385



ωr. In (3), Ei is ith machine’s internal complex voltage;
Gij = Gji ≥ 0 is the Kron-reduced equivalent conductance
between generator i and generator j; Bij = Bji > 0 is
the Kron-reduced equivalent susceptance between genera-
tor i and generator j, and Yij = Gij +

√
−1Bij is the

Kron-reduced equivalent admittance between generator i and
generator j (the ijth element of Kron-reduced equivalent
admittance matrix YI of size |n| × |n|). The solution of (1)-
(3) in steady state yields the so called power flow solutions
that yield the magnitude and phase angle of the voltage at
each bus, and the power flowing in each line.

Fig. 1. (a) System PS1, and (b) System PS2.

For the sake of illustration, we consider a pair of power
systems with identical buses, generators and loads but with
different topologies, as shown in Fig. 1. For the 1st power
system, PS1, bus 1 is the slack bus, buses 2 and 3 are the
generator buses, and buses 4, 5, and 6 are the load buses.
The machine, load and line data, generation schedule, and
reactive power limits for the regulated buses, along with
power flow solution data for PS1 are tabulated in Appendix,
Tables III-VII. The 2nd power system, PS2, has same
generation and loads as PS1, but with different topology,
where line L16 appears as line L45. PS2 data are also given
in Appendix, Tables III-VIII. We show that while the two
systems are served by the same generators, and serve the
same set of loads, they have different resiliency to the same
attacks owing to their topological difference.

III. LEVEL-OF-RESILIENCE FORMULATION

A. Modal-RoS and Region-of-Stability-Reduction
For a nonlinear autonomous system, the stability region

is defined as the set of all initial points from which
the autonomous system eventually converges to a stable-
equilibrium-point (SEP) [10]. For the simplicity of discus-
sion, we assume that the system is lossless, so the transfer
admittance is purely imaginary [11].

Define an energy function V (~δ, ~ω), where ~δ =
[δ1, . . . , δn]T and ~ω = [ω1, . . . , ωn]T , as follows:

V (~δ, ~ω) =
1

2

n∑
i=1

Miω
2
i −

n∑
i=1

Pm,iδi

−
n∑
i=1

n∑
j=i

|Ei| × |Ej | × [Bij cos(δi − δj)]. (4)

The dissipative nature of the damping term in (2) ensures
that the energy constructed in this way is always decreasing
in time.

Using the potential energy function, the swing equations
(1), (2) can be rewritten as follows:

δ̇i = ωi (5)

ω̇i =
1

Mi
[−Diωi −

∂VP
∂δi

(~δ)]. (6)

A point (~δe, 0) is an equilibrium of (5) and (6) if and only
if (∂VP /∂~δ)(~δ

e) = 0. Since ~ωe = 0, the energy function
at the equilibrium is of form: V (~δe, ~ωe) = VP (~δe) [12],
[13]. Then, the stability region of a power system can be
equivalently studied in the ~δ subspace.

~̇δ = −∂VP
∂~δ

(~δ). (7)

The stability boundary of (7) is the potential energy boundary
surface of (5), (6).

For RoS computation, given a SEP ~xe of a system, we
propagate in time the boundary of the backward reachable
set of ~xe, i.e., the set of states starting from where trajectories
can reach the SEP, by solving the following Hamilton-
Jacobi-Isaacs (HJI) PDE:

φT~x f(~x) + φt = 0. (8)

This PDE describes the propagation of the backward reach-
able set boundary, specified by φ(~x, t) = 0, as a function
of time, in which φT~x = [ ∂φ∂x1

, ..., ∂φ∂xn
], and with terminal

conditions:

φ(~x, 0) = ||~x− ~xe|| = 0.

The backward reachable set of the SEP ~xe (computed using
the toolbox of level set methods [14]) is always contained in
the region of stability of the SEP ~xe, and as t goes to infinity,
the backward reachable set approaches the true region of
stability.

Owing to the presence of protective relays that enact
disconnection of any faulted circuits, the power system under
fault undergoes configuration changes in three stages, from
pre-fault, faulted, to post-fault systems. The pre-fault system
will inhabit a known initial stable equilibrium. When a large
disturbance/fault occurs at a time tf , the system transitions
to the faulted condition before it is cleared at time tc by
the protective system operation. The critical clearing time,
denoted as t∗c , is the largest value of tc, so, the post-clearance
system with initial condition ~x(tc) will converge to a stable
equilibrium point.

A modal-Region-of-Stability “modal-RoS” is a graphical
representation that captures the evolution of RoS through
the changes of systems modes of configurations under a
sequence of fault and recovery actions. We denote a modal-
RoS for a given sequence of fault and recovery actions as:
RoSI → RoSP1 → ... → RoSPm, where I is the initial
pre-fault configuration mode, “→” designates mode change,
and P1, ..., Pm are the new post-fault configuration modes
as a sequence of m fault and recovery actions take place
sequentially in time. Fig. 3(a) shows RoS evolution for PS1
from its pre-fault mode I; its state trajectory when fault is
applied at line L15 causing RoS to be lost is shown in Fig.
3(b); post-fault Region-of-Stability RoSP1 in Fig. 3(c); and
post-fault state trajectory within RoSP1 when clearance is
applied within critical time in Fig. 3(d). Then, repeating this
process for a sequence of fault and recovery actions, a modal-
RoS can be generated. Fig. 2 shows an attack scenario A1
in which three lines are faulted in the sequence: L15 →
L46 → L56, interleaved with recovery actions. Accordingly,
the modal-RoS: RoSI → RoSP1 → RoSP2, is shown in Fig.
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Fig. 2. PS1 topology evolution under A1 (transition label F denotes fault, whereas C denotes its clearance).

Fig. 3. PS1 RoS evolution (a) pre-fault RoSI ; (b) state trajectory when
fault occurs at line L15; (c) RoSP1 for mode P1 after fault is cleared;
(d) post-fault state trajectory within RoSP1 when fault is cleared within
critical time.

4, where P1 is post-fault mode after clearing line L15 fault,
and P2 is post-fault mode after line L46 fault is cleared. Note
the RoS is lost after the final L56 fault, and so modal-RoS
terminates at this fault.
Definition 1. Given a modal-RoS: RoSI → RoSP1 → ...→
RoSPm, the percentage of RoS-Reduction, RoSR, is given
by,

RoSR =
DI −DPm

DI
%, (9)

where for a given RoS boundary Ω in n-dimensional space
with equilibrium ~xe, D can be computed as the shortest

Fig. 4. PS1 modal-RoS under A1.

Euclidean distance between Ω and ~xe:

D = min~q∈Ω||~q − ~xe|| = min~q∈Ω

√√√√ n∑
k=1

(qk − xek)2. (10)

B. Level-of-Performance-Reduction
Associated with each modal-RoS is a Level-of-

Performance-Reduction (LoPR), measured as the percentage
of reduction of load served along the various modes of the
modal-RoS.

Definition 2. Given a modal-RoS: RoSI → RoSP1 → ...→
RoSPm,

Level-of-Performance-Reduction, LoPR, is defined as:

LoPR =

∑
loads in mode I preal −

∑
loads in mode Pm preal∑

loads in mode I preal
%.
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C. Level-of-Resilience
Level-of-Resilience (LoR) is determined by comparing

the RoSR, and also the LoPR, as measured along the
various modes of the modal-RoS. (For the moment, we
ignore Recovery Time since this is the same for the two
power systems.) For a given attack scenario, we compute
the LoR as follows. First for the initial pre-fault mode I ,
compute the RoS of its SEP ~xeI . For any perturbation/low
level disturbance (e.g., transient change in load) that does
not switch the mode, the perturbed state must be within the
RoS of the pre-fault system for the system to remain stable
(state trajectory still converge to ~xeI ). When a fault/severe
disturbance occurs affecting the system structure, a new
Kron-reduced equivalent admittance matrix YF correspond-
ing to faulted mode is generated; the system may become
unstable without any recovery action rendering the RoS to
be an empty set. The fault can be cleared by isolating the
faulted line using circuit breakers. If the fault is not cleared
within a critical time window (t∗c ), then overall system
might no longer be stable. When fault is cleared within the
critical time, a new kron reduced admittance matrix YP is
obtained, corresponding to post-fault mode P . The system
will stabilize to a new equilibrium point ~xeP of mode P only
if the forward reachable state trajectory under fault starting
from pre-fault ~xeI , i.e., Reach

+
f (~xeI) is within the RoS of

~xeP . This is captured by the requirement:

tc such that Reach+
f (~xeI , tc) ∈ RoS(~xeP ).

Such pre-fault and post-fault RoSs can continue to be
sequenced for any subsequent attacks to yield a sequence of
RoSs, a modal-RoS. Associated with each RoS is a Level-of-
Performance-Reduction (LoPR), measured as the percentage
of reduction of load served. Using the size of RoS and the
associated LoPR for the eventual mode, we can measure
and compare Level-of-Resilience (LoR). Another aspect of
resiliency metric is Recovery-Time (RT), which is the time
system takes to detect and recover from an attack or a fault.

Definition 3. Given two systems PS1, PS2, and an
attack scenario A, LoR(PS1, A) > LoR(PS2, A) if:
[RoSR(PS1, A) < RoSR(PS2, A)]
∨ [[RoSR(PS1, A) = RoSR(PS2, A)] ∧[LoPR(PS1, A) <
LoPR(PS2, A)]]
∨ [[RoSR(PS1, A) = RoSR(PS2, A)] ∧[LoPR(PS1, A) =
LoPR(PS2, A)] ∧[RT (PS1, A) < RT (PS2, A)]].

In power systems, local controls are used for detection and
clearance of faults, and so RT is typically independent of
system topology and hence not included in Definition 3, but
could be included for general dynamical systems.

IV. EXPERIMENTAL COMPARISON OF LoR
In this section, we simulate two different attack scenarios

for two different power systems PS1 (Fig. 1(a)) and PS2
(Fig. 1(b)), with same generators and loads, but with different
topology, and for each scenario we evaluate and compare
their LoR. In order to simplify the transient stability analysis
for the purposes of our example, assumptions are made as
follows (similar assumptions can be found in [15], [9]):
each synchronous machine is represented by a constant
voltage source behind the direct axis transient reactance.
The governors actions are neglected and the input powers
are assumed to remain constant during the entire period
of a single mode. All loads are converted to equivalent
admittances to ground and are assumed constant.

Consider the first attack scenario A1, in which three lines
are faulted in the sequence: L15 → L46 → L56. For PS1,

Fig. 5. PS1 post-fault RoS when fault is applied at 1 sec at L15 and
state trajectories under several clearance times.

Fig. 6. PS1 relative angles when fault is applied at 1.0 sec, and t∗c = 2.0
sec.

the initial pre-fault equilibrium angles are: (0.0560, 0.0783)
rad. Three phase fault is applied at line L15 near bus 5
at time 1 sec, and cleared by the simultaneous opening of
breakers at both ends of the line. The critical time is obtained
by observing system trajectories under different clearance
times so that the system angles after clearance converge to
post-fault steady state equilibrium point (0.0643, 0.1202), as
shown in Fig. 5. This is also observed in actual behavior
as shown in Fig. 6. For the L15 fault, the critical clearance
time, t∗c is near 2.00 sec.

Next, a second fault is applied at line L46 near bus 6 at
time 11 sec, and later cleared by the simultaneous opening
of breakers at both ends of this line. The new post-fault
equilibrium point is (0.0584, 0.1381), and t∗c is near 1.90 sec.
If we apply a third fault at line L56 near bus 5 at time 21 sec,
then, regardless of the clearance time, machine 3 no longer
runs in synchronism (i.e., its relative angle diverges). Fig.
7 shows the corresponding relative angles under A1. Fig. 4
shows the evolution of RoS for PS1, yielding a modal-RoS
as discussed earlier.

We simulate the same attack sequence A1 for the second
power system, PS2, shown in Fig. 1(b). Initial pre-fault equi-
librium angles are: (−0.0204, 0.0578) rad. A three phase
fault is applied at line L15 near bus 5 at time 1 sec, with
t∗c = 1.62 sec, and post-fault equilibrium (−0.0050, 0.0810).
Next a second fault is applied at line L46 near bus 6 at time
11 sec, and cleared within t∗c = 2.09 sec, with post-fault
equilibrium at (−0.0137, 0.0765). Finally, applying a third
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Fig. 7. PS1 relative angles under A1.

Fig. 8. PS2 relative angles under A1.

fault at line L56 at time 21 sec causes machine 2 to fall out of
synchronism, regardless of the clearance time. Fig. 8 shows
the system relative angles with respect to time. Fig. 9 shows
the RoS evolution for PS2, yielding its own modal-RoS.

For PS1 (respectively, PS2), the protective relay elements
across machine 3 (respectively, machine 2) would interpret
the loss of synchronizing condition as an abnormal operat-
ing condition and trip machine 3 (respectively, machine 2)
[16], ensuring its protection. In the end, PS1 has Level-of-
Performance-Reduction, LoPR = 25.71%, while for PS2,
LoPR = 45.71%.

For comparing LoR of PS1 and PS2, under attack
scenario A1, Table I shows the nearest distance from equi-
librium to boundary associated with each RoS, as well as
RoSR. PS2 has higher RoSR (15.018%) as opposed to
PS1 (4.507%). Also, LoPR(PS1, A1) < LoPR(PS2, A1).
Hence, LoR(PS1, A1) > LoR(PS2, A1). Thus, PS1 is
more resilient to attack scenario A1 as compared to PS2.

TABLE I
SIZE OF EACH RoS (rad) AND RoSR(%) UNDER A1

A1 : DI DP (L15) DP (L46) RoSR

PS1 2.840 2.712 2.712 4.507
PS2 2.710 2.374 2.303 15.018

Similarly, under another attack scenario, A2 : L56 →
L14 → L46, modal-RoS for PS1 (respectively, PS2) are

Fig. 9. PS2 modal-RoS under A1.

Fig. 10. PS1 modal-RoS under A2.

shown in Fig. 10 (respectively, Fig. 11).
Table II shows the nearest distance between equilib-

rium and boundary associated with each RoS, as well as
RoSR. PS2 has higher RoSR (0.996%) as opposed to PS1
(−0.634%). Also, for PS1, LoPR = 28.57%, while for PS2,
LoPR = 45.71%, so LoR(PS1, A2) > LoR(PS2, A2),
implying that topology PS1 is more resilient as compared
to PS2, under both the attack scenarios.

TABLE II
SIZE OF EACH RoS (rad) AND RoSR(%) UNDER A2

A2 : DI DP (L56) DP (L14) RoSR

PS1 2.840 2.878 2.858 -0.634
PS2 2.710 2.776 2.683 0.996

V. CONCLUSION

In this work, we proposed a measure for comparing Level-
of-Resilience (LoR) for power systems. This measure is
based on comparing systems characteristics: percentage of
Region-of-stability-Reduction (RoSR), percentage of Level-
of-Performance-Reduction (LoPR), and the system recovery-
time, under the given attack scenarios. The system state
trajectories and RoS evolution are tracked and captured in
form of modal-RoS. Examples were illustrated to compare
the LoR of two different power system topologies under two
different attack scenarios. While the results were employed
for power systems, they more generally apply to any hybrid
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Fig. 11. PS2 modal-RoS under A2.

dynamical system with both continuous and discrete dynam-
ics, where the discrete state changes (i.e., mode switches) are
caused by attack and/or recovery actions. A note about recov-
ery time, within which a recovery action can be taken, is that
for power systems it corresponds to the time taken to detect
and clear faults, which does not vary dramatically from one
system topology to another, and so not considered explicitly
in the resiliency comparison measure of our example. For
general hybrid dynamical systems, however, recovery time
can also be included in the comparison measure. The work
presented here provides a framework to do so. Also, for the
general adoption of the approach, one must further provide
computationally efficient tool for LoR comparison, and this
can be a subject of further study. One could also consider
a simplified metric for measuring level of stability such as
stability margin, which is easier to compute than for example
region-of-stability.

APPENDIX

In this appendix, we provide the modeling data for the
power systems PS1 and PS2 that we use as running exam-
ples. TABLE III

MACHINE DATA FOR BOTH PS1 AND PS2

Gen. Ra(PU) Xd(PU) M(sec2/rad) D(sec/rad)
1 0 0.2 0.106 0.12
2 0 0.15 0.021 0.12
3 0 0.25 0.027 0.12

TABLE IV
GENERATION SCHEDULE FOR BOTH PS1 AND PS2

Bus No. Voltage(Mag.) Generation(MW) Qmin.(Mvar) Qmax.(Mvar)
1 1.06 0
2 1.04 150 0 140
3 1.03 100 0 90

TABLE V
LOAD DATA FOR BOTH PS1 AND PS2

Bus No. Load(MW) Load(Mvar)
1 0 0
2 0 0
3 0 0
4 100 70
5 90 30
6 160 110

TABLE VI
LINE DATA FOR PS1 (AND PS2 WITH REORDERING)

Bus No. Bus No. R(PU) X(PU) (1/2B)(PU)
1 4 0 0.225 0.0065
1 5 0 0.105 0.0045
1 6 0 0.215 0.0055
2 4 0 0.035 0.0000
3 5 0 0.042 0.0000
4 6 0 0.125 0.0035
5 6 0 0.175 0.0300

TABLE VII
POWER FLOW SOLUTION FOR PS1

Bus
No.

Voltage
(Mag.)

Angle
(Degree)

Load(MW) Load(Mvar) Generation(Mw) Generation(Mvar)

1 1.060 0.000 0.000 0.000 100.000 116.170
2 1.040 1.217 0.000 0.000 150.000 97.704
3 1.030 0.412 0.000 0.000 100.000 27.919
4 1.008 -1.653 100.000 70.000 0.000 0.000
5 1.019 -1.881 90.000 30.000 0.000 0.000
6 0.960 -6.368 160.000 110.000 0.000 0.000

TABLE VIII
POWER FLOW SOLUTION FOR PS2

Bus
No.

Voltage
(Mag.)

Angle
(Degree)

Load(MW) Load(Mvar) Generation(Mw) Generation(Mvar)

1 1.060 0.000 0.000 0.000 100.000 82.304
2 1.040 -2.391 0.000 0.000 150.000 125.447
3 1.030 -0.370 0.000 0.000 100.000 26.545
4 0.977 -6.511 100.000 70.000 0.000 0.000
5 1.020 -2.661 90.000 30.000 0.000 0.000
6 0.999 -5.287 160.000 110.000 0.000 0.000
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