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Comparison of Two-Wheel
and Four-Wheel Steering Using
Event-Triggered Predictive
Motion Control and Scale
Vehicles
This study compares the trajectory tracking performance of two- and four-wheel steering
systems, especially under normal driving conditions. Specifically, the lateral motion is con-
trolled by an event-triggered model predictive control (MPC), which activates either when
consecutive control steps surpass the predictive horizon or when tracking error exceeds a
predetermined lateral offset. Using a modified 1/10th scale Tamiya TT-02 RC car as a test
platform, the tracking performance of both two- and four-wheel systems are evaluated.
Results from the experiments highlight the better tracking performance of the four-wheel
steering system over the traditional two-wheel systems and demonstrate the benefit of
using event-triggered MPC for lateral motion control even under normal driving condi-
tions, contrary to common belief that four-wheel steering systems are beneficial only in
tight steering maneuvers. [DOI: 10.1115/1.4065093]
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1 Introduction
With the rising popularity of electric vehicles, autonomous

driving technology is also advancing rapidly [1,2]. In the field of
autonomous vehicles, steering control plays a key role in ensuring
precise navigation and safety [3–5]. While traditional two-wheel
steering systems have been standard for decades, the advent of
advanced technologies has brought four-wheel steering systems to
the forefront as an alternative. Four-wheel steering aims to
enhance handling, stability, and maneuverability compared to con-
ventional two-wheel steering [6]. In four-wheel steering systems,
both the front and rear wheels can be steered simultaneously.
This provides an additional degree-of-freedom and control authority
over the vehicle’s lateral dynamics, which enhances the vehicle’s
maneuverability at slower speeds and increases stability at higher
speeds [7].
A variety of control algorithms have been proposed for four-

wheel steering vehicles, including linear quadratic control [8,9],
decoupling control [10], and H∞ control [11]. Moreover, model
predictive control (MPC) has been widely investigated in the
context of autonomous driving, with the main advantage being its
capability to solve complex optimization problems and constraints
[12–15]. MPC can handle the highly nonlinear and complex dyna-
mical processes during driving maneuvers. However, the

optimization problem solved at each control step requires signifi-
cant computation. Therefore, techniques to reduce the computation
time are essential for real-time feasibility. To this regard, event-
triggered MPC has been proposed to decrease the computation
requirements of MPC [16,17]. Rather than performing optimization
and updating the control at every step, the optimization is only
solved when needed based on the system states satisfying a trigger-
ing condition. The stability and feasibility of the event-triggered
MPC are extensively addressed in detail in papers [18,19]. These
studies provide conditions under which the event-triggered MPC
is feasible and stable. For example, the stability can be established
by utilizing the Lyapunov stability theory with the cost function as
Lyapunov functions. The efficacy of event-triggered MPC has been
demonstrated in path-tracking problems using simulation [5] and
vehicle experiments [20], demonstrating its benefits of reducing
computation without major performance degradation.
However, these prior works have been focused on two-wheel

steering systems only. In the authors’ previous work [21], MPC
was implemented in a four-wheel steering system to test its advan-
tage over two-wheel steering systems. However, Ref. [21] only con-
sidered tight steering maneuver, where the benefit of using
four-wheel steering is rather obvious. This article builds upon the
previous work and focuses on driving conditions that do not
require excessive steering, examining whether four-wheel steering
can still offer benefits. To enable experimental validation, a custom-
ized scaled vehicle platform was developed based on a 1/10th scale
Tamiya TT-02 RC model car [22]. The major addition was an actu-
ated rear-wheel steering mechanism to transform the vehicle from
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its original two-wheel steering system into one with a four-wheel
steering system. For autonomous operation, the platform was outfit-
ted with an NVIDIA Jetson Nano single board computer to run
control algorithms and a Marvelmind ultrasonic-based indoor posi-
tioning system for real-time location measurements. Experimental
results demonstrate that even in normal driving conditions, four-
wheel steering systems can still offer control performance improve-
ment and computation reduction in the event-triggered control frame-
work. Moreover, efficiency improvement in four-wheel steering
vehicles is also an interesting research topic. See, for example,
Refs. [23,24], where significant energy improvement is reported by
using optimal torque distribution methods, without compromising
stability. In the future, this could be a potential area for testing on
this platform.
The remainder of this article is organized as follows. Section 2

discusses the vehicle model for the MPC and the algorithm of event-
triggered MPC. Section 3 introduces the setting up of the experi-
mental platform. The numerical results are presented in Sects. 4,
and Sec. 5 concludes this article.

2 Predictive Motion Control
2.1 Kinematic Bicycle Model. In this article, we conducted

tests on a scaled vehicle at low speeds. Given these conditions, the
lateral tire forces have a minimal impact and can be reasonably
omitted from our analysis. Please note that, for low speeds, kinematic
models can be more effective for MPC, while dynamic models are
generally better for high-speed maneuvers. This is due to the fact
that at low speed, lateral tire forces are usually hard to accurately
model, which can result in unrealistic prediction for MPC. It is also
our observation through experiments that MPC with dynamic
model would require a computational time that is too long for effec-
tive steering control, resulting inworse tracking performance. There-
fore, in this article, we utilize a kinematic model for MPC.
The vehicle model is then represented through the kinematic

bicycle model, as illustrated in Fig. 1. The state vector x is
located at the vehicle’s center of gravity (CG) and is defined as
x = [px, py, ψ]T , where px and py are the vehicle global coordi-
nates of CG, and ψ is the heading angle in a counterclockwise direc-
tion. Then the set of difference equations of the kinematic model is
given as follows:

px,t+1 = px,t + V cos (ψ t + βt)Ts (1a)

py,t+1 = py,t + V sin (ψ t + βt)Ts (1b)

ψ t+1 = ψ t +
V cos (βt)
Lxf + Lxr

( tan (δ f ,t) − tan (δr,t))Ts (1c)

where Ts is the sampling time, V is the velocity of the vehicle’s CG,
Lxf and Lxr are the distances from the CG to the front and rear axle,
respectively, δ f ,t and δr,t are the front and rear steering angles, respec-
tively, and βt = arctan (Lxf tan (δr,t) + Lxr tan (δ f ,t))/(Lxf + Lxr)

( )
is

the vehicle slip angle. The control vector can be compactly denoted
as ut = [δ f ,t , δr,t]T . Note that for the two-wheel steering system, the
rear steering angle is fixed to zero, and the control vector reduces to
ut = δ f ,t .

2.2 Optimal Control Problem. In the context of MPC-based
path-tracking control, the general MPC algorithm undertakes the
following steps at a given time instance t. First, it gauges the
system’s current state. Then, using the system model, constraints,
and the present state, it solves the optimal control problem and iden-
tifies the optimal state sequence Xt = [xt+1, xt+2, . . . , xt+p] and the
optimal control sequence Ut = [ut , ut+1, . . . , ut+p−1], where p
denotes the prediction horizon. Finally, the actuators receive the
initial element from the optimal control sequence. The optimal
control problem (OCP) is given as follows:

min
u

∑p

k=1

‖xt+k − xrt+k‖2Qx
+
∑p−1
k=0

‖ut+k‖2Qu

+
∑p−1
k=0

‖ut+k − ut+k−1‖2Qd
(2a)

s.t. xt = x̂t (2b)

System dynamic (1), k = 1, . . . , p (2c)

umin ≤ ut+k ≤ umax, k = 0, . . . , p − 1 (2d)

Δmin ≤ ut+k − ut+k−1 ≤ Δmax, k = 0, . . . , p − 1 (2e)

In the case of path-tracking control, the primary objective is to
minimize the offset between the vehicle’s actual and desired posi-
tion. Therefore, in the cost function (2a), the first term penalizes
deviation from the desired path. Meanwhile, to ensure stability,
the second and third terms of cost function minimize the steering
angles and the steering angle rate, respectively. The matrices Qx,
Qu, and Qd are the weights of path following error, steering
efforts, and control activity respectively. In Eq. (2b), x̂t denotes
the current state feedback, meaning at time t, the initial states of
the optimization problem are equal to the state feedback at time t.
Equations (2c), (2d), and (2e) are the constraints of the optimal
control problem, where Eq. (2c) requires that at each step the
state vector follows the kinematic model (1), Eq. (2d) limits the
range of steering angle, and Eq. (2e) limits the steering angle rate.
In Eq. (2d) when k is equal to 0, ut−1 denotes the control action
applied at the previous time-step. To address the optimal control
problem mentioned earlier, the MPCTOOLS package along with
CASADI are used, both of which are open-source optimization tools
as described in Refs. [25,26]. The MPCTOOLS package is divided
into three key components: an estimator, a target calculator, and a
regulator. Each of these elements provides access to the solvers
within CASADI.

2.3 Event-Triggered Control. To minimize the computation
complexity of MPC, event-triggered MPC is investigated in this
article. Unlike the typical MPC, event-triggered MPC solves
the OCP (2) only when an event is triggered. This article considers
the threshold-based event-trigger mechanism adopted by Ref. [27],
as follows:

e =
1 if dy > θ or k > kmax

0 Otherwise

{
(3)

In other words, the condition that causes the MPC to be triggered in
this mechanism depends on k and θ, where k is the consecutive
times that the OCP has not been solved, and θ is the maximum tol-
erable tracking error. It is crucial to remember that kmax should notFig. 1 Schematic of the kinematic bicycle model
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be more than the prediction horizon p. In other words, the MPC is
activated if the current step number k exceeds the threshold kmax or
if the distance dy that the vehicle deviates from the closest point on
the planned path exceeds a predetermined threshold θ. In the case
that e = 1, the current control action u is determined by solving
OCP (2). In the case that e = 0, selecting the control action will
be based on the optimal sequence Ut computed during the previous
event.
Please note that, since only input constraints are consider in OCP

(2), the feasibility of event-triggered MPC is automatically guaran-
teed if the original OCP is feasible. The stability of the
event-triggered MPC has been established in the literature
[18,19], by utilizing the Lyapunov stability theory with the cost
function as Lyapunov functions. Please also note that though
other control methods, such as proportional-integral-derivative
(PID), linear quadratic regulator (LQR), or time-triggered MPC,
can also be applied to demonstrate the difference between two-
wheel and four-wheel steering control, event-triggered MPC is
selected for investigation due to its capability to handle constraints
compared to PID and LQR and its relatively low computational
requirement compared to time-triggered MPC.

3 Experimental Setup
3.1 JETRACER With Rear Steering. In this article, the scale

vehicle platform based on the open-source JETRACER [22] is used
to validate four-wheel steering systems with event-triggered
MPC, which is built from a 1/10th scale Tamiya TT-02 RC car
(Fig. 2). Compared with the original Tamiya TT-02 RC car, the
rear wheel steering system needs to be added. In particular, the
added rear-wheel steering system is based on the front-wheel steer-
ing design with slight modification to fit the different architecture
around the rear axles. Mounting points on the rear bumper origi-
nally used for cosmetic parts are repurposed to fasten replacement
copies of the front-wheel bell cranks using a 3D-printed bracket
with mounting pins. Because the bell cranks are positioned
farther apart, the bell crank linkage design also has to be lengthened
to match the separation of the mounting points and 3D printed.
Replacement copies of both the steering links and drag links have
to be shortened and reconnected with a 3D-printed bracket. The
final lengths of the steering links must result in the wheels pointing
straight forward when the steering linkage assembly is centered.
After drilling holes in the rear bumper and fastening a second steer-
ing servo in place, the custom rear knuckles are attached to the sus-
pension arms, and the aforementioned steering linkage components
are assembled as shown in Fig. 3. The vehicle is driven by an elec-
tric motor powering all four wheels. Motor speed is controlled by a
Tamiya electronic speed controller (ESC), and a servo multiplexer
(switched from the RC transmitter) is used to select if the RC trans-
mitter/receiver or the Jetson Nano/servo driver module supplies the

control signals for the ESC and steering servos. More details about
the setup of the platform can be found in Ref. [21].
To calculate vehicle state information for the MPC-based motion

controls, a MARVELMIND indoor positioning system2 is used, which
consists of five beacons and a modem. One of the beacons is
mounted on the scale vehicle, and the other four beacons are
placed around the perimeter of the testing area, which are set as sta-
tionary beacons. Figure 4 shows the beacon positions during a
typical test in the MARVELMIND software.

3.2 Delay Compensation. The system delay causes the actual
position of the vehicle to be slightly ahead when control actions are
applied. To address this issue, delay compensation is incorporated
into the motion controls. The main causes of the delay are the
time taken by the processor to update the control sequence and
the latency of the MARVELMIND position data caused by filtering
methods designed to reduce noise. Several measures can be taken
to significantly reduce, but not entirely eliminate, latency in the MAR-

VELMIND system. For example, including IMU data from the mobile
beacon in the system results in a notable increase in latency. In this
article, delay compensation is achieved by using the vehicle model
to estimate the future vehicle state based on the measured vehicle
state, vehicle velocity, and the current control set point. The MPC
system uses this estimated vehicle state as the initial state x0, expect-
ing it to reflect the real vehicle state when the newly calculated
control actions are applied more accurately.

3.3 PID Velocity Generation. The vehicle speed is controlled
by a PID-based velocity control system, with all three (proportional,
integral, and derivative) terms. However. as is typical with PID con-
troller, the derivative term results in an amplification of noise from
the error signal. To minimize this issue, a discrete low-pass filter is
implemented using the form of the single-pole infinite impulse

Fig. 2 The scale vehicle platform based on Tamiya TT-02 RC car

Fig. 3 Custom rear-wheel steering assembly annotated drawing

Fig. 4 MARVELMIND DASHBOARD software showing the stationary/
mobile beacon locations

2https://marvelmind.com/
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response filter in Ref. [28] for both the signal and for the calculation
of the derivative term. In particular, let V = bv + aV−1, where V−1 is
the previous filtered velocity, v is the raw velocity signal before fil-
tering, and a and b are the filter coefficients. For this application, in
addition to the standard PID terms, an additional control term,
S = Ksδ

2
f , is added to increase the throttle value as steering angles

increase to account for sources of resistance such as reduced effi-
ciency of u-joints.

3.4 Track Generation. The scale vehicle testing included in
this article uses an oval track (two half circles connected by straight
sections) defined as an array of coordinates. To simplify the process
of modifying the track, a PYTHON code was written to generate the
track based off of several inputs. Because the MARVELMIND data are
generated using one of the stationary beacons as the origin, it is
useful to specify shifts in the x and y directions, as well as a rotation
angle for the track (θ). In addition, the code allows the user to set the
radius of the turns (R), the length of the straight sections (L), and the
number of points included in each half circle section (N).
First, coordinates for theupperhalf circle aregenerated.For eachof

the points from n = 0 to n = N − 1, the coordinates are calculated as
x = R × cos (nπ/(N − 1)) and y = R × sin (nπ/(N − 1)). The lower
half circle coordinates are the same, but with negated x and y
values. Then, the distance between points (d) is calculated as
d = (πr)/(N − 1). To ensure that the value of d remains constant
throughout the track, the requested length of the straight sections l
is modified to be the first multiple of d that exceeds the requested
length. The top/bottom half circles are shifted up/down by L/2. The
left and right straight section coordinates are generated to fill the
space between the half circle sections while ensuring that the order
of points results in a continuous track when the four sections are con-
catenated into a single array. After concatenation, the track can be
rotated by multiplying each coordinate pair by a rotation matrix

R =
cos θ − sin θ
sin θ cos θ

[ ]
. Finally, all coordinates in the rotated track

are shifted by the specified values to create the final array of track
points used for motion controls testing.

4 Experimental Results
4.1 Controller Calibration. The calibration process presented

in this article focuses on the weights Qx, Qu, and Qd for the cost
function. In addition, only the relative magnitude of the weight
affects the solution of Eq. (2a). Since Qx is held as constant, this
study only focuses on adjusting the values of Qu andQd. In the two-
wheel steering mode, both the control input u = δf and the matrices
Qu and Qd are scalars. Consequently, there are two calibration
parameters Qu and Qd that need to be determined. In the scenario
of four-wheel steering, the control input u = [δf , δr]T spans a two-
dimensional space. Therefore, in this case, both Qu and Qd are two-
dimensional diagonal matrices and have four calibration parameters
that need to be determined, which are Quf , Qur, Qdf , and Qdr . To
generate the parameter matrix for testing, the design of experiment
(DoE) method is taken into consideration. However, the factorial
design method, which is the most common approach in DoE, is
inadequate for problems involving four variables. Consequently,
in this article, the Latin hypercube method [29], an alternative
DoE approach better suited for multiple variables, is employed.
The sets of parameters for the two-wheel and four-wheel steering
systems are presented in Figs. 5 and 6, respectively. Both DoEs
show a reasonable distribution over the design space. Note that
more points are generated in the four-wheel steering system due
to its large design space.
To collect data for these calibration sets, we implemented the

two-wheel and four-wheel MPC controllers in separate scripts,
with a target vehicle speed of 1.6 m/s. The scripts automatically
iterate through the DoEs, apply the calibration for a set time, and
generate data files. Between each iteration, the first calibration
(known to function reasonably well from hand calibration or

Fig. 5 Latin hypercube calibration set for the two-wheel steering
mode test

Fig. 6 Latin hypercube calibration set for the four-wheel steer-
ing mode test

Table 1 DoE results for two-wheel steering MPC track (unit: CM)

Qd Qu RMSE Max error I

11.47 9.73 5.7 14.6 2.65
10.69 15.64 7.5 18.0 3.37
21.69 12.81 7.6 15.7 3.15
14.94 12.07 7.0 17.1 3.17
20.92 16.93 9.0 21.4 4.03
19.11 14.98 8.9 18.3 3.68
12.94 17.50 8.6 18.7 3.66
13.10 11.30 6.1 14.9 2.77
11.72 13.23 6.1 10.3 2.28
20.32 11.06 5.0 11.0 2.15
16.79 13.62 6.5 18.0 3.18
18.68 9.01 5.7 10.9 2.28
15.41 16.51 6.3 16.4 2.97
16.33 10.61 6.2 15.7 2.86
17.79 16.15 6.4 12.8 2.60
14.07 14.60 5.3 12.1 2.31
15.60 13.20 5.8 14.7 2.69

Note: The calibrations with the best performance according to the cost index
are highlighted in bold.
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previous DoE results) is reapplied to allow the system to recover if
the previous DoE calibration performs poorly. In addition, data col-
lection for a DoE calibration is ended early if the vehicle deviates
from the desired path beyond a predefined threshold. The results
for the two-wheel steering DoE shown in Fig. 5 are presented in
Table 1, and the results for the four-wheel steering DoE shown in
Fig. 6 are presented in Table 2. The cost index value I is the normal-
ization of RMSE +Max Error with respect to the smallest value
and is used to evaluate the performance of the sets of weights.
The calibrations with the best performance according to the cost
index are highlighted in bold, with the corresponding path-tracking
performance shown in Fig. 7.

4.2 Event-Triggered Motion Control. Table 3 compares the
tracking performance of the two- and four-wheel steering systems

under different values of θ (the maximum tolerable error; see Sec.
2.3). From this table, it is evident that regardless of the threshold
value applied, the four-wheel steering MPC consistently achieves
a lower RMSE and Max tracking error. For instance, at θ = 0.0,
the RMSE and Max error for the two-wheel steering system are
3.9 and 11.0, respectively, while for the four-wheel steering
system, they are 3.7 and 8.6, respectively. This trend persists for
higher values of θ. At θ = 3.5, the RMSE andMax error for the two-
wheel system rise to 12.3 and 26.8, whereas for the four-wheel
system, they only increase to 9.6 and 20.3, respectively. In addition,
the event-triggered mechanism in the four-wheel steering system
reduces computational requirements more than in the two-wheel
steering system. The results demonstrate that four-wheel steering
MPC offers performance improvements over two-wheel steering
MPC, and the event-trigger control mechanism provides the capa-
bility to lessen the computational load, even in normal driving con-
ditions. This supplements the previous results [21] that focus on
tight steering maneuvers only.

5 Conclusion
This article investigates the advantages of a four-wheel steering

system under normal driving conditions, where the event-triggered
MPC is applied to both two- and four-wheel steering systems. A
modified 1/10th scale Tamiya TT-02 RC car with ultrasonic-based
indoor positioning system is used for experiments. Contrary to the
conventional belief that four-wheel steering systems are beneficial
only in tight steering maneuvers, the results reported here show
that, under identical settings of the event-triggered MPC, the four-
wheel steering system offers better tracking performance while
using less computational resources.
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