Eif algorithms WVI\D\Py

Article

Comparison of Linear MPC and Explicit MPC for Battery Cell
Balancing Control

Wanqun Yang and Jun Chen *

Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA;
wanqunyang@oakland.edu
* Correspondence: junchen@oakland.edu

Abstract

This paper presents and compares two model predictive control (MPC) approaches for
battery cell state-of-charge (SOC) balancing. In both approaches, a linearized discrete-time
model that takes into account individual cell capacities is used. The first approach is a
linear MPC controller that effectively regulates multiple cells to track a target SOC level
while satisfying physical constraints. The second approach is based on explicit MPC imple-
mentation to reduce online computation while achieving a comparable performance. The
simulation results suggest that explicit MPC can deliver the same balancing performance
as linear MPC, while achieving faster online execution. Specifically, explicit MPC reduces
the computation time by 37.3% in a five-cell battery example, with the cost of higher offline
computation. However, simulation results also reveal a significant limitation for explicit
MPC for battery systems with a larger number of cells. As the number of cells increases
and/or the prediction horizon increases, the computational requirements grow exponen-
tially, making its application to SOC balancing for large battery systems impractical. To the
best of the authors” knowledge, this is the first study that compares MPC and explicit MPC
algorithms in the context of battery cell balancing.
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of the main power sources for EVs, is still held back by issues such as state-of-charge
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(SOC) and voltage imbalance that can compromise driving range and slow down further
development of the industry [2—4]. One of the primary causes of these imbalances lies
in the cell-level characteristics within battery packs. Packs typically consist of multiple

18,548. https://doi.org/10.3390/ cells connected in series, but due to differences in manufacturing, temperature, internal
a18090548 resistance, and self-discharge rates, imbalance between cells gradually occurs [5,6]. This
Copyright: © 2025 by the authors. imbalance reduces the capacity of the entire pack, as the weakest cell limits the overall
Licensee MDPI, Basel, Switzerland. charge and discharge range. It also decreases efficiency, shortens battery lifespan, and may
This article is an open access article cause safety risks such as overvoltage or undervoltage in individual cells [7,8]. Therefore,
distributed under the terms and to improve EV driving range, battery cell balancing control has been proposed to reduce
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licenses /by/4.0/). sipative and redistributive. Dissipative balancing is simple but inefficient—it equalizes

differences among cells [7-10].
To overcome cell imbalance, two main balancing methods are commonly used: dis-
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cell voltages by discharging excess energy from higher-charged cells as heat through re-
sistors, leading to energy loss [11]. In contrast, redistributive (or active) balancing uses
power electronic circuits to transfer energy directly from cells with a higher SOC to those
with a lower SOC, improving the energy efficiency and preserving the overall pack per-
formance [12-14], using balancing circuits [15] such as flyback DC/DC converters [12]
or half-bridge converters [16]. However, the redistributive balancing method requires
advanced battery management systems to track and regulate cell SOC and voltage. In this
paper, the redistributive method is primarily adopted.

The aim of active balancing is to prevent cell undervoltage by maintaining safe voltage
levels, with many control methods explored in the literature. For example, ref. [17] dis-
cussed simple feedback control and refs. [18,19] implemented rule-based control to monitor
and track SOC. Although these studies have shown encouraging results, they usually adopt
simple control strategies that fall short in maximizing the utilization of energy stored in
battery cells. The authors in [20,21] used heuristic control and the results appear to have
been effective. In this paper, model predictive control (MPC), a real-time receding horizon
control approach, is investigated as a more effective alternative. Specifically, we apply both
linear MPC and explicit MPC for battery cell SOC balancing. The linear MPC relies on
online computation to find the optimal balancing currents and requires only minimal mem-
ory, whereas the explicit MPC performs offline computation at the expense of significantly
higher memory usage. Compared to existing MPC-based balancing [7,8,10,12], we focus
on linear MPC to simplify the required onboard computation. Moreover, we provide a
numerical analysis on the real-time implementability and scalability for large-scale battery
packs. To the best of the authors’ knowledge, this work is the first to focus on a computa-
tional comparison between MPC and explicit MPC in the context of battery SOC balancing.
We firstly confirm that both linear MPC and explicit MPC can generate the same control
inputs for battery balancing. Based on this, we investigate three factors that may affect the
number of regions in explicit MPC: cell number, prediction horizon, and control horizon.
The results provide numerical insights for future researchers on how to select appropriate
cell numbers, prediction horizons, and control horizons when deploying explicit MPC for
battery balancing. The results also offer practical insights into the selection of linear versus
explicit MPC depending on whether the battery management system (BMS) hardware has
more memory or a higher CPU performance.

Our contributions are summarized below.

1. A linear MPC controller is designed to regulate the SOC of battery cells to track a
target SOC level.

2. Anexplicit MPC controller is also designed to perform the same balancing task, whose
performance and computation requirements are compared with the linear MPC.

3. To provide insights on the scalability and real-time implementability of explicit MPC,
an analysis is conducted on how the offline computation effort for the explicit MPC
approach changes as the prediction horizon increases.

The remainder of this paper is organized as follows. Section 2 introduces system
model and two MPC formulations, while the system settings and simulation results are
presented in Section 3. Section 4 concludes the paper with future work directions.

2. Formulation
2.1. System Model
The serial-connected battery considered here is shown in Figure 1, where N cells

are connected to provide current i to the load, e.g., an EV. We consider the conventional
hierarchical topology, namely from cells to modules and from modules to pack, as the basis
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for our simulations. We introduce the state-of-charge (SOC) variable s, (t) € [0, 1] for the
n-th cell. Its continuous-time dynamics under balancing current i,,(¢) (A) are

1
o -
n(t) = ~3¢00c, ()

where C;, is the cell capacity in Ah; the factor 3600 converts the capacity from Amp-Hour

(1)

to Amp-Second. Because manufacturing tolerances vary, each C,, may differ.

[ Power Converter ]
A A A A
il i2 in—l in
15¢ cell 274 cell (N — 1) cell Nt" cell

Load

Figure 1. Structure of serial-connected battery cells.

Stacking all cell SOCs and currents gives

s1(t)
s2(t)
)= |, @
sn(t)
[i1(t)
ip(t)
=", ®)
Lin(t)
With the diagonal matrix
G 0 0
0 G 0
M. = —3600 . P (4)
0 0 Cn
the vector form of (1) is
#(t) = M i(t) (5)

Using a sampling time Ts and forward Euler, we have

Xep1 = X + TsM: iy, (6)
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where i is the balancing current vector at time step k. It should be noted that this is
different from the main discharge current i shown in Figure 1. Define

A =], (7a)
B =T;M_. !, (7b)

where I is the identity matrix, which we define as A to enhance readability and generaliza-
tion of the model. So that
Xk+1 = Axy + Big. (8)

For convenience in controller design, we shift SOC by §, and with a slight abuse
of notation:

Sl(k) -5
0 s

W= |27, ©
SN(k.) -5

where § denotes the target SOC level for all cells to track. Note that by using s, (k) — 5
instead of s, (k) as state variables, we essentially reformulate the tracking control problem
into a regulation problem, which can be easier for implementation.

With sampling time T; and number of cells N, the matrices in (7) reduce to the
following explicit forms

10 --- 0 360170& (1) e 0
01 -0 0 0TS
a=|. . . | B=-T.| (10)
1
00 --- 1 0 0 ey
Balancing currents are subject to magnitude limits and charge-conservation:
imi_n S Zl’l(k) S imax/ n= 1/' . '/N/ (11)
N
Y in(k) = 0. (12)
n=1

Constraint Equation (12) enforces overall charge conservation within the pack, meaning
the sum of the balancing currents is zero. Note that this is simplified from the power
conservation constraint and has been widely used in battery cell balancing literature [8].

Note that [22] implemented multiple estimation methods for lithium-ion batteries,
and their results show that, after noise removal, the SOC dynamics are highly linear.
Furthermore, since the battery balancing has been studied in literature [13,23-25] solely
on simulation, our model is sufficient to meet the research objectives. Therefore, to better
highlight the computational comparison between linear MPC and explicit MPC, we adopt
a simplified battery model in this work.

2.2. Linear MPC

The linear MPC controller aims to regulate the SOC of all cells to a target value 3.
At each time step, the controller solves a finite-horizon optimization problem to determine
the optimal balancing current sequence. The optimization problem can be formulated
as follows.
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1 , 1R
min > Yo i, + 3 Y el (13a)
k=1 k=0
s.t. system dynamics (8), k=0,1,...,p—1 (13b)
input constraints (11) and (12), k=0,1,...,p—1 (13c)
Xo = initial state, (13d)

where p is the prediction horizon, Qy and Q,, are weight matrices for the states and inputs,
respectively. The prediction horizon p is how many future steps the controller considers
when optimizing. Q, and Q, are symmetric weight matrices that penalize state deviations
and control effort; they are chosen to be diagonal in our simulations. For more mathematical
definitions and derivations of MPC, readers are referred to [26]. uy is the balancing current
and 7y introduced in Section 2.1. Based on references [26-28] in the MPC field, we present
the following derivation: The optimization problem (13) can be formulated as a quadratic
programming (QP) problem,

.1
min EuT(Hx + My)u+ flu

u

Mypu < Xmax — Magxo
—M gt < —Xmin + MarXo
U < Umax ’ (14)
s.t.
—uU < —Umin
Du < Amax —
—Du S _Amin + Ty
where
[ B 0 0
AB B - 0
Map=| . A (15)
|AP~'B AP72B ... B
[ A
AZ
Mac= | . |- (16)
AP

In the QP problem (13), xyax and x,,;, are the upper and lower bounds of the system states,
while 4,5y and u,,;, are the upper and lower bounds of the control inputs, respectively.
Apax and Ay, represent the maximum and minimum changes in control inputs between
two time steps. This setting is introduced to ensure more stable control inputs for the
system. We denote

Qr 0 0 0
0 Q¢ 0 0

Mi=|0 0 Q - 0 (17)
0 0 0 - Q

Moreover,
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fx = X9 My McMyg, (18)
Q. 0 0 0
0 Q, 0 0
M, = 0 0 Qu e 0 ’ (19)
0 0 0 Qu
0
=1 0 |. (20)
0

2.3. Explicit MPC

For embedded applications with limited computational resources, explicit MPC pro-
vides an alternative approach by pre-computing the control law offline [29]. The explicit
MPC approach for the same optimization problem transforms the online optimization
into a function evaluation problem. The following mathematical derivation is also mainly
inspired by [29]. We have

fr=xg Mj;MyMap = x{ F, (21)

It is worth noting that fy and F are terms that are independent of u. They are intermediate
variables introduced to simplify the mathematical derivation and improve readability. The
above equation can be rewritten as a finite-horizon problem:

1
rnuin EuT(Hx + My,)u+ xOTFu ,

Mgt < Xmax — Magxo ,
22
) —~Mapu < —Xmin + Magxo 22)
subject to
U < Umax
—u < —Umpin
Furthermore, denote

H - Hx + Mu (2‘3a)

(23b)
W = | Fmin (23¢)

(23d)




Algorithms 2025, 18, 548 7 of 13
where
Hy = MLz MyMap. (24)
Equation (22) can be written as
17 T
min -u Hu+xy Fu
w2 (25)
subjectto Gu < W + Sxg
the solution of this optimize problem is
Hu*+F'xg+G'A* =0 (26a)
A (Glu— Wi —Sixg) =0, ic A (26b)
A >0 (260)
Gu < W+ Sxg (26d)

where A is the set of active constraints, i.e., constraints that the equality holds, correspond-
ing to the optimal solution u*. Then, the KKT condition above gives rise to the following
linear system:

H (GYHT||u| | —FTxo @)
GA 0 | |Af| [ WA S
Since H is positive definite, we have
w = —H((G*) A"+ FTxo). (28)
Therefore,
u* = K(A)xg +g(A), (29)
where
-1
K(.A) — H—l(GA)T (GAH—l(GA)T)
(30)
($A+GAHTFT) T
-1
g(A) = HU(GHT (GAH(6YT) A (31
The optimal control to be implemented is given by
uw=[ 0 --- 0]u*
(32)
= 0 --- O0KA)x+[I 0 --- 0]g(A)

where K(.A) is a matrix whose first n,, rows define the gain K4, and g(.A) is a vector whose
first n,, entries define g4. Then, we have the following affine feedback control law:

ut = Kaxo+ga. (33)

The main advantage of explicit MPC is the reduction in online computational require-
ments, making it suitable for real-time implementation on embedded systems. However,
as will be seen shortly, the offline computation increases exponentially with the state dimen-
sion and prediction horizon length, which is a significant limitation for high-dimensional
systems. In terms of memory requirements, linear MPC computes optimal control online,
so the information it stores grows polynomially with respect to the prediction horizon,
whereas explicit MPC must store the control law and inequalities for many regions. As the
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number of regions grows exponentially with respect to the prediction horizon, explicit
MPC often needs much more memory.

3. Simulation Setup and Results

In this section, the numerical settings of the system along with the simulation results
are presented. Both MPC controllers are applied to the same battery system.

3.1. System Settings

Both the linear and explicit MPC controllers are configured using the same system
setup to ensure consistency and simplify comparison. The battery system consists of
five cells, each with a capacity of 4.1 Ah. In many battery balancing studies, the initial
imbalance deviations are larger. For example, ref. [30] performs balancing during charg-
ing, where the initial SOC difference between the maximum and minimum can reach 0.3.
References [23,31] conduct balancing during discharging, with selected initial SOC devia-
tions of about 0.1. Authors in [32] also provide an example under worst case conditions,
where the initial SOC deviation reaches 0.45. In our simulation, initial SOC deviation is set
to 0.2. The initial state x( is given by:

T
x=|—-01 -0.05 01 005 0|, (34)

with the target SOC level given by § = 0.5. In other words, tracking x to 0 actually
corresponds to tracking the SOC to 0.5, and in this case, the range of x is between —0.5
and 0.5. The sampling time T is set to 20 s, and the total simulation duration is 500 min.
For the weights, we test several different values in the linear MPC and select the set
that yields a relatively smooth balancing current. The MPC weights are chosen as 10
for output tracking, 0.1 for input magnitude, and 0 for input rate, emphasizing accurate
SOC regulation while minimizing control efforts. The values of i,y and i,,;;, are 0.3 and
—0.3, respectively.

3.2. Simulation Results

Figures 2 and 3 present cell SOC deviations and balancing currents for the linear
MPC controller. Specifically, Figure 2 presents results with a prediction horizon P = 10
and control horizon m = 10, while Figure 3 has a prediction horizon P = 4 and control
horizon m = 3. As can be seen, it takes approximately 200 min to complete the battery
SOC balancing. We can also observe that the system reaches balancing faster when the
prediction horizon is longer. It should be noted that once the system finishes balancing,
the power converter stops operating. This can also be observed from the balancing current
trajectory in Figures 2—4; after the cell SOCs return to 0.5, the balancing current drops to 0.

Figure 4 presents the cell SOC deviations and balancing current for an explicit con-
troller with a prediction horizon P = 4 and control horizon m = 3. Note that the weights
for the cost function is same as for the linear MPC discussed above. It can be observed that
the trend and converge time are the same as Figure 3 for the linear MPC, demonstrating
that the explicit MPC can deliver the same performance, even though a large amount of
computation is moved to offline.
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3.3. Computation Analysis

The offline computation for explicit MPC increases exponentially with the prediction
horizon due to the rapidly growing number of regions in the state-space partition. The
processor of our computation platform is 13th Gen Intel(R) Core(TM) i9-13900F and for
our 5-cell battery balancing problem with prediction horizon p = 4 and control horizon
m = 3, the number of regions is 16,807 and the offline computation time is 502 s. For online
computation, the explicit MPC requires 0.1637 s, while linear MPC (with the same p and m)
requires 0.2610 s. It can then be observed that the online computation time decreases 37.3%.

When p = 5 and m = 4, the number of regions is 59,049, which is a huge computation
burden. In fact, when m = p, the complexity follows approximately O(22("+m)P), where
ny is the state dimension, n,, is the control input dimension, and p is the prediction horizon.
In the cell balancing problem studied in this paper, ny = n, = N, where N is the number of
cells in a battery pack. Then, we have that the complexity follows approximately O(24NF).

Table 1 shows the computation performance when p = m = 3 with the number
of battery cells N ranging from 2 to 5, Figure 5 plots the number of regions and offline
computation time with respect to N. In a lower dimension system where N equals to 2,
3, or 4, the offline computation time is negligible. When the N is equal to 5, the offline
computation time rises to 8 min. When the N increases to 6, the offline computation time
rises abruptly to about 115 min, which is 14.3 times larger than the case when N = 5. Table 2
and Figure 6 present the computation performance results when the system dimension
remains unchanged and the prediction and control horizon increase gradually, which also
confirm the exponential increase, but is slightly manageable compared with the number of
battery cells. Since all systems use N = 5, each case is the same MPC problem with different
prediction and control horizons. When p = m = 2 or 3, the online computation times are
almost the same. As n and m increase, the online time also increases to some extent.

Table 1. Performance metrics for different number of cells (p = m = 3).

N 2 3 4 5 6

Regions 49 343 2401 16,807 117,649
Offline Time 0.079 s 1.747 s 30.927 s 479.361 s 6892412 s
Online Time 0.109 s 0.114 s 0.115s 0.116s 0.637 s

4

s x 10 8000 _
.S —-Regions g )

10+ & g
QGZJD ---Offline Time 6000 é
k5 ' 4000 &
5 5k 2
£ =
= @)
Z 0 :

2 3
Number of Cells
Figure 5. Regions and offline time vs. number of cells, with p = m = 3.
Table 2. Performance metrics for varying prediction horizons (p = m) with N = 5.
p=m 2 3 4 5 6
Region 3125 16,807 59,049 161,051 371,293

Offline Time 47.036 s 479.361 s 3122.997 s 15,869.483s 60,357.946 s
Online Time 0.118 s 0.116 s 0.140 s 0.147 s 0.162 s
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Figure 6. Regions and offline time vs. prediction and control horizon, with N = 5.

In Table 1, the memory usage of the five battery packs with different dimensions N
is 9 KB, 37 KB, 287 KB, 2862 KB, and 26,528 KB. We can see that as the number of cells
increases, the memory required for the explicit approach grows exponentially, indicating
that deploying explicit MPC in high-dimension battery systems is not feasible. Finally, it is
worth noting that the online computation time required by explicit MPC stays relatively sta-
ble when the system dimension changes. Therefore, if the offline computation is affordable
with computing devices, such as high-performance computing clusters, then the real-time
implementation should not be an issue for production-grade microcontrollers.

4. Conclusions

This paper explores two model predictive controla (MPCa), i.e., linear MPC and ex-
plicit MPC, for redistributive battery cell balancing in a serial-connected battery pack.
A linearized discrete-time model is derived, taking into account individual cell capacities
and enforcing charge conservation. Both controllers are implemented under identical sys-
tem settings to ensure a fair comparison. Simulation results show that both MPC controllers
successfully achieve SOC balancing. The linear MPC, although requiring online optimiza-
tion at each time step, provides consistent performance with a moderate computational
cost. In contrast, the explicit MPC achieves a faster online execution, reducing the onboard
computation time by 37.3%, making it suitable for battery systems with a small number of
cells. This set of experiments also highlights that, even though explicit MPC shifts most
computations offline, the control performance remains comparable to that of linear MPC.
However, explicit MPC incur a substantial offline computational burden as the prediction
horizon and/or number of cells increase. In fact, the exponential growth in offline efforts
may limit the scalability of explicit MPC in battery systems with a large number of cells.
The computation analysis notes that although both exhibit exponential growth, the increase
in system dimension has a greater influence on the offline computation time compared to
the increase in prediction and control horizons. Future work will scale up the simulation
with more cells in the battery pack and explore methods to reduce the offline complexity
of explicit MPCs, such as region merging or approximate controller synthesis. Moreover,
we plan to improve the control strategy with further simulation validation and extend the
model to a more realistic system by employing voltage-based SOC estimation. An exper-
imental analysis will also be conducted to assess the performance of the current control
design. Another direction is to develop a hybrid control framework that switches between
explicit MPC and linear MPC to balance offline and online computation. In addition, we
will investigate reduced-order MPC for this system and compare its performance against
conventional explicit MPCs. Finally, building on these algorithm developments, we aim to
deploy the controllers onto real hardware platforms for experimental validation.
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