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Hybrid energy systems (HES) have been proposed to be an important element to enable increasing pen-
etration of clean energy. This paper proposes a methodology for operations optimization to maximize
their economic value based on predicted renewable generation and market information. A multi-
environment computational platform for performing such operations optimization is also developed.
To compensate for prediction error, a control strategy is accordingly designed to operate a standby energy
storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows
systematic control of energy conversion for maximal economic value. Simulation results of two specific
HES configurations illustrate the proposed methodology and computational capability. Economic advan-
tages of such operations optimizer and associated flexible operations are demonstrated by comparing the
economic performance of flexible operations with that of constant operations. Sensitivity analysis with
respect to market variability and prediction error are also performed.

Published by Elsevier Ltd.
1. Introduction

1.1. Background and motivation

Hybrid energy systems (HES) under flexible operations and
variable energy generations/utilizations have been proposed to
be an important element to enable higher penetration of clean
energy generation, e.g., renewable and nuclear options, [1–9].
HES typically integrate multiple energy inputs (e.g., nuclear and
renewable energy) and multiple energy outputs (e.g., electricity,
gasoline, and fresh water) using complementary energy conversion
processes. By enabling more than one option for energy utilization,
HES configurations can change their electricity generation or con-
sumption within a short time whenever requested.
Prior works have been focused on dynamic modeling and sim-
ulation of diverse unit operations, together with their integration,
control, and dynamic property characterization [5–8]. These
results suggest that, from a technical point of view, HES can be
operated under flexible operations schedules to accommodate
the variability introduced from renewable generation, modern
loads (such as electric vehicles), and markets. Such flexibility
allows HES to participate in several wholesale markets, including
markets for electrical energy, feedstock, and alternative energy
outputs. Previous technical evaluation of HES has also shown that
HES meet the requirements to bid into wholesale ancillary service
(AS) market [5], to support the stability of the electric grid. A high-
level diagram of a general HES considered here is shown in Fig. 1,
where HES take energy inputs from Controllable Energy Resources
(CER) such as baseload generation (e.g., nuclear station), Variable
Energy Resources (VER) such as wind farm, and Energy Storage Ele-
ments (ESE) such as electrical battery. HES typically include one or
more Alternative Production Plants (APP) besides a Power Cycle
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Nomenclature

aahg capital cost per unit of installed capacity of AHG
aapp capital cost per unit of installed capacity of APP
aese capital cost per unit of installed capacity of ESE
aphg capital cost per unit of installed capacity of PHG
aren capital cost per unit of installed capacity of REN
bco2 taxation rate over CO2

bf ahg fraction between O&Mf ahg and Cahg
bf app fraction between O&Mf app and Capp

bf ese fraction between O&Mf ese and Cese

bf phg fraction between O&Mf phg and Cphg
bf ren fraction between O&Mf ren and Cren

bv ahg;n price of the nth feedstock by AHG
bv app;n price of the nth feedstock by APP
cco2 coefficient for computing GHG emission
papp price of alternative product
pda;as price of ancillary service in DAM
pda;e price of electrical energy in DAM
prt price of electrical energy in RTM
qda;k depreciation and amortization rate for year k
r tax ratee� prediction of corresponding variables
B1;B2;B3 feasibility conditions
Cahg auxiliary heat generation capital cost
Capp alternative production plant capital cost
Ccap total capital cost
Cese energy storage system capital cost
Cghg;k cost for GHG emission for year k
CO&M;k operations and maintenance cost for year k
Cphg primary heat generation capital cost
Cren renewable energy generation capital cost
CAPEXk capital expense for year k
DAk depreciation and amortization for year k
FCFFR;k year-k real discounted free cash flow to firm
i inflation rate
Mapp production rate of alternative product
Mco2 combined CO2 emission
Mv ahg;n consuming rate of the nth feedstock by AHG
Mv app;n consuming rate of the nth feedstock by APP
O&M operations and maintenance
O&Mf fixed operations and maintenance cost
O&Mv variable operations and maintenance cost
O&Mf ahg fixed O&M cost of AHG
O&Mf app fixed O&M cost of APP
O&Mf ese fixed O&M cost of ESE
O&Mf phg fixed O&M cost of PHG
O&Mf ren fixed O&M cost of REN
O&Mv ahg variable O&M cost of AHG
O&Mv app variable O&M cost of APP
Papp power generated by PHG and consumed by APP
PL
app minimum power consumed by APP

PU
app maximum power consumed by APP

pas probability of reserved capacity to be called for
Pda;as; P

U
da;as AS sold in DAM and its upper limit

Pda;e amount of electrical energy sold in DAM
Pda;rt ; P

U
da;rt power held for RTM and its upper limit

Pphg power generated by PHG
Pren power generated by REN
Prt amount of electrical energy sold in RTM
Rk revenue for year k
rR discount rate
Rapp revenue from sale of alternative product
Rda;as revenue from sale of ancillary service in DAM
Rda;e revenue from sale of electrical energy in DAM
Rrt revenue from sale of electrical energy in RTM
Tpb payback period
N ahg installed capacity of AHG
N app installed capacity of APP
N ese;1 installed capacity of smoothing ESE
N ese;2 installed capacity of standby ESE
N phg installed capacity of PHG
N ren installed capacity of REN
AHG auxiliary heat generation
APP alternative production plants
AS ancillary service
CER controllable energy resources
CHP combined heat and power
CM commodity market
DAM, DAO day-ahead market, day-ahead optimizer
DB database
ESE energy storage systems
FM feedstock market
FMI functional mockup interface
FOM figure of merit
ForM forward market
GHG greenhouse gas
GPP gasoline production plant
HES hybrid energy systems
HES_FEL HES with flexible electrical load
HES_FTL HES with flexible thermal load
HRES hybrid renewable energy systems
IRR internal rate of return
MW, MW h megawatt and megawatt-hour
NG natural gas
NPV net present value
PC power cycle
PHG primary heat generation
PM power market
PV photovoltaics
REN renewable energy input
RODP reverse osmosis desalination plant
RTM real-time market
RTO real-time optimizer
SM spot market
VER variable energy resources
WACC weighted average cost of capital
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(PC) for electricity generation. These APP allow the repurposing of
energy (in form of thermal energy and/or electrical energy) for
non-electricity commodity production. HES interrelate with feed-
stock market FMi for procurement of feedstock material fi, with
power market PM for the sale of electricity and ancillary service,
and with commodity market CMj for the sale of commodity cj
(alternative energy output). Furthermore, each market (FM, PM
and CM) in turn includes several forward and spot markets.

Hence the objective of this paper is to develop a generic
methodology and computational platform for computing opera-
tions schedule among HES constituents for optimal economic per-
formance. As shown in Fig. 2, such operations optimizer collects
predicted information on VER generation and markets (denoted
with dash lines), and updates the operations of the given HES
through low-level controllers. Since HES participate in ancillary
service market, controllers are also subject to grid system operator
commands in case that reserved capacity is called upon. Note that
since prediction error can cause energy imbalance within HES, an
ESE is utilized to ensure energy balance at all time, as shown in
Fig. 1.
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Fig. 1. High-level diagram of hybrid energy systems and their interactions with
various markets.
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Fig. 2. High-level description of the proposed operations optimizer.
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1.2. Proposed methodology

An illustration of the proposed methodology for operations
optimizer is shown in Fig. 3. For each delivery time t (at which
all the products sold in each forward market [ForM] and spot mar-
ket [SM] need to be delivered), the operations optimizer considers
N forward markets and one spot market. The optimization starts at
ForM1 by computing the optimal strategy between selling products
at ForM1 and reserving energy capacity for the next market based
on available information for ForM1, prediction of VER generation,
and information about later markets. The optimization problem
at ForM1 is also constrained by condition C1 calculated from sys-
tem dynamics as well as available resources. Such optimization
repeats for each ForM and then also for SM. Similarly, the opti-
mization for SM is based on the SM prices and VER profile, and is
constrained by CS resulted from system dynamics and available
resources. At each delivery time t, the optimal operations schedule
is computed by adding the optimal strategies resulted from each
forward and spot market.

The above methodology is developed for HES interacting with
power market, feedstock markets, and commodity markets, and
is implemented in Matlab. The HES considered are modeled and
implemented in Modelica language [10] using Dymola environ-
ment [11]. The interface for interaction between the operations
optimizer and HES is realized using Functional Mockup Interface
(FMI) [12]. Finally, markets are modeled as time series of prices
stored in database (DB).
1.3. Technical contribution and manuscript organization

The main contributions of this work are as follows: (1) provide a
framework to economically online optimize operations of HES
under variable renewable generations and market volatility; (2)
evaluate the economic viability, under the proposed operations
optimizer, of HES to address the variability introduced from
renewable and markets; and (3) conduct dynamic analysis to
investigate its sensitivity to pricing changes and prediction errors.

The rest of this paper is organized as follows. Section 2 reviews
the related work in literature. Section 3 presents the topological
architecture of considered HES and provides preliminaries on opti-
mization theory. Economic figure of merits to be optimized are
presented in Section 4. Section 5 formulates the operations opti-
mization with control strategy to compensate for prediction errors.
Section 6 illustrates the proposed methodology with numerical
simulations. The paper is concluded in Section 7.
2. Literature review

The idea of integrating different energy resources with more
than one type of energy output has been proposed in literature.
For example, combined heat and power (CHP) systems [13–16]
include both thermal and electric energy outputs, while hybrid
renewable energy systems (HRES) [17–24] integrate different
types of energy resource (e.g., wind, solar, or baseload generation)
to produce electricity. The flexibility of CHP systems with thermal
energy storage and their operational mode were studied in [14],
where it was found that centralized storage unit, as a larger buffer,
provides higher flexibility. Residential scale HRES without baseload
generation was considered in [22], where the energy saving was
calculated by life cycle cost method, and was estimated to be
195.2 MW h/year for a 220 m high building. The authors of [24]
carried out a feasibility study for standalone HRES as electricity
supply for remote area, and formulated net present value to assess
the feasibility of different system designs. It was concluded that
HRES is a promising electricity supply for Ethiopia, where current
electricity coverage is less than 15%. Technical and/or economic
analysis for hybrid systems can be found in [25–27]. Both stan-
dalone and grid connected hybrid systems with renewable energy
sources and hydrogen storage are analyzed in [25], and it is found
that grid connected configuration have a higher probability of
adaptation than standalone mode. The authors of [27] discovered
that, when the volatility of electricity price is high enough, the
use of batteries for time-of-use energy applications becomes eco-
nomically attractive.

Accordingly, the optimization problems for integrated systems
are also investigated in the literature for optimal system design
or operational control to maximize technical and/or economic val-
ues. For example, [4] studied a design optimization problem for
HES, computing the sizes of two key components for optimal pro-
duction while maintaining minimal variability of process variables.
Refs. [28–30] introduce a systematic approach for the design and
analysis of HRES (without thermal output) using different opti-
mization strategies (i.e., simulated annealing, response surface
methodology, and OptQuest method). The proposed approach is
applied to optimize the size of a photovoltaic (PV)-wind hybrid
energy system with battery storage. Ref. [31] suggests another
optimization method for designing hybrid solar-wind systems
employing battery banks. Optimum system configurations are cal-
culated to optimize a given economic-based objective function,
while meeting a specified constraint (i.e., loss of power supply
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Fig. 3. Schematic of the computational flow of the proposed operations optimizer.
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probability). Similar work can also be found in [32], which opti-
mizes the sizes of different components in a grid-independent
hybrid PV-wind power systems. Design optimization is also dis-
cussed in [33], where the benefits of using bioenergy, solar ther-
mal, and wind energy in a flexible energy system are analyzed to
increase renewable penetration, decrease primary energy con-
sumption, and assure power supply security in a particular region.
The authors of [34] proposed a generalized optimization frame-
work and applied for optimal sizing of distributed energy resources
in medium or low voltage microgrids.

The literature operations optimization are reviewed as follows.
Ref. [13] considered the combined cooling, heating, and power sys-
tems, and their operational strategy. Instead of optimizing eco-
nomic objective, the goal in [13] was to achieve minimal carbon
emission for environmental concern. The authors of [15] optimized
the operations of CHP plants for economic benefit in a deregulated
electricity market. Heat storage was used for maximum electricity
production during high price period, whose operations strategy
was determined based on forecasted loads, electricity prices and
operational costs. An optimization model based on mixed-integer
linear-programming is used to calculate the optimal operational
strategy for CHP plant and storage, and different investment poten-
tials are obtained according to the strategy selected. Ref. [16] stud-
ied a similar problem without considering the electricity market
dynamics, with the only objective being the minimization of total
costs over the planning period. Ref. [20] used receding horizon
optimization approach to optimize the operations of HRES, with
the objective of meeting electricity demand while achieving mini-
mum overall operating and environmental costs. Model predictive
controls were used by [21] to operate a HRES with both PV and die-
sel generation, for optimal technical performance. Operations opti-
mization of distributed energy systems were studied in [35–37],
where [35] considers also the exergy efficiency in the optimization
process, while [36,37] formulates a multi-objective optimization
approach to manage electrical energy storage systems or shiftable
loads to minimize the energy loss in the grid, the total electricity
generation cost, and the GHG emissions. Ref. [38] reviews different
optimizations methods that have been applied to renewable and
sustainable energy systems, including wind, solar, hydropower,
bioenergy, geothermal, and hybrid systems.

The study carried out in this paper is unique in the following
aspects: (1) the HES considered here integrates not only multiple
energy inputs, but also multiple energy outputs, thus different
from either CHP or HRES studied in literature; (2) the operations
optimization formulated here considers various markets for elec-
tric and non-electric products and also for feedstock procurement;
(3) different temporal scales are investigated for deregulated elec-
tricity market (both day-ahead market and real-time market).

3. Notations and preliminaries

3.1. HES configuration

Without loss of generality, the HES considered here include one
CER (denoted as Primary Heat Generation [PHG]), one VER that is
modeled as renewable energy input (denoted as REN), and one
APP. The methodology developed herein can be straightforwardly
extended to HES with multiple CER, VER, and/or APP. Fig. 4 shows
the architectural topology of considered HES, consisting of two
Energy Storage Elements (ESE), one used for power smoothing to
attenuate renewable variability and the other used to maintain
energy balance within HES. Depending on different applications,
APP may require process steam and/or electricity for production.
Likewise, an Auxiliary Heat Generation (AHG) may be used to pro-
vide additional on-demand steam for APP if required.

Electricity generated by PC is combined with that generated
from REN, and delivered to the electric grid. At any time, the
energy distribution between the electricity delivered to the grid
versus the energy delivered to APP is determined by the operations
optimizer, which maximizes the economic value of HES under the
constraints imposed by system dynamics. For instance, the energy
delivered to APP may need to be within a specified range in order
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Fig. 4. Architectural topology of considered HES in this work.

1 qda;k for k 6 16, i.e., the first 16 years, are 5.00%, 9.50%, 8.55%, 7.70%, 6.93%, 6.23%,
5.90%, 5.90%, 5.91%, 5.90%, 5.91%, 5.90%, 5.91%, 5.90%, 5.91%, 2.95%, respectively, and
0% afterwards [45]. Note that the Modified Accelerated Cost Recovery Systems use a
life time of 16 years for calculating DA. The actual use life doesn’t have to be 16 years.
The proposed methodology here is flexible to accommodate different DA scenarios.
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to maintain its required minimum and maximum turndowns.
Furthermore, in the case that HES provides ancillary service to
the electric grid, the energy delivered to APP needs to be greater
than the capacity agreed upon as ancillary service to ensure its
availability in case it is called for.

3.2. Optimization methodology

The standard form of a constrained optimization problem is
given as follows:

minimize f ðxÞ
subject to giðxÞ 6 0 i ¼ 1; . . . ; k

hiðxÞ ¼ 0 i ¼ 1; . . . ;p

where f ðxÞ : Rn ! R is the objective function to be minimized over
decision variables x, with n ¼ jxj generally greater than 1,
giðxÞ 6 0; i ¼ 1; . . . ; k is the set of k inequality constraints, and
hiðxÞ ¼ 0; i ¼ 1; . . . ;p is the set of p equality constraints.

To solve this general optimization problem, one needs to design
an algorithm that iteratively adjusts the values of decision vari-
ables and terminates only when certain conditions (e.g., Karush–
Kuhn–Tucker conditions [39]) regarding the values of objective
function and constraints are met. Numerous algorithms have been
developed, including gradient-based methods [40], gradient-free
methods [41], as well as hybrid approaches [42]. When selecting
an appropriate algorithm for optimization, it is critical to match
the algorithm to the mathematical properties of the optimization
problem, such as the nature of objective function and constraints
[4]. As can be seen later in Sections 4 and 5, the objective function
and constraints in this study are all convex. Accordingly, fmincon
function included in Matlab Optimization Toolbox is selected,
which is an implementation of the interior-point method [43]
that aims at solving linear and nonlinear convex optimization
problems.

4. Economic functions

In this work, three economic figures of merit (FOM) are used as
the objective functions for operations optimization and economic
evaluation, including:

Net present value. NPV is defined as follows [44]:

NPV ¼
XN
k¼0

FCFFR;k

ð1þ rRÞk
; ð1Þ
where N is the years of operations of HES, rR denotes discount rate
(assumed to be 5%) used in computing weighted average cost of
capital (WACC), and FCFFR;k, the real discounted Free Cash Flow to
Firm for year k, equals

FCFFR;k ¼ ðRk � CO&M;k � DAkð1þ iÞ�kÞð1� rÞ þ DAkð1þ iÞ�k

� Cghg;k � CAPEXk; ð2Þ

where r is tax rate, and i is inflation rate (assumed to be 3%). CAPEXk

(capital expense) only occurs when k ¼ 0, i.e., year 0, given by
CAPEX0 ¼ Ccap, and CAPEXk ¼ 0 for all k > 0. The capital cost Ccap,
operations and maintenance (O&M) cost CO&M;k, cost for greenhouse
gas (GHG) emission Cghg;k, and revenue Rk, for year k, are given in the
following sections by Eqs. (5), (6), (9), and (10), respectively. Depre-
ciation and amortization (DA) for year k for tax deduction under
Modified Accelerated Cost Recovery Systems, i.e., DAk in (2), is
calculated by DAk ¼ qda;kCcap, where qda;k is the DA rates1 at year k.

Payback period. Payback period, Tpb, refers to the period of time
required to recoup the expense of an investment [46]. For a fixed
discount rate, it is defined as the years of operations such that
NPV equals 0, i.e.,

Tpb ¼ argN ½NPV ¼ 0�: ð3Þ
Internal rate of return. IRR, also called effective interest rate, is

used to measure and compare the profitability of investments,
and is defined as, for a fixed N years of operations, the value of rR
such that NPV equals 0 [47], i.e.,

IRR ¼ argrR ½NPV ¼ 0�: ð4Þ
Next, we formulate several economic functions that are neces-

sary for computing the three economic FOMs introduced above.
For simplicity of presentation, only spot market will be considered
for feedstock and alternative product, while one forward market
and one spot market will be considered for electricity. The
economic functions and also the optimization methodology devel-
oped herein can be readily extended to consider multiple forward
markets for each product. Note also that, while some variables are
varying with respect to time t, they are denoted without subscript t
when there is no confusion.
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4.1. Capital cost

The capital cost Ccap associated with building considered HES
includes costs relevant to PHG (including PC), AHG (optional),
APP, REN, and ESE as follows:

Ccap ¼ Cphg þ Cahg þ Capp þ Cren þ Cese: ð5Þ
The capital cost for PHG (including PC) is calculated by
Cphg ¼ aphgN phg , where aphg is the capital cost per unit of installed
capacity and N phg denotes the installed capacity of PHG (i.e., the
rated maximal output power in this case). Similar equations are
formulated for computing Cahg ;Capp;Cren, and Cese by replacing the
subscript ‘‘phg” with ahg; app; ren, and ese, respectively.

4.2. Operations and maintenance cost

The O&M cost CO&M;k for year k can be further divided into fixed
O&M cost (O&Mf ) and variable O&M cost (O&Mv ), i.e.,

CO&M;k ¼ O&Mf þ O&Mv : ð6Þ
Note that O&Mf includes O&M cost that is relatively constant with
respect to operations, while O&Mv essentially corresponds to the cost
of fuel and feedstock. Similar to capital cost, O&Mf and O&Mv are also
grouped with respect to each HES constituent, as following:

O&Mf ¼ O&Mf phg þ O&Mf ahg þ O&Mf app

þ O&Mf ren þ O&Mf ese ð7Þ
O&Mv ¼ O&Mv ahg þ O&Mv app; ð8Þ

with O&Mf ahg and O&Mv ahg being optional (depending on specific
HES configuration). Note that REN and ESE do not incur any variable
O&M cost as there is no feedstock required for their operations.
Meanwhile, the variable O&M cost for PHG is not formulated either
since PHG, as baseload generation, is operated in relatively constant
mode.

The fixed O&M cost for PHG is calculated as O&Mf phg ¼
bf phgCphg , where bf phg is used to indicate that the (annual) fixed
O&M cost for operating PHG is a fraction of its capital cost. Similar
equations are formulated for computing O&Mf ahg ;O&Mf app;

O&Mf ren, and O&Mf ese by replacing the subscript ‘‘phg” with
ahg; app; ren, and ese, respectively.

The variable O&M cost for APP is calculated by:

O&Mv app ¼
XNapp

n¼1

Z T

0
bv app;nMv app;ndt;

where T is the considered time period (e.g., a year), Mv app;n and
bv app;n are the consuming rate and price of nth feedstock. Similar
equation for AHG is formulated by replacing the subscript ‘‘app”
with ‘‘ahg”.

4.3. Greenhouse gas emission cost

GHG emission cost is associated with the taxation imposed on
GHG emission and/or cost to capture and store GHG. Since CO2 is
the dominant GHG, this cost is essentially made equal to the CO2

cost, computed as follows:

Cghg;k ¼
Z T

0
bco2Mco2dt; ð9Þ

where bco2 is the taxation rate over CO2 and Mco2 is the combined
CO2 emission rate by all components within HES. Depending on
different HES configurations, CO2 emission can come from either
PHG, AHG, or APP.
4.4. Electric power market

As described above, HES considered here produces electricity as
well as alternative product. As demonstrated in [5,6], HES can
additionally bid into ancillary service market to provide ancillary
service including spinning and non-spinning reserve to support
grid stability. A common practice used by system operator in
deregulated power market is the two-settlement process, which
consists of day-ahead market (DAM) and real-time market (RTM)
[48]. DAM is a forward market in which the offers and bids on elec-
trical energy and ancillary service are placed for each hour of the
next day. DAM would be cleared and closed before the delivery
date, and the participants are paid (or charged) at bid (or offer)
price if the market is a bilateral one or at the market clearing price
in case of a pool market. On the other hand, to allow system
operator to balance the difference between day-ahead generation
commitment and the actual real-time demand, RTM, being a spot
market, allows market participants to buy and sell wholesale
electrical energy and ancillary service during the course of the
operating day, with delivery time near ‘‘real-time” (e.g., within
one hour). Depending on different market designs, the delivery
period can be half hour, quarter hour, or even five minutes. This
paper considers a typical RTM with delivery period being 15 min.

In this paper, we consider HES participating in DAM to sell
electrical energy and ancillary service, as well as in RTM to sell
electrical energy. Denote Rda;e as the revenue from sale of electrical
energy in DAM, given by:

Rda;e ¼
Z T

0
pda;ePda;edt;

where pda;e is the price of electrical energy in DAM and Pda;e is the
amount of power sold in DAM, both potentially varying with time.
Similar equations are formulated for computing Rda;as (revenue from
sale of ancillary services in DAM) and Rrt (revenue from sale of elec-
trical energy in RTM), by replacing the subscript ‘‘da; e” with ‘‘da; as”
and ‘‘rt”, respectively. Note that when the ancillary service is called
for, the energy delivered as ancillary service will be remunerated at
real-time price prt . This ‘‘hidden” revenue is implicitly included in
Rda;as as shown in Section 5.

4.5. Commodity market

HES also participates in wholesale market for selling alternative
product. Denote Rapp as this revenue and

Rapp ¼
Z T

0
pappMappdt;

where papp is the price of alternative product and Mapp is its produc-
tion rate. Finally, the revenue Rk for year k is given by:

Rk ¼ Rda;e þ Rda;as þ Rrt þ Rapp: ð10Þ
5. Economic optimization of operations

It is not hard to see that, maximizing the NPV defined in (1), min-
imizing the payback period Tpb defined in (3), and maximizing the
IRR defined in (4), are all equivalent to maximizing the FCFFR;k

defined in (2) for each year k (assuming system design is fixed). By
dropping from (2) the terms that are constant with respect to oper-
ations, which include O&Mf ;CAPEXk, and terms related to DAk, the
objective function for operations optimization is thus formulated as:

J ¼ ðRk � O&MvÞð1� rÞ � Cghg;k: ð11Þ
Note that J is defined over the period of one year for each k, referred
as annual objective function. For the simplicity of presentation, we
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omit the subscript of J. By expanding (11) using (8)–(10), J can be
expressed as:

J¼ ð1�rÞ
Z T

0
pda;ePda;e þðpda;as þpasprtÞPda;as þprtPrt þpappMapp
�

�
XNapp

n¼1

bv app;nMv app;n �
XNahg

n¼1

bv ahg;nMv ahg;n

#
dt�

Z T

0
bco2Mco2dt: ð12Þ

Note in the above formulation, the revenue from sale of AS in DAM

also includes the remuneration
R T
0 pasprtPda;asdt for the energy deliv-

ered as AS if it is called for, where pas is the probability that the
reserved capacity will be called for. At any time, the energy within
HES needs to be balanced between generations and loads, i.e.,

Papp þ Pda;e þ Prt ¼ Pphg þ Pren; ð13Þ
where Pren and Pphg are power generated by REN and PHG, respec-
tively, and Papp is the power generated by PHG and delivered to
APP.2 When an AHG is used to supplement the energy supply to
APP, the generation from AHG is solely consumed by APP as can
be seen in Fig. 4. Hence this pair of generation and consumption is
exactly balanced, and is omitted in (13). Furthermore, as illustrated
in Section 3.1, Papp needs to be between the maximum and minimum
turndowns of APP, and the reserved capacity sold as ancillary service
cannot exceed the maximum flexibility of Papp. Consequently, the fol-
lowing constraints are established:

PL
app 6 Papp 6 PU

app ð14Þ
Pda;as 6 Papp � PL

app; ð15Þ

where PL
app and PU

app are the minimum and maximum power con-
sumed by APP that must be provided by PHG (hence excluding
the contribution of AHG). Finally, depending on different HES con-
figurations, there can be a number (assumed to be L) of constraints
over decision variables (i.e., production rate, feedstock consumption
rate, etc), presented as following, for i ¼ 1; . . . ; L:

hiðPda;e;Pda;as;Prt ;Mv app;1; . . . ;Mv app;NappMv ahg;1; . . . ;Mv ahg;Nahg
;Mapp;Mco2 Þ ¼ 0:

ð16Þ
Hence, the optimization problem is formulated as:

maximize J as in ð12Þ
subject to ð13Þ—ð16Þ

Pda;e; Pda;as; Prt are nonnegative:

As shown in Fig. 3, the above optimization problem is addressed
by iteratively maximizing (12) with respect to each forward mar-
kets and spot market. In this work, without loss of generality, only
spot market is considered for feedstock and alternative product,
while one forward market (i.e., DAM) and one spot market (i.e.,
RTM) are considered for electricity. In the following sections, two
operations optimizers are introduced, one for DAM and one for
RTM. The optimizer for DAM, denoted as DAO (day-ahead opti-
mizer), maximizes (12) by computing the optimal amounts of
energy and AS capacity sold in DAM, as well as the amount of
energy held to participate in RTM. It is assumed that the pricing
information of alternative commodity and feedstock, and that in
DAM are all well known, while the price information in RTM and
the renewable generation available on the delivery date need to
be estimated by DAO. On the other hand, the optimizer for RTM,
denoted as RTO (real-time optimizer), maximizes (12) by
2 For simplicity, all power calculations will be expressed using the electrical
equivalence (in MW) of the particular power stream, assuming fixed thermal-to-
electrical conversion efficiency.
computing the optimal amount of energy sold in RTM, based on
additional constraints imposed by the optimization results of
DAO. It is assumed that the price information in RTM and renew-
able generation are both well known by RTO.

5.1. Optimization for day-ahead market

For each hour interval, the objective function for DAO is given
as, by expanding (12),

Jda ¼ ð1� rÞ
Z DT

0
½pda;ePda;e þ ðpda;as þ pas ~prtÞPda;as þ ~prtPda;rt

þ papp
~Mapp �

XNapp

n¼1

bv app;n
~Mv app;n �

XNahg

n¼1

bv ahg;n
~Mv ahg;n�dt

�
Z DT

0
bco2

~Mco2dt; ð17Þ

where DT is one hour interval, Pda;rt is the amount of power held to
participate in RTM, and notation e� means the prediction of corre-
sponding variables. The decision variables considered by DAO are
Pda;e; Pda;as; Pda;rt ; ~Mapp; ~Mv app;n;n ¼ 1; . . . ;Napp; ~Mv ahg;n;n ¼ 1; . . . ;Nahg .
Likewise, constraints (13)–(16) can be represented as follows:

~Papp þ Pda;e þ Pda;rt ¼ Pphg þ ~Pren ð18Þ

PL
app 6 ~Papp 6 PU

app ð19Þ

Pda;as 6 ~Papp � PL
app ð20Þ

hiðPda;e; Pda;as; Pda;rt; ~Mv app;1; . . . ; ~Mv app;Napp

~Mv ahg;1; . . . ; ~Mv ahg;Nahg
; ~Mapp; ~Mco2 Þ ¼ 0: ð21Þ

Combining (18) and (19) gives

PL
app 6 Pphg þ ePren � Pda;e � Pda;rt 6 PU

app, or equivalently

Pphg þ ~Pren � PU
app 6 Pda;e þ Pda;rt 6 Pphg þ ~Pren � PL

app: ð22Þ
Similarly, combining (18) and (20) gives
Pda;as 6 Pphg þ ~Pren � Pda;e � Pda;rt � PL

app, or equivalently

Pda;e þ Pda;as þ Pda;rt 6 Pphg þ ~Pren � PL
app: ð23Þ

Since Pda;e; Pda;as and Prt can change value only on the hour, to ensure
that the above constraints (22) and (23) are satisfied within the
entire period of each hour, the following equivalent constraints
are obtained:

Pphg þ ~PU
ren � PU

app 6 Pda;e þ Pda;rt 6 Pphg þ ~PL
ren � PL

app ð24Þ
Pda;e þ Pda;as þ Pda;rt 6 Pphg þ ~PL

ren � PL
app; ð25Þ

where ~PU
ren and ~PL

ren are the maximum and minimum of the predicted
renewable generation within the hour. Furthermore, it is also
assumed that the capacity sold as AS and the energy held for RTM
cannot exceed certain limits, denoted as PU

da;as and PU
da;rt , respectively.

Therefore,

0 6 Pda;as 6 PU
da;as ð26Þ

0 6 Pda;rt 6 PU
da;rt : ð27Þ

Finally, we have

Pda;e P 0: ð28Þ
The optimization problem for DAM is then given as:

maximize Jda as in ð17Þ
subject to ð18Þ; ð21Þ; ð24Þ—ð28Þ
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Remark 1. The above optimization problem is solved by the
methodology introduced in Section 3.2 for each one hour interval.
Note that this optimization problem is feasible only if
Pphg þ ~PL

ren � PL
app P Pphg þ ~PU

ren � PU
app; and so; ~PU

ren � ~PL
ren 6 PU

app�
PL
app. Since ~PU

ren � ~PL
ren cannot be greater than the capacity of REN,

i.e., ~PU
ren � ~PL

ren 6 N ren, for the above optimization problem to be

feasible, it suffices to design HES so that PU
app � PL

app P N ren, i.e., the

capacity of REN is no larger than the difference between PU
app and

PL
app.
5.2. Optimization for real-time market

Similar to (17), for each quarter hour interval, the objective
function for RTO is given as, by expanding (12),

Jrt ¼ð1�rÞ
Z DT

0
pda;ePda;eþðpda;asþpasprtÞPda;asþprtPrtþpappMapp
�

�
XNapp

n¼1

bv app;nMv app;n�
XNahg

n¼1

bv ahg;nMv ahg;n

#
dt�

Z DT

0
bco2Mco2dt; ð29Þ

where, with a slight abuse of notation, DT is a quarter hour interval,
and Prt is the amount of electricity sold in RTM. Since RTM is
operated near ‘‘real time”, i.e., the delivery time is within one hour
after transaction time, both renewable generation and real-time
electricity price are assumed to be perfectly known to RTO. The
decision variables considered by RTO are Prt ;Mapp;Mv app;n; n ¼
1; . . . ;Napp;Mv ahg;n;n ¼ 1; . . . ;Nahg , and Mahg;co2 . Since in this case
DAM has been closed and all transactions are cleared, Pda;e and
Pda;as are no longer variables and their values throughout the course
of the day are. Likewise, constraints (13)–(16) can be reformulated
as follows:

Papp þ Pda;e þ Prt ¼ Pphg þ Pren ð30Þ
PL
app 6 Papp 6 PU

app ð31Þ

Pda;as 6 Papp � PL
app ð32Þ

hiðPda;e; Pda;as; Pda;rt;Mv app;1; . . . ;Mv app;Napp

Mv ahg;1; . . . ;Mv ahg;Nahg
;Mapp;Mco2 Þ ¼ 0: ð33Þ

Combining (30) and (31) gives PL
app 6 Pphg þ Pren � Pda;e � Prt 6 PU

app,
or equivalently

Pphg þ Pren � Pda;e � PU
app 6 Prt 6 Pphg þ Pren � Pda;e � PL

app: ð34Þ
Similarly, combining (30) and (32) gives Pda;as 6 Pphg þ Pren �
Pda;e � Prt � PL

app, or equivalently

Prt 6 Pphg þ Pren � Pda;e � Pda;as � PL
app: ð35Þ

Since Prt can change value only on the top of every quarter hour, to
ensure that the above constraints (34) and (35) are held within the
entire period of each quarter hour, the following equivalent con-
straints are obtained:

Pphg þ PU
ren � Pda;e � PU

app 6 Prt 6 Pphg þ PL
ren � Pda;e � PL

app ð36Þ
Prt 6 Pphg þ PL

ren � Pda;e � Pda;as � PL
app; ð37Þ

where PU
ren and PL

ren are the maximum and minimum of the renew-
able generation within that quarter hour. For simplicity, the possi-
bility of buying energy in RTM (to compensate the short on
generation due to overestimation of renewable energy) is not con-
sidered. Therefore

Prt P 0: ð38Þ
Furthermore, when real-time price of electricity is non-positive,
none of the electricity should be sold. Thus,

Prt ¼ 0 if prt 6 0: ð39Þ
The optimization problem for RTM is then given as:

maximize Jrt as in ð29Þ
subject to ð30Þ; ð33Þ; ð36Þ—ð39Þ

Remark 2. To check the feasibility of this optimization problem,
define

B1 :¼ Pphg þ PU
ren � Pda;e � PU

app

B2 :¼ Pphg þ PL
ren � Pda;e � PL

app

B3 :¼ Pphg þ PL
ren � Pda;e � Pda;as � PL

app:

It can be verified that B2 P B1 and B2 P B3, and so the feasible con-
dition is given by:

� When prt > 0, then it is feasible only if minðB2;B3Þ Pmaxð0; B1Þ,
which in turn requires
B3 P maxð0;B1Þ: ð40Þ

� When prt � 0, then it is feasible only if minð0;B2;B3Þ P
maxð0;B1Þ, which in turn requires
B1 6 0 6 B3: ð41Þ
When the above optimization problem is feasible, it is solved by
the methodology introduced in Section 3.2 for each quarter
hour interval. However, due to prediction errors, this optimiza-
tion problem may not always be feasible. In this case any oper-
ations in RTM will violate either (36) or (37), so a standby ESE is
needed to ensure energy balance within HES, as discussed next.
5.3. Control strategy to accommodate prediction errors

This section discusses the control strategy to ensure the correct
function of HES in case (40) or (41) is violated, by properly operat-
ing a standby ESE. We first discuss the physical indication of viola-
tion of (36) or (37).

� If Prt is lower than B1, violating the first inequality of (36), then
at some point during the period of quarter hour,
PU
app < Pphg þ Pren � Pda;e � Prt ¼ Papp, i.e., the power sent to APP

exceeds its capacity. In this case, this excess power needs to
be dynamically diverted to the standby ESE for charging, to
ensure Papp 6 PU

app.
� If Prt is higher than B2, violating the second inequality of (36),
then at some point during the period of quarter hour,
PL
app > Pphg þ Pren � Pda;e � Prt ¼ Papp, i.e., the power sent to APP

is lower than its minimum turndown. In this case, additional
power is needed from dynamically discharging the standby
ESE to ensure Papp P PL

app.
� If Prt is higher than B3, violating (37), then at some point during
the period of quarter hour, Pda;as > Pphg þ Pren � Pda;e�
Prt � PL

app ¼ Papp � PL
app, i.e., the ancillary service capacity com-

mitted to the electric grid is greater than the flexible capacity
that can be provided by varying the operations of APP. This
would result in a risk to fail to deliver the committed reserve
capacity when it is called for. Therefore, additional power is
needed from dynamically discharging the standby ESE to ensure
Papp � PL

app P Pda;as. However, since this essentially presents the
case of selling more electricity by using backup power from
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the standby ESE, violation of (37) should be avoided whenever
possible.

Next we present the control strategy when prt > 0 and condi-
tion (40) is not satisfied, according to following cases:

1. Both B1 6 0 and B3 < 0: In this case, by setting Prt ¼ 0, the first
inequality of (36) is satisfied and (37) is violated. Furthermore:
� If B2 P 0, then the second inequality of (36) is satisfied. In

this case, the standby ESE needs to be properly discharged
to ensure Papp � PL

app P Pda;as is satisfied all the time.
� If B2 < 0, then the second inequality of (36) is violated. In

this case, the standby ESE needs to be properly discharged
to ensure Papp � PL

app P Pda;as and Papp P PL
app are both satis-

fied all the time.
2. 0 6 B3 < B1: There are two possible control strategies in this

case: (I) Set Prt ¼ B3, leaving only the first inequality of (36) vio-
lated. As discussed above, the standby ESE needs to be properly
charged to ensure Papp 6 PU

app is satisfied all the time. (II) Set
Prt ¼ B1, leaving only (37) violated. As discussed above, the
standby ESE needs to be properly discharged to ensure
Papp � PL

app P Pda;as is satisfied all the time. Due to the instability
introduced by the second option, RTO sets Prt ¼ B3 and control
to charge the standby ESE accordingly.

3. B1 > 0 and B3 < 0: There are also two possible control strategies
in this case: (I) Set Prt ¼ 0, violating both the first inequality of
(36) and (37). As discussed above, the standby ESE needs to be
properly charged and discharged (at different time instance) to
ensure both Papp 6 PU

app and Papp � PL
app P Pda;as are satisfied all

the time. (II) Set Prt ¼ B1, leaving only (37) violated. As dis-
cussed above, the standby ESE needs to be properly discharged
to ensure Papp � PL

app P Pda;as is satisfied all the time. While both
options violate condition (37), the second option results in a
deeper violation in terms of larger Prt � B3, putting HES in
higher risk. Thus in this case, RTO sets Prt ¼ 0 and control to
charge and discharge the standby ESE (at different time
instance) accordingly.

On the other hand, when prt � 0 and condition (41) is not satis-
fied, then Prt is set to 0. Moreover

1. If B1 > 0, then the first inequality of (36) is violated, and the
standby ESE needs to be properly charged to ensure
Papp 6 PU

app is satisfied all the time.
2. If B3 < 0 6 B2, then (37) is violated, and the standby ESE needs

to be properly discharge to ensure Papp � PL
app P Pda;as is satisfied

all the time.
3. If B3 6 B2 < 0, then both the second inequality of (36) and (37)

are violated, and the standby ESE needs to be properly dis-
charged to ensure Papp � PL

app P Pda;as and Papp P PL
app are both

satisfied all the time.

Table 1 summarizes the control strategy discussed above.
Table 1
Resilient control strategy when (40) or (41) is violated.

Conditions Prt Operations on standby ESE

prt > 0;B1 6 0;B3 < 0 0 Discharge
prt > 0;0 6 B3 < B1 B3 Charge
prt > 0;B1 > 0;B3 < 0 0 Charge & discharge
prt 6 0;B1 > 0 0 Charge
prt 6 0;B3 < 0 6 B2 0 Discharge
prt 6 0;B3 6 B2 < 0 0 Discharge
6. Numerical results and discussions

This section presents numerical results of the optimization
introduced in previous section, by applying on two specific HES
configurations taken from [5,6].

6.1. Hybrid energy system with flexible thermal load

The first configuration, termed as HES_FTL (hybrid energy sys-
tem with flexible thermal load), includes the following primary
components:

� PHG: a nuclear reactor and a steam generator.
� PC: a Rankine cycle consisting of steam generator, turbines,
electric generator, condenser, feedwater pumps and heaters,
producing electricity up to 180 MW.

� REN: a series of wind turbines with total wind plant capability
of up to 45 MW.

� ESE: two electrical batteries, one to attenuate variability of the
electricity generated by renewable source, and the other to
compensate prediction error.

� AHG: a natural gas (NG) boiler of up to 45 MW capacity that
generates additional on demand steam.

� APP: a gasoline production plant (GPP) able to utilize up to
45 MW and convert NG and water into gasoline (and liquefied
petroleum gas).

In this case, a GPP is used as APP, which requires process steam
as its energy supplies. An NG-based AHG is used to supplement the
energy supplies to GPP to maintain its production rate at its max-
imum capacity. Due to the presence of AHG, the energy supply
from PHG to GPP can be as low as zero, hence PL

app ¼ 0 MW and

PU
app ¼ 45 MW for GPP. Since APP consumes two types of feedstock,

i.e., water and NG, for gasoline production, we have Napp ¼ 2, with
bv app;1 being water price and bv app;2 being NG price. Similarly, AHG
consumes only one type of feedstock, i.e., NG, so Nahg ¼ 1, with
bv ahg;1 being NG price. For HES_FTL, the equality constraints (16)
can be rewritten as3:

Mv ahg;1 ¼ k0 þ k1ðPda;e þ pasPda;as þ Pda;rt � PrenÞ ð42Þ

Mco2 ¼ cco2Mahg;1;

where cco2 is the conversion rate from NG burnt to CO2 emission. By
utilizing AHG, HES_FTL is operated in a manner such that its APP is
in full-production mode, with constant production rate (Mapp ¼
45:3 kg s�1), water consumption rate (Mv app;1 ¼ 232:49 kg s�1),
and NG consumption rate (Mv app;2 ¼ 52:6 kg s�1).

Fig. 5(a) shows the charge/discharge profile of standby battery
for a period of 24 h, where the largest single contiguous area rep-
resents the minimum storage capacity required. To determine
the size of standby ESE, Monte Carlo approach is utilized as follows.
Multiple year-long simulations are conducted, for each level of
renewable prediction error, to numerically determine the mini-
mum battery storage capacity required for that renewable predic-
tion accuracy level. Fig. 5(b) shows the required storage size as a
function of renewable prediction errors. Since in this paper the pre-
diction error is assumed to be less than 30%, an ESE with storage
capacity of 15 MW h is found to be sufficient for HES_FTL. Note
that here the ESE capacity is chosen based on safety constraint
only, i.e., sized to cover prediction errors. This is because this paper
focuses on operations optimization for a given and fixed system
3 The values for k0 and k1 in (42) are determined by simulations of HES_FTL
modeled in Modelica, and are given as k0 ¼ �8:07 and k1 ¼ 7:63� 10�2.
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6 The NG price is downloaded from Texas Alliance of Energy Producers at
http://texasalliance.org/historical-nymex-natural-gas-prices/ on February 4, 2015.

7 The gasoline wholesale price by refinery is downloaded from EIA at http://www.
eia.gov/dnav/pet/pet_pri_refmg_dcu_STX_m.htm on February 5, 2015.

8 Downloaded from https://www.phoenix.gov/waterservices/customerservices/
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configuration, and so optimal sizing of ESE, as a design optimiza-
tion problem, is beyond the scope of this paper.

6.2. Hybrid energy system with flexible electrical load

The second configuration, termed as HES_FEL (hybrid energy
system with flexible electrical load), includes the following pri-
mary components:

� PHG, PC, and ESE: same as HES_FTL.
� REN: a PV solar station with nominal capability of up to 30 MW.
� AHG: none.
� APP: a reverse osmosis desalination plant (RODP) able to utilize
up to 45 MW electricity and convert saline or brackish water
into fresh water and brine.

In this case, an RODP is used as APP, which requires electricity
as its energy supplies. Since there is no AHG to supplement the
energy supply to RODP, its production rate is varying between its
minimum and maximum turndowns, i.e., between PL

app ¼ 15 MW

and PU
app ¼ 45 MW. The variable O&M cost of RODP is presented

by a lump-sum variable cost, i.e., Napp ¼ 1, with bv app;1 being a
lump-sum coefficient. For HES_FEL, the equality constraints (16)
can be rewritten as4:

Mapp ¼ k0 þ k1Papp þ k2P
2
app ð43Þ

Mco2 ¼ 0:

Similarly, according to Fig. 5(b), a battery with storage capacity
of 10 MW h is found to be sufficient for HES_FEL.

6.3. Simulation setup

The electricity and ancillary service prices in DAM, as well as
the electricity price in RTM, both operated by Electric Reliability
Council of Texas,5 are used for pda;e;pda;as and prt , respectively, as
4 The values for k0; k1, and k2 in (43) are determined by simulations of HES_FEL
modeling in Modelica, and are given as k0 ¼ 301:77; k1 ¼ 442:20, and k3 ¼ �2:16.

5 Downloaded from http://www.ercot.com/mktinfo/prices/index.html on February
4, 2015. The time series is scaled by 0.75 to reflect the conservativeness of HES in
bidding.
shown in Fig. 6 for a selected period of 14 days. The wholesale price
of NG6 and gasoline7 for a whole year are shown in Fig. 7(a). The
price of water for HES_FEL, as shown in 7(b), is based on the monthly
residential price in Phoenix, Arizona,8 which is scaled so that the
average of the time series is $0.6/m3 (the cost for purchasing ground-
water or surface water in Arizona [49]).
6.3.1. Renewable and price predictions
The predicted and actual renewable generation are synthesized

based on reference time series, denoted as refr , computed from real
measurement data of wind speed9 and solar irradiation.10 For a
fixed prediction error pr , the time series of predicted renewable gen-
eration for DAO, denoted as predr , is synthesized so that it is uni-
formly distributed within range ð1� prÞrefr , while the time series
of actual renewable generation, denoted as actr , is synthesized so
that, with probability of 0.9, it is uniformly distributed within range
ð1� prÞrefr and, with probability of 0.1, it is uniformly distributed
within range ð½1þ prÞrefr; ð1þ 2prÞrefr � [ ½ð1� 2prÞrefr ; ð1� prÞrefr�.
The prediction of real-time electricity price for DAO is carried out
rateinfo on February 5, 2015.
9 Downloaded from the Eastern Wind dataset maintained by NREL (National

Renewable Energy Laboratory) at http://www.nrel.gov/electricity/transmission/east-
ern_wind_dataset.html on November 21, 2014.
10 Downloaded from http://www.nrel.gov/midc/ssrp/ on November 21, 2014,
provided by Southwest Solar Research Park dataset maintained by NREL (National
Renewable Energy Laboratory).
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http://www.eia.gov/dnav/pet/pet_pri_refmg_dcu_STX_m.htm
http://www.eia.gov/dnav/pet/pet_pri_refmg_dcu_STX_m.htm
http://https://www.phoenix.gov/waterservices/customerservices/rateinfo
http://https://www.phoenix.gov/waterservices/customerservices/rateinfo
http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html
http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html
http://www.nrel.gov/midc/ssrp/


Table 2
Parameter values used for HES_FTL.

Value Unit Ref.

Nuclear & aphg 4718 $ kW�1 [51,52]
power cycle bf phg 5.2 % [53]

N phg 180,000 kW [6]
Wind farms aren 2339.61 $ kW�1 [54]

bf ren 1.6 % [54]
N ren 45,000 kW [6]

Storage aese 81.42 $ kW h�1 [2]
bf ese 3 % [2]
N ese;1 16,000 kW h [6]
N ese;2 15,000 kW h Section 6.1

AHG aahg 1057.44 $ kW�1 [55]
bf ahg 3 % [55]
bv ahg;1 $ kg�1 Fig. 7(a)
N ahg 45,000 kW [6]

Gasoline aapp 42,661,291 $ kg�1 s [56]
production bf app 12 % [56]
plant bv gpp;1 1.059e�3 $ kg�1 [57]

bv gpp;2 $ kg�1 Fig. 7(a)
N app 45.3 kg s�1 [6]
papp $ kg�1 Fig. 7(a)
Mv app;1 232.49 kg s�1 [6]
Mv app;2 52.6 kg s�1 [6]
k0 �8.07 kg s�1 Footnote 3
k1 7.63e�2 kg s�1MW�1 Footnote 3

Electricity pda;e $ MW h�1 Fig. 6
pda;as $ MW h�1 Fig. 6
prt $ MW h�1 Fig. 6
pas 0.3 % [50]

CO2 bco2 0.045 $ kg�1 [58]
cco2 2.697867 1 [1]

Inflation rate i 3 % Section 4
Discount rate rR 5 % Section 4
(WACC)
DA rates qda;k Footnote 1 % [45]
Tax rate r 35 % [59]

Table 3
Parameter values used for HES_FEL.

Value Unit Ref.

Nuclear & aphg 4718 $ kW�1 [51,52]
power cycle bf phg 5.2 % [53]

N phg 180,000 kW [6]
PV station aren 5385.98 $ kW�1 [60]

bf ren 1 % [61]
N ren 30,000 kW [6]

Storage aese 81.42 $ kW h�1 [2]
bf ese 3 % [2]
N ese;1 52,700 kW h [6]
N ese;2 10,000 kW h Section 6.2

RO aapp 32,076.21 $ kg�1 s [62]
desalination bf app 15 % [62]
plant bv app;1 6.6e�5 $ kg�1 [63]

N app 15614 kg s�1 [6]
papp $ kg�1 Fig. 7(b)
k0 301.77 kg s�1 Footnote 4
k1 442.20 kg s�1 MW�1 Footnote 4
k2 �2.16 kg s�1 MW�2 Footnote 4

Electricity pda;e $ MW h�1 Fig. 6
pda;as $ MW h�1 Fig. 6
prt $ MW h�1 Fig. 6
pas 0.3 % [50]

Inflation rate i 3 % Section 4
Discount rate rR 5 % Section 4
(WACC)
DA rates qda;k Footnote 1 % [45]
Tax rate r 40 % [59,64]
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Fig. 8. Optimization result for selected 14 days (HES_FTL) assuming perfect
prediction: (a) optimal electrical energy/capacity sold in each market; (b) total
electrical generation and net load.
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in a similar fashion, which is synthesized based on reference price
data (denoted as refm) as shown in Fig. 6. For a fixed prediction error
pm, the time series of predicted real-time electricity price, denoted as
predm, is synthesized so that it is uniformly distributed with range
ð1� pmÞrefm. The time series of actual price (actm), is synthesized
by actm ¼ refm.

6.3.2. Simulation of ancillary service
According to [50], both California and New England deploy con-

tingency reserves about twice per month, while it is about ten
times more frequent for New York. The average deployment dura-
tion is around ten minutes. Therefore, we assume the probability
that the sold ancillary service capacity will be called for is 0.3%,
i.e., pas ¼ 0:003, with deployment duration being 15 min.

All the simulations conducted are for a whole year period unless
specified. Tables 2,3 list all the parameter values for HES_FTL and
HES_FEL, respectively.

6.4. Optimization results with perfect prediction

The optimal electrical production for HES_FTL for selected
14 days is shown in Fig. 8, assuming perfect prediction, where
Fig. 8(a) shows the optimal electricity sold in DAM, ancillary ser-
vice sold in DAM, and electricity sold in RTM, respectively, and
Fig. 8(b) shows the total electricity delivered to the electric grid
and net load.11 Note the scenarios in which the committed ancillary
service is called for are also simulated and included in Fig. 8(b).
11 Net load: electrical generation delivered to the grid by PHG.
Considering the fact that PHG in this case can deliver a maximum
power of 180 MW, these results suggest that the operations opti-
mizer tends to divert thermal power from PHG to GPP and sell this
flexible electrical generation as ancillary service in DAM capacity
market.

To illustrate the advantage of utilizing such an operations opti-
mizer, a simulation with constant operations is conducted, in
which the electricity sold in DAM is fixed at 171 MW. Without
the presence of an operations optimizer, the ancillary service sold
in DAM and electricity sold in RTM are assumed to be 0. Table 4
shows that the real discounted FCFF for the first year of operations
increases from $421,434,281 at constant operations mode to
$433,151,990 with the proposed operations optimizer (a 2.78%
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Table 4
Real discounted FCFF for 1st year of operations (HES_FTL).

Economic value Optimal operations Constant operations Gain (%)

Revenue – electricity $39,216,086 $43,200,065 �9.22
Revenue – gasoline $1,218,737,232 $1,218,742,749 0.00
Cost – CO2 ($9,181,260) ($15,893,894) �42.23
Cost – NG for AHG ($16,005,811) ($27,695,423) �42.21
Cost – NG for GPP ($351,184,318) ($351,184,318) 0.00
Cost – water ($7,770,339) ($7,770,339) 0.00
FCFF $433,151,990 $421,434,281 2.78

Table 5
Real discounted FCFF for 1st year of operations (HES_FEL).

Economic value Optimal operation Constant operation Gain (%)

Revenue – electricity $38,256,342 $41,665,881 �8.18
Revenue – fresh water $301,385,549 $178,461,804 68.88
Cost – RODP ($32,775,861) ($19,360,846) 69.29
FCFF $140,938,245 $77,278,730 82.38
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Fig. 10. Optimization result for selected 14 days (HES_FEL) assuming perfect
prediction: (a) optimal electrical energy/capacity sold in each market; (b) total
electrical generation and net load.
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gain). The payback period is 8.13 years with operations optimizer
while it is 8.43 years without, supporting the economic viability
of HES_FTL. Moreover, the IRR is 14.7% for 30 years of operations
with the proposed operations optimizer. The advantage of pro-
posed operations optimizer is further illustrated by Fig. 9(a), which
plots revised NPV as a function of operations time with and with-
out the proposed operations optimizer, assuming that the market
dynamics (e.g., price, production and consumption) in subsequent
years are the same as those assumed for the first year. This revised
NPV considers only the revenues and variable O&M cost that are
related to operations, including revenue from sale of electricity
and ancillary service, and cost of consuming NG for AHG.

Similarly, Fig. 10 plots the optimal electrical production for
HES_FEL for selected 14 days, assuming perfect prediction. A simu-
lation with constant operations is also conducted, for which the
electricity sold in DAM is fixed at 165 MW while the ancillary ser-
vice sold in DAM and electricity sold in RTM are assumed to be 0.
Table 5 shows that the real discounted FCFF increases from
$77,278,730 at constant operations mode to $140,938,245 with
the proposed operations optimizer (a 82.38% gain). Fig. 9(b) plots
NPV as a function of operations time, indicating that payback per-
iod is about 15.29 years with the proposed operations optimizer.
The IRR for 30 years of operations is 8.2% under the optimized case.

Remark 3. The revenue for HES_FTL consists a large portion (from
sale of gasoline) that is constant with respect to operations, which
limits the economic improvement brought by the proposed
operations optimizer. On the other hand, all economic functions
for HES_FEL depend on operations. As illustrated by Fig. 9(b),
without the proposed operations optimizer to accommodate the
high variability and volatility in electricity, feedstock, and com-
modity market dynamics, HES_FEL is not economically attractive.
6.5. Optimization results with imperfect prediction

To illustrate the effect of prediction errors, Fig. 11 plots
deviation of first year real discounted FCFF resulted by imperfect
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prediction (DFCFFR;1), for different levels of prediction errors for
HES_FTL and HES_FEL respectively. In particular, FCFFR;1 monoton-
ically decreases as renewable prediction error or real-time price
prediction error increases, as expected.

6.6. Sensitivity of market variations

In order to measure the effect of market variations, Fig. 12
shows payback period as functions of price change and annual
price growth rate, respectively, for HES_FTL, and Fig. 13 shows
IRR as a function of price change rate for HES_FEL. Constant oper-
ations mode is assumed for this analysis. These results suggest that
the influence of electricity price on economic performance of HES
is insignificant compared to those of feedstock and alternative
commodity prices. In particular, HES_FTL may not be economically
attractive if the price of gasoline decrease by 27% (or 4% every
year), or NG price increases 8% every year.

7. Conclusions and ongoing efforts

This paper proposed a generic methodology for operations opti-
mization for HES to maximize their economic performance based
on predicted renewable generation and market information. To
compensate for prediction error, a control strategy was accordingly
designed to operate a standby energy storage element to avoid
energy imbalance within HES. The proposed operations optimizer
brings more opportunities for HES by enabling participation in
various markets, including real-time market for nuclear generation
and day-ahead market for renewable generation. The proposed
operations optimizer was implemented in a multi-environment
computational platform, and allows systematic control of energy
conversion for maximal economic value. Simulation results of
two specific HES configurations demonstrated the advantage of
the proposed operations optimizer, and suggested operating HES
by diverting energy for alternative energy output while participat-
ing in the ancillary service market. Sensitivity analysis with respect
to market variation and prediction error were also performed to
better understand the economic value of HES. Future efforts
include model predictive control for operations to optimize com-
bined technical and economic performance.
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