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G R A P H I C A L A B S T R A C T
� A simulation model to assess electric
vehicles range reduction due to cell-to-
cell variation is constructed.

� A statistical analysis on electric vehicles
range reduction for different variation
configurations is performed.

� Nonlinear range reduction due to cell
capacity variations is found.
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A B S T R A C T

Due to manufacturing variation, battery cells often possess heterogeneous characteristics, leading to battery state-
of-charge variation in real-time. Since the lowest cell state-of-charge determines the useful life of battery pack,
such variation can negatively impact the battery performance and electric vehicles range. Existing research has
been focused on control design to mitigate cell imbalance. However, it is yet unclear how much impacts the cell
imbalance can have on electric vehicle range. This paper closes this knowledge gap by using a simulation envi-
ronment consisting of real-world driving speed data, vehicle longitudinal control, propulsion and vehicle dy-
namics, and cell level battery modeling. In particular, each battery cell is modeled as an equivalent circuit model,
and variations among cell parameters are introduced to assess their impact on electric vehicles range and to
identify the most influential parameter variations. Simulation results and analysis can be used to assist balancing
control design and to benchmark control performance.
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Fig. 1. Equivalent circuit model of a battery cell.
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1. Introduction

Electric vehicles (EVs), which are projected to make up 31% of the
global fleet by 2050 [1], have been considered to be a promising way to
combat climate change, reducing over 3000 kg carbon dioxide emission
per vehicle per year [2]. In the meanwhile, highly efficient battery
systems have been considered as key enablers to EVs and stationary
smart grid applications [3–7]. EV battery pack usually consists of
hundreds of cells, each of which can have different dynamic charac-
teristics due to manufacturing and operation variations, leading to
state-of-charge imbalance among battery cells [8–10]. Since the
weakest cell limits the useable capacity of the whole battery pack, such
state-of-charge imbalance would result in reduced EV range over single
charge as well as life cycle, and can lead to safety issue such as thermal
runaway [11–14]. To alleviate battery cell imbalance, active cell
balancing control using a balancing circuit such as flyback DC/DC
converter and half-bridge converter have been proposed in literature
[12,15–17], which can be either dissipative or nondissipative. Corre-
spondingly, various control methods have been proposed to conduct the
active cell balancing control [15–20], ranging from rule-based control
[21], simple feedback control [22], to advanced control like model
predictive control (MPC) [13,23–25].

However, although the active battery balancing control has drawn
extensive attentions and the aforementioned research demonstrate
promising results on mitigating cell imbalance, it is yet unclear how the
cell imbalance impacts EV range. In other words, a formal and nu-
merical quantification on EV range reduction that is attributed to cell
imbalance has not been reported in literature, and is much needed.
Without this knowledge, most of existing research endeavors assume
certain variations among all cell parameters [11,13,25], which can lead
to unrealistic simulation assumption and increase control complexity
unnecessarily. Furthermore, as there is no formal quantification on the
range reduction due to cell imbalance, there is no benchmark to eval-
uate the control algorithms that aim at mitigating cell imbalance.
Therefore, the performance of the aforementioned balancing control-
lers becomes obsolete.

To address this limitation, a simulation model is constructed that
includes a speed controller to command battery power based on the
actual and target vehicle speeds. Furthermore, battery cell dynamics are
modeled using equivalent circuit model (ECM) with heterogeneous pa-
rameters. Finally, an EV propulsion model and a quarter car longitudinal
model are used to simulate the vehicle behavior of a passenger EV car.
Thorough analysis based on this simulation model are then conducted to
understand the impact of battery cell imbalance on EV range. In partic-
ular, a total number of 125 trips are simulated based on real-world
vehicle speed measurement data, which is available at National Renew-
able Energy Laboratory's Transportation Secure Data Center [26,27]. For
each trip, different variation levels of cell parameters are introduced to
calculate the corresponding range reduction. Statistical analysis is then
performed to identify the impact of each parameter variation on the EV
range. Such analysis can be beneficial for the control design and
benchmarking. For example, several parameters are found to have no
statistical influence on average EV range, and therefore it is not necessary
for balancing control algorithm to explicitly estimate those parameters.
Compared to relevant literature on battery inconsistency, such as
modeling, estimation, and diagnosis [28–32], our work is different as we
focus on evaluating the impact of battery cell variations in the context of
EV ranges. As a full EV propulsion system is modeled and utilized, the
propagation of the impact of cell level variation is explicitly evaluated
and quantified.

The rest of this paper is organized as follows. Section 2 discusses the
equivalent circuit model for each cell and the whole battery pack, while
Section 3 presents the problem formulation with the main research
question. Section 4 provides details on the simulation model used for
numerical studies, and Section 5 presents simulation results and discusses
the main findings. The paper is concluded in Section 6.
2

2. Battery dynamics

The dynamic of a battery cell can be modeled as an equivalent circuit
model (ECM) [33–38], as shown in Fig. 1, where Voc is the open circuit
voltage, v is the terminal voltage, and i is current drawn from the cell with
the convention that positive value of i indicates discharging from the cell
and negative value indicates charging. Denote s as the cell SOC, V1 and V2
as the relaxation voltages over the two capacitors capturing fast and slow
dynamics respectively. The dynamics of ECM are then specified by
Ref. [38].

_s ¼ �η
i

3600� C
(1a)

_V1 ¼ � V1

R1C1
þ i
C1

(1b)

_V2 ¼ � V2

R2C2
þ i
C2

(1c)

_Tc ¼ Q
Cp;c

þ Ts � Tc

RcCp;c
(1d)

_Ts ¼ Tc � Ts

RcCp;s
þ Tf � Ts

RuCp;s
(1e)

y ¼ Voc � V1 � V2 � iRo: (1f)

Note that in (1), η is the coulombic efficiency, C is the cell ca-
pacity with unit of Amp-Hour, Tc and Ts are the cell core and surface
temperature respectively, Tf is the coolant flow temperature, Cp,c and
Cp,s are heat capacities of the battery core and surface respectively,
Rc is the conduction resistance between Tc and Ts while Ru is the
convection resistance between Tf and Ts. Finally, Q is the heat gen-
eration defined by

Q ¼ iðVoc � yÞ � I
Ts þ Tc

2
dVoc

dT
:

Note that Voc, Ro, R1, R2, C1 and C2 are all dependent on SOC s and
temperatures Ts and Tc, where this nonlinear dependency can be denoted
as, for σ ¼ {Voc, Ro, R1, R1, C1, C2},

σ ¼ fσðs;Tc; TsÞ: (2)

Therefore (1) is a nonlinear model. In this paper, we adopt the parame-
ters in Ref. [38] for model (1)–(2) for a nominal battery cell.

Now consider an EV battery system as shown in Fig. 2, where N cells
are connected in series to provide current I as requested by EV pro-
pulsion system. Due to cell variations, the SOC among cells can be
significantly different, even if they are initialized all the same SOC
level. To address this issue, a balancing controller can be used to draw
current from cells with higher SOC to charge cells with lower SOC. Such



Fig. 2. Structure of series connected battery cell and balancing current [25].

1 Available at: https://www.nrel.gov/transportation/securetransportation-
data/. Accessed Sep. 15, 2021.
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balancing currents is denoted as un for the nth cell. Denote cell current
and terminal voltage for nth cell as in and vn, respectively, and denote
the voltage and power of the battery pack as vb and Pb, respectively.
Then it is trivial to see that

in ¼ I þ un (3a)

vb ¼
XN

n¼1
vn (3b)

Pb ¼ Ivb: (3c)

3. Problem statement

Due to manufacturing variations and/or aging condition variations,
the parameters for (1)–(2) can be significantly different for each cell.
Particularly we consider variations of parameters Ro, R1, R2, C1, C2 and C.
For nth cell, we model the cell variation as follows. For each parameter σ
2 {Ro, R1, R2, C1, C2, C},

σn ¼
8<
:

ð1þ ϕn
σÞfσðsn;Tn

c ;T
n
f Þ if σ 2 fRo;R1;R2;C1;C2g;

ð1þ ϕn
σÞC0 if σ ¼ C;

(4)

where C0 and fσ are the nominal values adopted from Ref. [38]. Now
consider an EV battery system as shown in Fig. 2, where the parameter
variations for each cell is modeled by (4). We define the variation level ϕσ

for σ 2 {Ro, R1, R2, C1, C2, C} as the standard deviation of ϕn
σ , i.e.,

ϕσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1

�
ϕn
σ � μσ

�2r
; (5)

where μσ is the mean of ϕn
σ , i.e.,

μσ ¼
1
N

XN

n¼1
ϕn
σ : (6)

Note that ϕn
σ in (4) is the deviation of parameters from their nominal

values. Therefore, μσ denotes the mean of the parameters deviation from
their nominal values.

The research question we intend to answer is, how much impacts the
cell variations can have on EV range. Specifically.

1. Which parameter among Ro, R1, R2, C1, C2 and C has largest influence
on EV range? and

2. How is the EV range impacted by the variation level ϕσ, σ 2 {Ro, R1,
R2, C1, C2, C}?

To answer these research questions, we conducted simulations using
battery model (1), (2), (3) and (4), together with an EV model. In the
next section, we will introduce the simulation environment in greater
details.
3

4. Simulation model

Diagram of the simulation model is shown in Fig. 3. In particular, a
reference speed profile vref is used as input to a speed controller, which
requests a battery power Prb from the battery pack. Upon receiving this
command, the battery management system (BMS) calculates, based on
the latest battery and cell states, the pack current I and balancing current
un for n¼ 1,…, N. The battery dynamic model simulates (1)–(4) and then
outputs the actual battery power Pb to drive the vehicle.

Note that in Fig. 3, all control algorithm blocks are marked in light
blue while physical dynamic blocks are marked in light orange. In the rest
of this session, we discuss the reference speed profile, speed controller,
and propulsion & vehicle dynamics blocks in more details.

4.1. Reference speed data

Vehicle speed dataset1 provided by The Transportation Secure Data
Center (TSDC) at National Renewable Energy Laboratory [26,27] was
used to generate reference speed data for simulation purpose. The dataset
includes global positioning system (GPS) readings and the length of trip
varies from several minutes to hours. To have longer trips for simulation
purpose, short trips are concatenated together to create longer trip so that
the travel distance of each trip is longer than the range of EV on a single
charge.

In this work, a total number of 125 trips are generated. Snapshots of 1
h of speed reference data are shown in Fig. 4 for Dataset #5 (top of Fig. 4)
and #6 (bottom of Fig. 4), showing that both dynamic and steady state
maneuvers are present in the dataset. Note that Dataset #5 and #6 are
randomly selected for illustrative purpose. Top half of Fig. 5 plots the
average trip speed for each dataset, where the average speed varies from
slow (around 50 km/h) to extremely fast (around 150 km/h). Note that
the bottom half of Fig. 5 will be discussed shortly in Section 5.

4.2. Speed controller

A PI speed controller is utilized to track the reference speed, i.e.,

evðtÞ ¼ vref ðtÞ � vxðtÞ (7a)

Pr
bðtÞ ¼ KpevðtÞ þ Ki

Z t

0
evðτÞdτ; (7b)

where ev(t) is the instantaneous speed tracking error. The output of this
speed controller is the requested power Pr

b, which is then fed into BMS
and battery dynamic model (1)–(4) to produce actual battery power. To
reduce the influence of speed controller, the control gains are fixed for all
simulations. Table 1 includes controller gain for PI controller (7), and
snapshots of 1 h of requested battery power are shown in Fig. 6 for
Dataset #5 (Top) and #6 (Bottom), corresponding to the reference speed
shown in Fig. 4.

4.3. Propulsion and vehicle dynamics

To reduce simulation time, a quarter car model is used to simulate the
vehicle dynamic. As lateral dynamic is not considered in this study, a
quarter car model is found to be sufficient to evaluate EV energy con-
sumption [39]. This section briefly introduces the model, and more de-
tails can be found in Refs. [39–41]. The longitudinal dynamics of a
quarter car model can be represented as follow,

_vx ¼ nw
m
Fx � gsin σb � 1

m
Fa (8a)

https://www.nrel.gov/transportation/securetransportation-data/
https://www.nrel.gov/transportation/securetransportation-data/


Fig. 5. Average trip speed (top) and total EV range (bottom) for each dataset
when all cells are identical (i.e., 0 variation level for all parameters).

Fig. 4. Snapshot of the reference speed data from Dataset #5 (top) and
#6 (bottom).

Fig. 3. Diagram of the simulation model.
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4

_ω ¼ 1
Iw

�
T
nw

� FxR
�
; (8b)

where m is the mass of the vehicle, nw is the number of driving wheels,
which equals 2 for front/rear driving vehicle and 4 for all wheel drive
configuration, σb is the road bank angle, Iw is the wheel rotational in-
ertial, T is the total driving torque (as applied to all driving wheels) and
Fx is the total tire force, as computed by the following Magic formula
[42].

Fx ¼ FzDsinfCarctan½Bsr � EðBsr � arctanðBxÞÞ � g; (9)

with the parameters B, C, D, E given as 10, 1.9, 1 and 0.97. Note that Fz is
normal force and sr is slip ratio defined as
Table 1
Parameters for the simulation models. Partiallydopted from Ref. [39].

Parameter [Unit] Physical Meaning Value

m[kg] Car mass 1500
nw [�] # of driving wheel 2
R[m] Effective wheel radius 0.2159
σb Bank angle 0
ρ[kg/m3] Air density 1.225
Cd [�] Air drag coefficient 0.389
AF Front area 2
ηD[%] Propulsion efficiency 100
Td[ms] Propulsion time constant 300
Kp [�] Proportion gain 50
Ki [�] Integral gain 300

Fig. 6. Snapshot of the requested power for Dataset #5 (Top) and #6 (Bottom),
corresponding to the reference speed shown in Fig. 4.
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sr ¼ ωR� vx
vx

; (10)
with R being the wheel effective radius.
Finally, according to Ref. [40], the aerodynamic drag force Fa in (9)

can be modeled by (assuming wind speed is 0):
Table 2
EV mileage with identical battery cells.

Dataset # 1 2 3 4 5

Range [km] 255.779 235.578 254.18 230.965 269.1
Dataset # 11 12 13 14 15
Range [km] 345.675 243.91 239.922 224.956 352.1
Dataset # 21 22 23 24 25
Range [km] 251.793 261.05 206.57 285.894 321.6
Dataset # 31 32 33 34 35
Range [km] 240.794 269.979 245.388 308.388 232.2
Dataset # 41 42 43 44 45
Range [km] 260.849 235.987 252.991 285.85 245.9
Dataset # 51 52 53 54 55
Range [km] 231.291 360.541 396.609 362.02 265.8
Dataset # 61 62 63 64 65
Range [km] 262.585 302.167 255.735 326.335 233.7
Dataset # 71 72 73 74 75
Range [km] 269.195 233.934 281.388 301.175 252.4
Dataset # 81 82 83 84 85
Range [km] 231.779 445.843 270.621 266.908 262.3
Dataset # 91 92 93 94 95
Range [km] 265.028 284.842 248.087 278.365 293.7
Dataset # 101 102 103 104 105
Range [km] 234.187 254.8 253.562 293.461 395.4
Dataset # 111 112 113 114 115
Range [km] 350.525 280.213 306.69 250.522 262.8
Dataset # 121 122 123 124 125
Range [km] 399.29 238.187 273.975 242.9 248.1

Fig. 7. Range variation with res

5

Fa ¼ 1
2
ρCdAFv2x ; (11)
where ρ is the air mass density, Cd is the aerodynamic drag coefficient, AF
is the effective front area.
6 7 8 9 10

74 264.181 341.252 248.474 247.146 327.22
16 17 18 19 20

01 259.714 277.437 260.626 272.358 293.817
26 27 28 29 30

49 309.173 343.951 329.553 340.009 244.328
36 37 38 39 40

54 254.82 413.544 275.641 242.289 284.615
46 47 48 49 50

82 326.779 231.37 228.897 231.36 258.609
56 57 58 59 60

74 256.521 231.76 242.509 357.009 264.379
66 67 68 69 70

14 338.026 250.941 252.596 342.117 277.04
76 77 78 79 80

83 255.535 259.798 251.881 294.1 302.19
86 87 88 89 90

42 340.762 248.765 257.622 281.693 282.283
96 97 98 99 100

19 255.467 254.011 240.684 230.937 244.27
106 107 108 109 110

08 248.1 391.27 323.578 308.322 240.079
116 117 118 119 120

6 242.944 302.686 374.982 358.618 253.068
– – – – –

15 – – – – –

pect to cell variation level.



J. Chen et al. Green Energy and Intelligent Transportation 1 (2022) 100025
The propulsion dynamic (electric motor, transmission, and final
drive) is modeled as a first order transfer function, as follows,

GðsÞ ¼ Pw

Pb
¼ ηD

Tdsþ 1
(12)

where Pb is the actual battery power and Pw is the actual power delivered
at the wheel, ηD is the overall propulsion efficiency, and Td represents the
time constant of the entire propulsion system. Finally, the power Pw and
driving wheel torque T at the wheel satisfy

P ¼ Tω: (13)

Table 1 lists all the parameters for the propulsion and vehicle dy-
namic models used in this study.

5. Numerical analysis

5.1. Nominal simulation

As benchmarking, we first run the simulation without any cell vari-
ation. In other words, 10 identical cells are used to simulate the battery
pack, i.e., N ¼ 10 and μσ ¼ ϕσ ¼ 0 for all σ 2 {Ro, R1, R2, C1, C2, C}. Note
that N ¼ 10 is selected to reduce simulation time. The output battery
power from 10 cells is then scaled to meet the power request of a full size
EV. In this case, the EV range for each trip is documented in Table 2 and
plotted in the bottom half of Fig. 5. As can be seen, the nominal range
varies from around 200 km to around 450 km, due to the impact of
driving maneuvers. Such variation is a result of the wide spread of
driving maneuvers included in the dataset and justifies the use of the
selected dataset since it exposes the simulation to a variety of scenarios.
Table 3
EV Mileage Ratio For φC ¼ 0.02 and φC ¼ 0.1

Dataset # 1 2 3 4 5

r[φC(0.02)] 98.87% 98.42% 98.32% 98.09% 98.8
r[φC(0.1)] 91.25% 94.08% 90.53% 89.74% 95.2
Dataset # 11 12 13 14 15
r[φC(0.02)] 98.57% 97.58% 97.69% 98.98% 98.6
r[φC(0.1)] 94.02% 93.82% 93.08% 92.42% 92.9
Dataset # 21 22 23 24 25
r[φC(0.02)] 98.32% 98.01% 99.06% 97.69% 99.6
r[φC(0.1)] 91.51% 94.09% 93.24% 88.52% 93.0
Dataset # 31 32 33 34 35
r[φC(0.02)] 98.86% 99.28% 98.50% 99.19% 98.0
r[φC(0.1)] 93.74% 91.19% 92.63% 95.79% 93.8
Dataset # 41 42 43 44 45
r[φC(0.02)] 98.95% 99.20% 97.54% 98.32% 98.3
r[φC(0.1)] 92.94% 92.37% 90.28% 91.76% 92.3
Dataset # 51 52 53 54 55
r[φC(0.02)] 98.69% 98.19% 99.10% 95.98% 97.4
r[φC(0.1)] 92.07% 92.72% 94.55% 84.03% 93.0
Dataset # 61 62 63 64 65
r[φC(0.02)] 99.37% 98.43% 98.47% 99.19% 98.0
r[φC(0.1)] 95.99% 96.24% 96.97% 95.33% 89.7
Dataset # 71 72 73 74 75
r[φC(0.02)] 98.45% 98.77% 98.63% 98.11% 98.7
r[φC(0.1)] 90.88% 94.17% 94.92% 92.38% 90.5
Dataset # 81 82 83 84 85
r[φC(0.02)] 98.05% 98.32% 98.39% 98.16% 98.5
r[φC(0.1)] 88.65% 93.80% 93.47% 91.14% 92.0
Dataset # 91 92 93 94 95
r[φC(0.02)] 99.07% 97.62% 98.28% 99.35% 98.6
r[φC(0.1)] 93.33% 90.44% 93.12% 92.87% 92.0
Dataset # 101 102 103 104 105
r[φC(0.02)] 97.72% 97.69% 98.48% 98.67% 98.7
r[φC(0.1)] 94.06% 90.76% 93.96% 92.79% 95.0
Dataset # 111 112 113 114 115
r[φC(0.02)] 98.57% 98.67% 98.86% 96.93% 97.5
r[φC(0.1)] 95.27% 93.21% 95.34% 86.94% 92.3
Dataset # 121 122 123 124 125
r[φC(0.02)] 99.01% 97.30% 98.57% 98.21% 97.9
r[φC(0.1)] 96.15% 89.51% 92.59% 92.36% 88.7

6

5.2. Impacts of cell variations

To evaluate the impact of cell variations (i.e., research question 1 and
2 above), simulations are conducted over several variation configura-
tions. For each configuration, one (and only one) parameter σ 2 {Ro, R1,
R2, C1, C2, C} is selected to vary with normal distribution such that μσ ¼
0 and ϕσ > 0, while the other parameters σ0 are assumed to have 0 vari-
ation level (i.e., μσ0 ¼ ϕσ0 ¼ 0). With a slight abuse of notation, we use
ϕσ(x), where σ 2 {Ro, R1, R2, C1, C2, C} and x 2 {0.02, 0.04, 0.06, 0.08,
0.1}, to denote the variation configuration where σ is selected to have a
variation level ϕσ ¼ x. Therefore, there are a total number of 30 variation
configurations (6 parameters, and 5 variation levels for each parameter).
Moreover, cell balancing control is assumed to be absent in this study. In
other words, the BMS in Fig. 3 only calculates pack current I and set u1,
…, un all to 0. Note that similar to the nominal simulation, N¼ 10 is used
to reduce simulation time. The battery output power is then scaled to
meet the power request of a full size EV.

For each variation configuration ϕσ(x), all 125 trips are simulated. For
kth trip, denote the EV range at nominal condition (i.e., when ϕσ ¼ 0 for
all σ) asmk[0], and denote the EV range for variation configuration ϕσ(x)
asmk[ϕσ(x)]. Then the range ratio on the kth trip can then be calculated as
the ratio between mk[0] and mk[ϕσ(x)], as follows.

rk½ϕσðxÞ� ¼
mk ½ϕσðxÞ�
mk ½0� � 100%: (14)

Note that here rk[ϕσ(x)] quantifies the impact of the variation ϕσ(x) on
the EV range on kth trip. When rk[ϕσ(x)] > 100%, the cell imbalance
would increase the EV range and on the other hand, when rk[ϕσ(x)] <

100%, the cell imbalance negatively impact the EV range by reducing it.
6 7 8 9 10

2% 96.95% 99.48% 98.69% 97.82% 97.82%
4% 91.49% 93.15% 90.17% 90.99% 85.01%

16 17 18 19 20
8% 98.85% 98.05% 98.42% 98.68% 98.55%
7% 92.44% 89.81% 92.77% 92.96% 94.04%

26 27 28 29 30
1% 98.69% 97.88% 99.43% 99.18% 97.83%
2% 90.77% 94.91% 92.23% 88.12% 94.48%

36 37 38 39 40
5% 98.97% 99.55% 97.27% 98.12% 97.03%
2% 90.87% 91.21% 84.89% 93.39% 92.04%

46 47 48 49 50
3% 99.73% 98.40% 99.72% 98.09% 98.89%
3% 93.89% 94.73% 92.41% 93.68% 92.13%

56 57 58 59 60
0% 98.82% 98.51% 97.83% 99.21% 98.67%
7% 88.43% 87.81% 91.12% 96.29% 91.52%

66 67 68 69 70
7% 99.14% 97.68% 98.74% 98.47% 98.80%
9% 93.74% 90.59% 92.14% 94.12% 96.10%

76 77 78 79 80
7% 98.51% 98.42% 98.46% 98.81% 98.92%
2% 93.78% 93.98% 91.99% 91.21% 94.15%

86 87 88 89 90
6% 99.37% 98.65% 98.04% 98.39% 98.30%
6% 94.33% 90.99% 89.44% 92.36% 95.35%

96 97 98 99 100
8% 98.33% 99.34% 99.19% 99.08% 98.22%
9% 94.86% 93.42% 90.91% 93.96% 92.06%

106 107 108 109 110
0% 97.85% 98.43% 99.11% 98.25% 98.90%
2% 89.57% 94.22% 94.44% 92.05% 93.17%

116 117 118 119 120
8% 98.24% 98.76% 98.85% 99.42% 98.63%
3% 96.95% 94.74% 92.59% 95.60% 90.63%

– – – – –

7% – – – – –

4% – – – – –
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Fig. 7 plots the distribution (as box plot) of range ratio {rk, k¼ 1, 2,…,
125} for each variation configuration. It can be seen that, while the range
of individual trip is impacted by variations among Ro, C1, R1, C2, and R2,
the average ratio remains 100%, indicating the average EV range seems
not to be impacted by these parameter variations. On the other hand, the
variation in cell capacity C seems to have the largest influence on EV
range. Specifically, for ϕC(0.02) configuration, the average range ratio is
98.48%, while this ratio drops to 92.47% for ϕC(0.1). Moreover, for all ϕC
configurations, all trips have a reduced range as rk < 100% for all ϕC(x),
x 2 {0.02, 0.04, 0.06, 0.08, 0.1}. Finally, details on each trip range ratio
for variation levels of 0.02 and 0.1 for cell capacity C are documented in
Table 3 and plotted in Fig. 8.

To understand how the variation level ϕC impacts the EV range, Fig. 9
plots the average range ratio as with respect to ϕC, together with a 3rd

order polynomial fit. Note that the 3rd fit has an average error of
0.1264%, indicating that the impact of ϕC on EV range is nonlinear.

5.3. Discussion

Based on Fig. 7, it is clear that the variations on R1, C1, R2, C2 and Ro

do not impact EV range, though for each trip there can be up to �0.5%
range difference due to different dynamic behavior. This aligns with
intuition behind ECM, in which C1 and C2 only impacts the cell transient
Fig. 9. Range ratio w.r.t. variation level of cell capacity C, i.e., r[φC], and a 3rd

polynomial fit.

Fig. 8. Range ratio for variation levels of 0.02 and 0.1 for cell capacity C.
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behavior and do not influence its steady state behavior. Furthermore, the
capacitors, as used in ECM, are assumed to have zero energy loss. On the
other hand, though the variations of R1, R2, and Ro do change the DC
resistance of each individual cell, the overall DC resistance of the battery
pack is not impacted, since μσ ¼ 0 for σ 2 {R1, R2, Ro}.

Moreover, according to Fig. 7, it is evident that the variation of cell
capacity C has the largest influence on EV range. This is also reasonable
considering that we only simulate series connection, and the overall
Amp-Hour capacity of a series string is mainly determined by the lowest
cell capacity.

The results presented here can be very helpful for control design. Note
that in literature [11,13,25], active balancing control has been designed
and evaluated by assuming all cell parameters are heterogeneous, which
can unnecessarily increase control complexity. According to results pre-
sented here, only cell capacity variation needs to be incorporated into
control design. Furthermore, since all the other parameters do not impact
EV range in statistical sense, there is no need to online estimate their
variation level, hence reducing the control complexity even further.

Finally, as described by (1), cell temperatures are considered as states
of cells, as opposed to parameters. Therefore, their variations are not
treated in the same way as cell parameters. In fact, when cell parameters
variation level change, the evolution of temperature is different as well.
Therefore, the variation of temperature, which comes from the change of
model parameters, does impact the EV range variations. In the future, we
would also investigate the impact of environment temperature on EV
range variation.

6. Conclusion

This paper focuses on investigating the battery cell imbalance and
its impact on electric vehicles range. Existing work has been mainly
focused on control design to mitigate the impact of cell imbalance, yet a
formal quantification of this impact is missing. To address this issue, we
construct a simulation environment that utilizes real-world driving
speed data, an electric vehicles propulsion model, a longitudinal
vehicle dynamic model, and equivalent circuit models for battery cell
and pack dynamics. Simulation results suggest that for most parame-
ters, their zero-mean variations do not impact the overall electric ve-
hicles range, and the most influence factor is cell capacity, which can
lead to nonlinear range reduction. Future work include (1) incorpo-
rating prior control design [25] into the developed simulation frame-
work, (2) improving the model predictive control of [25] by online
estimating the variation level of cell capacity, and (3) benchmarking
the balancing control performance by investigating impulsive control
strategy, representative driving cycle generation [43], and collabora-
tive control with other energy entities [44,45].
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