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Abstract
Software validation aims to ensure that a particular software product fulfils its intended
purpose, and needs to be performed against both software requirement as well as its
implementation (i.e. product). However, for diagnostic software (i.e. a diagnoser) per-
forming online diagnosis against certain fault models and reports diagnosis decision, the
underlying fault models are usually not explicitly specified, neither by formal language nor
by descriptive language. The lack of formal representation of fault models leaves the
intended purpose of the diagnostic software vague, making its validation difficult. To
address this issue, the authors propose various model‐based techniques that can generate
concrete examples of the diagnoser's key properties. Such examples are represented in an
intuitive and possibly visualised way, facilitating the designers/users to approve or
disapprove the conformance of the diagnoser to the intended purpose. The proposed
techniques work for validation of both the requirement and implementation that can be
modelled as finite state machine, and are illustrated through applications on vehicle on‐
board diagnostic requirement.

1 | INTRODUCTION

To reduce the potential impact of systemfailures that can severely
affect functionality, electronic controller unit (ECU) in modern
vehicles must include on‐board diagnosis (OBD) compliant
diagnostic software, which provides a data link with the various
controllers within the vehicle [1]. To meet the stringent emission
regulations, vehicle system is becoming increasingly complex,
making the diagnostic more necessary [2, 3]. According to [4],
there are a total number of 3637 OBD‐II diagnostic trouble
codes (DTCs), including 1164 Body Code, 486 Chassis Code,
1688 Powertrain code, and 299 Network Code.

The development of the diagnostic software typically in-
volves verification and validation. The goal of the verification
is to ensure that the implementation conforms to the software
requirement, while the validation tries to eliminate the dis-
crepancies between the software requirement/implementation
and the users' ‘implicit’ intention. Validation makes sure the
final product fulfils its intended purpose, and is required for
both software requirement and its implementation. See
Figure 1 for illustration. Note that both ‘software requirement’
and ‘software implementation’ can be different from the user's

intention which is ‘implicit’ due to the lack of formal
representation.

The most popular methodology for software verification
and validation is the model‐based testing, where test cases
can be generated by auto‐generation tool [5–9]. For example,
model‐checking based techniques can be used in test case
generation to synthesise counterexamples that violate the test
objective [10–12]. Satisfiability modulo theories is another
well‐known technique in many verification tools that enable
test case generation using constraint solving. For example,
dReal [13] applies interval‐based approach and can solve
polynomial and exponential functions, while Yices [14] can
solve (a subset of) non‐linear equations. Acharya et al. [15]
use the active learning tools for the verification and validation
of software implementation, while Schordan et al. [16] eval-
uate different tools for software verification and validation.
These formal method based approaches provide good
coverage on the test case generation, while suffering
computational complexity. To encounter the computation
load, stochastic approach based on sampling are also
considered in the literature. For example, Ref. [17–19] use
probabilistic model‐checking techniques in software
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verification. Unlike model‐checking, probabilistic model
checking aims to verify whether a system that exhibits sto-
chastic behaviour satisfies certain (quantitative) property [20–
26]. Hence, these approaches provide a confidence level of
the software correctness, instead of the logical good/bad
result. The diagnosis problem in concurrent/modular systems
are studied in [27–30].

All the above mentioned work are based on the assumption
that the software requirements are available, which are deemed
as the ground truth and used to verify the software. However,
this is not the case for the validation of the diagnostic software,
for which the goal is to make sure that the no‐fault specifi-
cation K (specifying the behaviour i.e. considered as no‐fault
by the diagnoser) of the given diagnoser is the same as the
true system no‐fault behaviour, denoted as �K. See Figure 2.
However, in most cases �K is not provided either as a formal
representation or descriptive language, making the validation
process difficult. One possible approach is to generate a formal
model of K and leave it for the users to validate. However, this
formal model may not be intuitive for the users to understand.
Therefore, to facilitate the validation of diagnoser, we propose
various model‐based techniques that can generate concrete
examples to illustrate the key properties of K in an intuitive and
possibly visualised way, facilitating the designers/users to
approve or disapprove the conformance of the diagnoser to
the intended purpose. In particular, the following properties of
K are investigated:

� Boundary analysis: The boundary analysis aims to generate
a pair of sequences lying on each side of K, that is, one
test case in K while the other in L − K. Such pair can be
intuitive to understand, and can act as representative of the
boundary of K. Then the users can verify whether the
boundary, illustrated by the generated pairs, conforms to
their intention or not. Specifically, we proposed algorithms
to generate test case pairs in (1) boundary in time domain,
(2) boundary in frequency domain, and (3) boundary in
value domain.

� Statistical analysis: The statistical analysis tries to explore
statistical properties of K, for example, the correlation be-
tween different diagnostic flags. Such correlation can be seen
as key representative of the no‐fault specificationK, based on
which the fulfilment of the users' intention can be decided.

Please note that in the paper various illustration examples
are based on automotive diagnostic software. However, the
proposed techniques work for diagnostic software in general.

The rest of this article is organised as follows: Section 2
presents problem formulation and needed notations on finite
state machine (FSM), linear‐time temporal logic (LTL), and
model checking. Boundary analysis on time, frequency and
value domains, and associated algorithms, are presented in
Sections 3, 4 and 5, respectively. Section 6 includes statistical
analysis and associated algorithm and the paper is concluded in
Section 7.

2 | PROBLEM FORMULATION AND
PRELIMINARY

In this section, we formulate the problem and briefly introduce
related notations on FSM, LTL, and model checking.

2.1 | Problem formulation

The functionality of the diagnostic software (i.e. a diagnoser)
can be illustrated by Figure 2, where L denotes the set of all
possible system behaviours while K is the set of nominal be-
haviours, denoted as no‐fault specification [31]. The diagnoser
reports ‘Fail’ whenever the system executes a behaviour in
L − K while reports ‘Pass’ for K. Note that here K represents
the set of behaviour that is considered as ‘no‐fault’ by the
diagnoser, while the set of true ‘no‐fault’ system behaviour
(denoted as L) may be different from K, which needs to be
validated in the validation process.

Example 1 Figure 3 depicts the active fuel manage-
ment (AFM) exhaust valve subsystem, where the
software executing within the ECU uses various input
data to decide a control signal for each of the valves,
and the AFM exhaust valves provide valve position and
actuator fault state feedback to the ECU for the pur-
pose of executing OBD. An abstract description of the
above system is given in Figure 4, where the controller
performs control functionality over the plant, and the
diagnoser monitors the behaviour of the controller,

F I GURE 1 Software verification and validation process. The user's
intention is deemed as ‘implicit’ as it is usually expressed as verbal/written
language instead of formal representation

F I GURE 2 Illustration of diagnostic specification. L denotes the set of
all system behaviour, K is the subset of behaviour that is deemed as ‘no‐
fault’ by the diagnoser, while K is the subset of behaviour that is deemed as
‘no‐fault’ by the user
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plant, or both of them, by detecting the faulty sequence
of the input/output of the plant (i.e. the control
command IC and the plant output IP), and reports to
ECU the Fail and/or Pass report based on certain no‐
fault specification K over the space of IC and IP.

The goal of validation of the diagnostic software is to make
sure that the no‐fault specification K (specifying the behaviour
i.e. considered as no‐fault by the diagnoser) of the given
diagnoser is the same as the true system no‐fault behaviour,
denoted as �K , which is usually not provided in either the
formal representation or in the descriptive language, making
the validation process difficult. To address this issue, we pro-
pose various model‐based techniques that can generate con-
crete examples to illustrate �K , facilitating the designers/users
to approve or disapprove the conformance of the diagnoser to
the intended purpose.

2.2 | Finite state machine

As illustrated by Figure 1, the validation is needed for both
software requirement and its implementation, the first of
which is the informal representation (by descriptive language)
of the diagnoser while the second is executable (in a pro-
gramming language) of the diagnoser. Both software
requirement and its implementation may be translated into
formal representation in the form of FSMs [32–35]. Note
that the translation into FSM is outside the scope of this
study, and interested readers can refer to the reference
mentioned above. The techniques developed in this report
are based on the FSM representation of diagnoser, and hence
is applicable for validation process in both software

development stages. Note that it generally requires infinite
state representation to represent a software. Extension to
such general case remains a future work.

A diagnoser can be represented by a FSM D given as five
tuples D = (Q, q0, U, Σ, E) where

� Q is the state space of D with initial state q0;
� U = {IC} [ {IP} is the input to the diagnoser, where IC is

the control command to the plant while IP is the output of
the plant, as pictured by Figure 4;

� Σ is the set of internal and output variables with ΣF ⊆ Σ
being the set of output Boolean variables corresponding to
the diagnostic flag variables;

� E is the set of edges, such that for each e = (q, q0, ge, ae) 2 E,
‐ q is the source state;
‐ q0 is the target state;
‐ ge is the guard condition which is a predicate over U and

Σ, and
‐ ae is the action that assigns values to Σ.

The diagnoser D reports ‘Fail’ when it makes a transition
that sets a flag variable f 2 ΣF to TRUE. The following defini-
tion defines, for each diagnostic result f 2 ΣF, the set of passed
test cases and the set of failed test cases, where a test case is
defined to be a sequence of inputs u0u1…un 2 U* that is
accepted by FSM D.

Definition 1 For each f 2 ΣF, a test case u is a passed
test case of f if there exists one execution of D on u
that never sets f to True. Similarly, it is a failed test case
of f if there exists one execution of D on u that sets f to
True at the very last transition. The set of passed test
cases of f is denoted as TP( f ), and the set of failed test
cases of f is denoted as TF( f ).

Note that if we denote the set of test cases accepted by
FSM D as L, that is, L is the set of input sequences accepted by
the FSM, then by definition ∩f 2ΣFTPðf Þ ¼ K and
[f 2ΣFTFðf Þ ¼ L − K.

2.3 | Linear‐time temporal logic

As will be seen later, the model‐checking technique is used to
generate cases that may reveal potential pitfalls in the diag-
nostic software. Specifically, LTL formula will be used for
model‐checking. In the following, we present a brief descrip-
tion of LTL; a more thorough introduction of LTL and model‐
checking can be found in [31, 36–38].

LTL is a formalism for describing properties of sequences
of states. Such properties are expressed using temporal oper‐
ators of the temporal logic which include:

� X (‘next time’): it requires that a property holds in the next
state of the state‐trace;

� U (‘until’): it is used to combine two properties. The com-
bined property holds if there is a state on the state‐trace

F I GURE 3 The AFM exhaust valve subsystem. AFM, active fuel
management

F I GURE 4 Abstracted system structure of active fuel management
diagnosis

142 - CHEN AND S



where the second property holds, and at every preceding
state on the trace, the first property holds;

� F (‘eventually’ or ‘in the future’): it requires that a property
will hold at some future state on the state‐trace;

� G (‘always’ or ‘globally’): it requires that a property holds at
every state on the trace; and

� B (‘before’): it combines two properties. It requires that if
there is a state on the state‐trace where the second property
holds, then there exists a preceding state on the trace where
the first property holds.

For a LTL formula ϕ, we use the notation D ⊧ ϕ (resp.,
D ⊭ ϕ) to denote that ϕ holds (resp., does not hold) for every
state trace π of FSM D. The relation ⊧ for state‐trace π is
defined inductively as follows:

1. π ⊧ ¬ϕ if and only if π ⊭ ϕ.
2. π ⊧ ϕ1 ^ ϕ2 if and only if π ⊧ ϕ1 and π ⊧ ϕ2.
3. π ⊧ Xϕ if and only if π1 ⊧ ϕ.
4. π ⊧ ϕ1Uϕ2 if and only if there exists a k such that πk ⊧ ϕ2

and for all j ≤ k − 1, πj ⊧ ϕ1.

As will be seen in the following sections, various modelling
checking techniques are adopted in this work. For complexity
analysis of the adopted technique, readers are referred to [36–39].

2.4 | An overview of statistical model
checking

Probabilistic model checking aims to verify whether a system
that exhibits stochastic behaviour satisfies certain (quantitative)
property [20, 21]. One example of such quantitative property is
expressed in probabilistic computation tree logic (PCTL),
[40, 41], which is captured in the following definition:

Definition 2 The syntax of PCTL is given by:

Φ ≔ True | a | ¬ Φ | Φ ^Φ | Φ ∨ Φ | P∼p½ϕ�
ϕ ≔ XΦ | ΦU≤kΦ | ΦUΦ

where a is an atomic proposition, and the operation ∼ is either
<, ≤, >, or ≥, and p is a real value within unit interval, and k is
a natural number.

The key operator in PCTL is P∼p[ϕ], which means that a
path formula ϕ is true in a state with probability that is
bounded by p (corresponding to the operator ∼). Given a
system S and a path formula ϕ, there are two questions that the
probabilistic model checking is trying to answer: (1) whether
the probability that ϕ is true in S satisfies the condition ∼p,
that is, S⊧P∼p[ϕ]; or (2) what is the exact probability that S
satisfies ϕ, that is, what is the value of P[S⊧ϕ].

Two types of approaches to address the probabilistic model
checking problem have been developed, namely the numerical
and statistical. The numerical approach iteratively computes or
approximates the exact probability of the paths satisfying ϕ by
exploring the whole state space of S. Also, the statistical

approach simulates the system for finite number of times, and
borrows techniques and theories from statistics to provide
statistical inference of the answer to the probabilistic model
checking problem. In this article, we focus on the second
approach, namely the statistical model checking, and show how
it can be used to help and validate the no‐fault specification K
given a diagnoser D.

One assumption of statistical model checking is that, ϕ is a
bounded property, that is, a property that can be verified based
on state trace of finite length. Let Bi be a Bernoulli random
variable with distribution Pr[Bi = 1] = θ and Pr[Bi = 0] = 1 − θ,
and Bi is such that it equals one if the ith simulation of S sat-
isfies ϕ and 0 otherwise. Therefore θ ≈ P[S⊧ϕ]. Algorithms to
perform statistical model checking can be found in [17, 18],
which we will apply to our problem in Section 6.

3 | VALIDATION IN TIME DOMAIN

Here, we investigate the boundary analysis, aiming to generate
a pair of sequences lying on each side of K. Such a pair is
intuitive to understand, and can act as the representative of the
boundary of K, that is, one test case in K while the other in
L − K. Then the users can verify whether the boundary,
illustrated by the generated pair, conforms to their intention or
not. Specifically, we will examine the boundary of K in time
domain in this section, followed by the boundary analysis in
frequency and value domain in the following sections.

We will first define the notion of ‘similar’ test cases, that is,
two test cases that trigger the diagnoser to produce opposite
diagnostic results while the two cases themselves satisfy certain
similarity condition in the time domain. We start by the
following example.

Example 2 Suppose D is intended to report ‘Fail’
whenever ‘2 “a” out of 3 measurements’ occurs, and is
wrongly implemented as a FSM shown in Figure 5. In
this example, uF = aab will set f to True, while
uP = bbaab will not, though it also contains ‘2 “a” out
of 3 measurements’.

Note that in the above example, uF and uP are ‘similar’ and
may help reveal possible design errors. In the following, we
formalise this notion of the time shift similarity, such that two
test cases are said to be similar if they share a large portion of
the subsequence.

Definition 3 Two test cases uP ¼ u10; u
1
1;…; u1K

2TPð f Þ and uF ¼ u2
0; u

2
1;…; u2

L 2 TFð f Þ are said to
be similar if ∃k, l, n, such that u1kþi ¼ u2lþi for all
0 ≤ i ≤ n, that is, two test cases share the same
subsequence.

Remark 1 When n is small, similar test cases according
to Definition 3 may be trivial. In the case where n is
large enough, it potentially reveals the error that a fault
can only be diagnosed at some specific timing, or a
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fault may be hidden if it follows different prefix. To
ensure that n is large enough, we choose n = |uF| in
this section. Then the above definition reduces to ‘uP
and uF are similar if uF is a suffix of uP’.

Algorithm 1 takes a diagnoser in the form of FSM D as
input, and computes a pair of test cases for f 2 ΣF that is
similar according to Definition 3 under the condition n = |
uF|.

Algorithm 1 Generating Test Cases in Time Domain
Boundary

Input: Diagnoser D = (Q, q0, U, Σ, E), f 2 ΣF
Output: Test case pair (uP, uF)
1) Initialise f1 = f2 = False;
2) Construct Di ¼ ðQi;qi0;U

i;Σi;EiÞ for
i 2 {1, 2},
where Qi ¼ Q [ fqi0g;U

i ¼ U [ fe1;e2g, Σi = Σ
[{fi},
Ei is the same as E except the following
changes:
• Add ðqi0;q

i
0; !ei;−Þ and ðq

i
0;q0;ei;−Þ;

• Add (q, q, ej, −) for each q 2 Q where
j = {1, 2} − i (where − denotes set
difference;

• For each e = (q, q0, ge, ae) 2 E such that
(f = True) 2 ae, change ae into ae
[{fi = True}.

3) Construct standard synchronisation
T = D1 � D2;

4) Model check the LTL property ϕ = !(e1 ^ F
(e2 ^ F(!f

1 ^ f2))).

Note that the new initial state qi
0 of D

i, i 2{1, 2}, is added
as a waiting state, so that Di enters D only after the input ei

arrives, and otherwise stays at the waiting state qi
0 (captured by

first bullet of step 1). When the other augmented diagnoser Dj

is entering its own copy of D, Di simply stays in the current
state by performing the newly added transition in the second
bullet in brackets. The new Boolean flag f i is added to track
whether the failure flag f was ever set in the past (captured by
the third bullet of Step 1). Note that the formula ϕ requires
that it never happens that the event e occurs in one copy of D
without triggering the diagnostic flag, but its later occurrence
in another copy of D triggers the diagnostic flag, which aligns
with Definition 3.

Remark 2 Note that there is no need to construct a
symmetric LTL property at Step 4 since the construction
of T is symmetric with respect to indexes 1 and 2.

The next lemma guarantees the correctness of the above
algorithm. Note that all the proofs are given in the
Appendix.

Lemma 1 If T ⊭ ϕ and the model checker returns a
counterexample u = e1u1…ume2um+1…ul, then
uP = u1…umum+1…ul and uF = um+1…ul are
similar according to Definition 3 under the condition
n = |uF|.

4 | VALIDATION IN FREQUENCY
DOMAIN

When the diagnoser is operating in a frequency that is different
from other software components, what is observed by the
diagnoser may be dependent on the operating frequency, even
if the sensor output from the plant and control command from
the controller are the same. Because of this, the diagnostic
results can be different. We define the frequency shift similarity
for two timed test cases if one can be obtained by sampling the
other one and lead to different diagnostic results. We start by
the following example.

Example 3 Consider again the diagnoser in
Example 2. Suppose the controller/plant is operating
with a period of 20 ms, and generates sequence

uF ¼ ð0; aÞ; ð20; bÞ; ð40; bÞ; ð60; bÞ; ð80; aÞ;ð Þ

ð100; aÞ; ð120; bÞð Þ;

and the diagnoser is operating with a period of 25 ms, and
observes.

uP ¼ ðð0; aÞ; ð25; bÞ; ð50; bÞ; ð75; bÞ; ð100; aÞ; ð125; bÞÞ:
As can be checked, uF 2 TF( f ) while uP 2 TP( f ). It can

also be the case that the controller/plant generates

u0P ¼ ð0; aÞ; ð20; bÞ; ð40; bÞ; ð60; aÞ; ð80; bÞ;ð Þ

ð100; bÞ; ð120; aÞð Þ;

F I GURE 5 A diagnoser for ‘2 “a” out of 3 measurements’, where
Σ = {a, b}
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while the diagnoser receives

u0F ¼ ðð0; aÞ; ð25; bÞ; ð50; bÞ; ð75; aÞ; ð100; bÞ; ð125; aÞÞ;

such that u0P 2 TP(f) and u0F 2 TF(f). In both cases, the ‘similar’
pair would bring the operating frequency into designers'
attentions.

The following two definitions formalise the notion of
similarity illustrated in Example 3, the first of which introduces
the definition of sampling.

Definition 4 Given two timed sequences s = (t1, σ1),
(t2, σ2)…(tn, σn) and s0 = (t10, σ01) (t20, σ20)…(tm, σ0m), s0
is a sampled version of s if m ≤ n and for all t0i such
that t0i < tn, there exists k such that tk ≤ ti0 < tk+1 and
σ0i = σk; otherwise for ti0 such that t0i ≥ tn, σ0i = σn.

When the time advance (or equivalently, frequency) for a
timed sequence s is fixed, that is, ti+1 − ti remains constant (e.g.
δ) for alright i, then we write s = (δ|σ1σ2…σn) for simplicity.
In this case ti = iδ. The next definition considers both uP and
uF are timed sequences with constant frequencies.

Definition 5 Two timed test cases uP ¼ ðδPju10; u
1
1;

…; u1KÞ 2 TPð f Þ and uF ¼ ðδF ju2
0; u

2
1;…; u2

LÞ 2 TFð f Þ
are said to be similar if uP is a sampled version of uF, or uF
is a sampled version of uP.

When δP and δF are close enough, the pair of uP and uF
serves as a concrete example to visualise the boundary of K in
the frequency domain, which may assist the designers to
re‐examine the diagnoser's sampling rate. The following algo-
rithm takes a diagnoser in form of FSM D and two positive
integers k1; k2 2N as inputs, and computes for f 2 ΣF a pair of
similar test cases with periods of k1τ and k2τ, respectively,
where τ is the base period which is known and fixed. Without
loss of generality, we assume k1 < k2.

Algorithm 2 Generating Test Cases in the Frequency
Domain Boundary

Input: Diagnoser D = (Q,q0,U,Σ,E), k1;k2 2N

Output: Test case pair (uP, uF)
1) Initialise f1 = f2 = False
2) Construct D1 = (Q1, q0, U, Σ1, E1), where

Σ1 = Σ [{f1}, E1 is obtained as
following:
• For each e = (q, q0, ge, ae) 2 E, such that
(f = True) 2 ae, change ae into
ae [ {f

1 = True}.
• For each e = (q, q0, ge, ae) 2 E, replace
it with k1 transitions, (q, qe,1, ge,
ae), (qe,1, qe,2, ge, −), (qe,2, qe,3, ge,
−), …; ðqe;ki−1;qe;ki;ge;−Þ.

3) Construct D2 = (Q2, q0, U, Σ2, E2), where
Σ2 = Σ [{f2}, E2 is obtained as

following:
• For each e = (q, q0, ge, ae) 2 E, such that
(f = True) 2 ae, change ae into
ae [ {f

2 = True}.
• For each e = (q, q0, ge, ae) 2 E, replace
it with k2 transitions, (q, qe,1, ge,
ae), (qe,1, qe,2, True, −), (qe,2, qe,3,
True, −), …; ðqe;ki−1;qe;ki;True;−Þ.

4) Construct standard synchronisation
T = D1 � D2;

5) Model check the LTL property: ϕ1 = !F(!f
1 ^

f2) and ϕ2 = !F(f1^!f2).

Note that Di is obtained by extending every transition of D
to a sequence of ki copies of original transition, such that only
the first copy carries the action and all the other ki −1 copies
assume inputs but do not change the output or internal vari-
ables. In D1, the replicated transitions accept same inputs as
the original transition, while in D2 the replicated transitions
accept any input. This guarantees that for every trace
s = σ1σ2… that is accepted by D, there exist an accepted
sequence s1 = σ1σ1…σ2σ2… of D1 and an accepted sequence
s2 = σ1Σ…σ2Σ… of D2. The next lemma guarantees the
correctness of the above algorithm.

Lemma 2 If T ⊭ ϕi and the model checker returns a
counterexample u = u1…um violating ϕi, then it can
be checked that uP ¼ ðkiτ|fum*kiþ1;m¼ 0; 1;… gÞ
2TPð f Þ and uF ¼ ðk2τ|fum*kjþ1;m¼ 0; 1;… gÞ
2TFð f Þ satisfy the similarity definition above, where
j = {1, 2} − i.

5 | VALIDATION IN VALUE DOMAIN

This section focuses on the boundary of K in the value
domain. We start by the following example.

Example 4 Suppose whenever the command in the
form of x > ρ is issued for three consecutive times, the
plant output y is expected to be lower than a certain
value τ, that is, it always holds that x > ρ ^ X
(x > ρ) ^ XX(x > ρ) ⇒ y < τ ∨ X(y < τ) ∨ XX(y < τ).
Assume both ρ and τ are positive for simplicity. The
correct diagnoser D is shown in Figure 6. Then
uP = ((x = ρ + δ, y = 2τ), (x = ρ, y = 2τ), (x = ρ + δ,
y = 2τ)) will not set f to True, while uF = ((x = ρ + δ,
y = 2τ), (x = ρ + δ, y = 2τ + δ), (x = ρ + δ, y = 2τ))
with δ > 0 will. This concrete example can help the
designer review whether the value of ρ is desired.

Furthermore, suppose that the diagnoser is erroneously
designed as in Figure 7. For the edge from state ‘1’ to state ‘2’,
instead of ρ, the lower bound for x is set to be −∞. Then
uP = ((x = 2ρ, y = 2τ), (x = ρ − δ, y = τ − δ), (x = 2ρ, y = 2τ))
will not set f to True, while uF = ((x = 2ρ, y = 2τ), (x = ρ,
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y = τ), (x = 2ρ, y = 2τ)) may possibly set it, where δ is positive.
This concrete example can, again, help the designer review the
software for correctness.

The following definition formalises the notion of similarity
illustrated in Example 4, by stating that two test cases are said
to be similar if they trigger different diagnostic results, while
their elements are bounded and deviated from each other.

Definition 6 Two test cases uP ¼ u10; u
1
1;…; u1

M
2TP ðf Þ and uF ¼ u2

0; u
2
1;…; u2

M 2 TFð f Þ are said to be
similar if there exists 0 ≤ i0 ≤ i1 ≤ ⋯ ≤ iL ≤ K such that
u1
il ¼ u2

il þ δ for all 0 ≤ l ≤ L and otherwise u1i ¼ u2i ;

The following algorithm takes a diagnoser in the form of
FSM D and a small number δ as inputs, computes a pair of
similar test cases for f 2 ΣF.

Algorithm 3 Generating Test Cases in the Value
Domain Boundary

Input: Diagnoser D = (Q, q0, U, Σ, E), δ > 0
Output: Test case pair (uP, uF)
1) Initialise f1 = f2 = False;
2) Construct Di = (Q, q0, U [{n}, Σi, Ei) for

i 2 {1, 2}, where Σi = Σ [ {fi}; E1 is same as
E except the following changes:
• For each e = (q, q0, ge, ae) 2 E, such that
(f = True) 2 ae, change ae into
ae [ {f

1 = True};
• For each e = (q, q0, ge, ae) 2 E, change
ge(u) into ge(u) ^ (n = = 0);

• Duplicate every e = (q, q0, ge(u),
ae) 2 E, with ge(u) changed into
ge(u + δ) ^ (n = = 1);
And E2 is same as E except the following
changes:

• For each e = (q, q0, ge, ae) 2 E, such that
(f = True) 2 ae, change ae into
ae [ {f

2 = True};
3) Construct standard synchronisation

T = D1 � D2;
4) Model check the LTL property: ϕ = !F(!

f1 ^ f2)

The next lemma guarantees the correctness of the above
algorithm.

Lemma 3 If T ⊭ ϕ and the model checker returns a
counterexample u = (n1, u1)…(nm, um), then
uP = u1 + n1δ, …, um + nmδ and uF = u1…um satisfy
the similarity definition above.

Remark 3 Note that both Algorithms 2 and 3 consider
as input the distance of similar test cases, namely k2/k1
and δ, and generate the pair of similar test cases that
satisfies the given distance. In the future, efforts would
be made to find the minimal distance for which a similar
test case pair exists, that is, the minimal k2/k1 or the
minimal perturbation δ. Such minimal distance would
more clearly depict the boundary of K so as to support
the designers to validate the diagnostic software.

6 | STATISTICAL ANALYSIS OF
DIAGNOSTIC FLAGS BY STATISTICAL
MODEL CHECKING

In most cases, the diagnoser is monitoring against multiple
faults, that is, |ΣF| > 1. In this case, for each f 2 ΣF, there is
one specification Kf and K ¼ ∩f 2ΣFKf . Furthermore, after the
release of the software, more features (faults being diagnosed)
can be added, that is, |Σ| increases, and there is a chance that
the newly added feature is already included, or there is a similar
feature, in the existing version. In other words, there exist f,
f 0 2 ΣF such that Kf and Kf0 have a large overlap. Such overlap
may be due to redundancy in development and may be reduced
to minimise the chance of bugs and to lower maintenance cost.
However, on the other hand, the multiple diagnostic flags may
be designed hierarchically so that one high‐level diagnostic flag
f depends on one or more low‐level diagnostic flags f 0. In this
case the overlap between Kf and Kf 0 are intentional that should
not be considered as an error.

In either case, we aim to bring out the statistical correlation
between two diagnostic flags, and pass such statistical corre-
lation to designers for evaluation. For this purpose, we define
the following notion of similarity for a pair of diagnostic flags
(as opposed to pairs of test cases as in the previous sections).
Two flags are said to be highly correlated, if one flag being set

F I GURE 6 A diagnoser for x > ρ ^ X(x > ρ) ^ XX
(x > ρ) ⇒ y < τ ∨ X(y < τ) ∨ XX(y < τ)

F I GURE 7 A erroneous diagnoser for x > ρ ^ X(x > ρ) ^ XX
(x > ρ) ⇒ y < τ ∨ X(y < τ) ∨ XX(y < τ)
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implies the other was or will be set in the bounded timing
window with high probability.

Definition 7 Let f1, f2 2 ΣF be two flags, and p 2 0; 1
be a pre‐defined threshold and n 2N be a pre‐defined
delay bound. Then f1 and f2 are said to be highly
correlated if the following holds G( fi ⇒ Pr≥p[X<nfj])
where i 2 {1, 2} and j = {1, 2} − i, that is, G
( f1 ⇒ Pr≥p[X<nf2] ∨ f2 ⇒ Pr≥p[X<nf1])1. In other
words, if f1 (resp., f2) is True, then with probability
higher than p that f2 (resp., f1) is True within n steps.

Example 5 Suppose D is intended to report fail f1
whenever ‘2 “a” out of 3 measurements’ occurs, and also
reports fail f2 whenever ‘two consecutive “a” measure-
ments’ occurs. Then whenever f2 is reported, f1 is also
reported, that is, f2 ⇒ Pr≥p[ f2] holds for any 0 < p < 1.
Therefore, f1 and f2 are highly correlated, and attention
should be paid to examine whether such correlation is
intended or due to unnecessary redundancy.

Note that the definition above is symmetric with respect to
indexes 1 and 2. For simplicity, in the following discussion we
only consider the following asymmetric version. Let
ϕ ≡ X<nf2, and the property to be model checked is given as
Φ ≡ f1 ⇒ Pr≥p[ϕ]. The idea is to simulate D with uniformly
distributed random inputs, and for the ith simulation, define
the random variable Bi such that Bi = 1 if f1 ^ ϕ holds, and
Bi = 0 if f1 ^¬ϕ holds. Otherwise Bi is undefined. Let θ ≔Pr
[Bi = 1|f1] (hereafter the conditioning f1 stands for f1 = True)
and then Pr[Bi = 0|f1] = 1 − θ. Then two flags f1 and f2 are
highly correlated, if and only if θ ≥ p. We then present the
algorithm based on hypothesis testing, which works under the
assumption that |θ − p| cannot be arbitrarily small. Then the
checking of the correlation of f1 and f2 reduces to the testing of
hypothesis H0 : θ ≥ p + δ against the alternative hypothesis
H1 : θ ≤ p − δ based on observations of Bi, that is, whether a
finite execution of D with f1 = True satisfies ϕ. Note that δ is a
small positive number, and we further define p0 ≔p + δ and
p1 ≔p − δ.

The following algorithm tests hypothesis H0 against H1

based on the simulation of D, with errors upper‐bounded by α
and β. The algorithm is based on Wald's sequential probability
ratio test (SPRT) [42, 43].

Algorithm 4 Checking Correlation of Diagnostic
Flags

Input: Diagnoser D, diagnostic flags f1 and
f2, integer m > 1, errors bounds 0 < α < 1 and
0 < β < 1, small positive number δ
Output: TRUE or FALSE on correlation of f1 and

f2
1) Set p0 = p þ δ and p1 = p − δ;
2) Simulate D with uniformly distributed

random inputs, after m simulations,
calculate the quantity

f m ¼ ∏
i¼1;f 1¼True

Pr½Bi ¼ bi | f 1; θ ¼ p1�
Pr½Bi ¼ bi | f 1; θ ¼ p0�

¼
pdm
1 ð1 � p1Þ

sm� dm

pdm
0 ð1 � p0Þ

sm� dm
; ð1Þ

where dm ¼
Pm

i¼1bi and sm ¼
Pm

i¼1If0;1gðbiÞ,
that is sm is the number of simulations
where f1 is true and dm is the number of
simulations where both f1 and ϕ are true.
3) Hypothesis is accepted and f1, f2 are

highly correlated if fm ≤ β/(1 − α), and
hypothesis H1 is accepted and f1, f2 are
not highly correlated if fm ≥ (1 − β)/α;
Otherwise start another simulation D,
and go to step 2.

Lemma 4 The above algorithm is guaranteed to
terminate. It decides f1, f2 to be highly correlated with
probability at most α when they are not highly corre‐
lated, while it decides f1, f2 to be not highly correlated
with probability at most β when they are highly
correlated.

Since, the algorithm is a variant of [17], the correctness
proof of above lemma is omitted.

7 | CONCLUSIONS

The fact that the validation is a dynamic process brings up a lot
of challenges and areas to explore. Model‐based and data‐
driven approaches complement each other and can provide a
powerful tool for the diagnostic software validation. The
methodologies described in this article pertain to diagnostic
software validation. Boundary analysis and statistical tech-
niques can provide useful insights about the diagnoser, and
generate concrete samples to depict the key properties of the
diagnoser under validation. The model‐based approach can be
applied to both requirement validation and implementation
validation. Furthermore, the adoption of data‐driven tech-
niques (i.e. statistical model checking) allows the validation to
be performed not only during software development but also
after its release (i.e. post‐market). Future work includes
complexity/throughput analysis of the above proposed meth-
odologies and non‐uniform sampling to avoid simulations for
which no diagnostic flag is set to TRUE, thus reducing the
computational burden.1

The operator X<n denotes ‘within the next n steps’.
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NOMENCLATURE
AFM Active fuel management
ECU Electronic controller unit
OBD On‐board diagnosis
FSM Finite state machine
D FSM representation of diagnoser
Q State space of D
U Input space of D
Σ Input and output variable of D
Σf Diagnostic flags
E Edges of D
IC Control command
IP Plant output
L All systems behaviour
K No‐fault specification
Kf No‐fault specification for f
�K True no‐fault specification
LTL Linear‐time temporal logic
Φ LTL formula
⊧ Satisfy
⊭ Not satisfy
Π State‐trace
SPRT Sequential probability ratio test
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APPENDIX

Proof to Lemma 1 According to the construction of Di, i 2 {1,
2} and T = D1 � D2, Di enters its D part only after the input ei
arrives, also the input ei does not move D j where j≠i. There-
fore, u would takeD1 to the same state that uP would takeD to;
meanwhile, u would take D2 to the same state that uF would
takeD to. Moreover, f 1 = False ^ f 2 = True is true at a state of
T upon u, and this concludes that uP 2 TP( f ) and uF 2 TF( f ).
It is then trivial to see that uF is a suffix of uP. □

Proof to Lemma 2 Consider the case that T ⊭ ϕ1 and
the model checker returns a counterexample u = u1…um
violating ϕ1. With an abuse of notation, let u = (τ|u1…um)
be the timed sequence. It is trivial to show that uP ¼ ðk1τ|
u1; uk1þ1; u2k1þ1;… Þ 2 TPð f Þ and uF ¼ ðk2τ|u1; uk2þ1; u2k2
þ1;… Þ 2 TFð f Þ. Furthermore, according to the construction
of D1, we know that u has the form

u¼ τju1;…; u1
|fflfflfflfflffl{zfflfflfflfflffl}

k1

; uk1þ1;…; uk1þ1
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

k1

;…;

0

B
B
@

u2k1þ1;…; u2k1þ1
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

k1

;…

1

C
C
A

Therefore, for each m = 0, 1, …, let m0 = ⌞mk2/k1⌟. Then
m0k1τ ≤ mk2τ < (m0 + 1)k2τ, and umk2þ1¼ um0k1þ1. Hence uF
is a sampled version of uP.

Similarly, one can prove the case that T ⊭ ϕ2. □

Proof to Lemma 3 Since, the construction of D2 does not
change the transition structure of D, nor the guard condi-
tion on each edge, uF = u will take D to the same state as
what u will take D2 to. According to the construct of D1,
whenever the sequence goes through the duplicated transi-
tion with guard condition shifted by δ (i.e. ge(u + δ)), n will
be set to 1, and otherwise n is set to 0. Therefore,
uP = u1 + n1δ, …, um + nmδ will take D to the same state
as what u will take D1 to. Furthermore, f 1 = False ^
f 2 = True is held at a state of T upon u. This concludes
the proof. □
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