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Abstract: Recent work has shown that the resonate-and-fire neuronal model is both
computationally efficient and suitable for large network simulations. In this paper, we examine
the estimation problem of a resonate-and-fire neuronal model with stochastic firing threshold.
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actual data, concluding the efficiency and accuracy of the proposed approach.
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1 Introduction

A fundamental issue in computational neuroscience
is to characterise the relationship between the neural
output voltage and the input current to the cell (Paninski
et al., 2004). During the last decade, spiking neuron
model has been extensively researched. While detailed
Hodgkin-Huxley type neuron models can accurately
reproduce the behaviour of most neurons, it requires the
tuning of hundreds of parameters to fit experimental data
and hence is computationally inefficient. Furthermore, such
detailed dynamics restrict neuronal network simulations to
only a handful of neurons at a time (Izhikevich et al., 2003).
For computational efficiency, a simple integrate-and-fire
(IF) model (Burkitt, 2006) is widely used for large network
simulations. However, since the IF model only has one
variable, it cannot produce many types of firing patterns
[e.g., bursting (Izhikevich, 2001)]. In Izhikevich et al.
(2003), a quadratic model with an additional variable is
employed to capture neuronal adaptation by accounting
for the activation of K+ ionic currents and inactivation of
Na+ ionic currents. The ability of this type of neuronal
model with a recovery variable to qualitatively reproduce
major types of firing pattern is shown in Izhikevich (2001)
and Naud et al. (2008). Furthermore, the computational
efficiency of such a spiking model is demonstrated in
Izhikevich (2007).

In order to estimate parameters for a particular
model from experimentally recorded voltage traces, many
parameter estimation methods have been introduced.
In Brette and Gerstner (2005), an adaptive exponential
integrate-and-fire neuron model is manually tuned to
fit a detailed Hodgkin-Huxley-based model. The model
in Brette and Gerstner (2005) shows good results, but
it is labor intensive; furthermore, its trial-and-error
approach depends mainly on the researcher’s experience.
Therefore, automated parameter search methods become
necessary because it is unrealistic for one to process all
the data comparisons by manual procedures (LeMasson
and Maex, 2001; Vanier and Bower, 1999). In Prinz
et al. (2003), a database of single-compartment neuron
model is constructed by exploring the entire parameter

space, which is only practical when said space has low
dimensions. In Weaver and Wearne (2006), a compartment
model is enhanced by using simulated annealing for
parameter estimation. In Lansky et al. (2006), Paninski
et al. (2005) and Zhang and Feng (2002), various estimation
formulations are presented for deterministic and stochastic
IF models. In Zhang et al. (2009), an expression for
the probability distribution of the interspike interval
of a leaky integrate-and-fire (LIF) model is derived,
and maximum likelihood estimates (MLE) of the input
information are developed for an LIF neuron from a set
of recorded spike trains. In Jabalameli and Behal (2015),
the identification problem is studied for a multi-timescale
adaptive threshold neuronal model introduced in Kobayashi
et al. (2009). In our previous work (Zhi et al., 2012), a
framework for a linear-in-the-parameters representation of
the aforementioned quadratic model of Izhikevich et al.
(2003) is developed, which allows the identification of
system parameters via persistent excitation and a weighted
least squares estimation approach.

An assumption made in the model of Izhikevich
et al. (2003) prevents the approach in Zhi et al. (2012)
from being applicable to arbitrary experimental data.
While the quadratic model is known to be able to
reproduce biologically meaningful firing patterns, however,
it can only reproduce these patterns qualitatively, not
quantitatively – specifically, the model cannot quantitatively
reproduce the upstroke/downstroke of the spike unless
the parameters are assumed to be voltage-dependent
(Izhikevich, 2007). Since we are interested only in
reproducing a spiking pattern and not the shape of the
spike itself, the spike shape-related quadratic term is
dropped so that the resulting ‘resonate-and-fire’ model only
described the sub-threshold dynamics of the system. This
allows to narrow down the interest zone to the now-linear
sub-threshold region, thus making the upstroke/downstroke
irrelevant to the identification of the system. Furthermore,
the resulting linearity of the sub-threshold model allows
for it to be treated analytically, which is useful for
deriving closed form solutions and computing the update
law. However, an additional challenge introduced is the
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requirement to separate estimation of the threshold and the
post-spike reset parameters.

In this paper, the unknown threshold of the
resonate-and-fire model is considered to be a stochastic
variable. By considering the threshold to be the
only stochastic component, the membrane potential at
sub-threshold levels is thus deterministic and solvable,
from which an estimate of the subthreshold parameters
can be made. Under the assumption that both the input
to the cell and the resulting membrane potential trace are
available to the identification algorithm, the parameters for
sub-threshold dynamics are estimated using a nonlinear
least squares approach while the parameters associated
with the threshold distribution as well as the post-spike
reset of the state variables are estimated using simulated
annealing to maximise the likelihood of the observed
spiking pattern. Simulation and experimental results using
in vitro motoneuron data demonstrate the efficiency and
accuracy of the proposed estimation approach. To the
best of our knowledge, this is the first paper that deals
with parameter estimation in resonate-and-fire model
with both sub-threshold measurements and firing trains,
distinguishing itself from literature where only spiking
location are considered. The methodology proposed in
this paper provides a systematic approach for data-driven
parameter estimation in the aforementioned model, which
achieving excellent numerical results as demonstrated by
experimental data. Note that data-driven identification is a
very important topic in literature, with wide application in
power systems, fault prediction, etc. (Shamsudin and Chen,
2012; Guo et al., 2015; Du et al., 2015; Mahmoud and
Qureshi, 2012; Chen and Kumar, 2014, 2015a, 2015b).

A preliminary version of this paper has been presented
as Chen et al. (2011). This paper extends (Chen et al.,
2011) by providing detailed derivation and proof, as well
as applying the proposed methodology in in-vitro data.
The remainder of this paper is organised as follows. In
Section 2, a resonate-and-fire neuron model with stochastic
threshold is presented. Section 3 provides technical details
of the the estimation process are provided. In Section 4, the
methodology used for the acquisition of the experimental
data is described while the results obtained from both
simulated and experimental data follow in Section 5 along
with a discussion of the results. Conclusions are drawn in
Section 6.

2 System model

In this paper, we study a resonate-and-fire neuronal spiking
model, which can be described by the state equations

dv

dt
= k1v + k2 − k3u+ k3i (1)

du

dt
= a(bu− v) (2)

where v denotes the membrane potential and is the only
system output, u is an immeasurable membrane recovery

state variable which provides a negative feedback to v,
while i denotes injected current and/or synaptic current.
The parameters k3 and a denote the time scale of the two
state variables, the parameter b is the level of sub-threshold
adaptation, while the parameters k1 and k2 are linked to the
sub-threshold behaviour of the neuron. When the membrane
potential v hits a threshold, denoted as Vt, the neuron is said
to fire a spike, and the state variables are reset according to

if v = Vt, then

{
v → c

u → u+ d
(3)

where Vt is the threshold, c denotes the post-spike reset
value of the membrane potential, while d denotes the
amount of spike adaptation of the recovery variable.

Remark 1: Although it is formulated differently here, the
model presented here is the same as the one discussed
in Young (1937) or FitzHugh (1966). Note that (1) and
(2) do not model the post threshold dynamics of the cell;
these equations only describe the sub-threshold behaviour
and the spikes are modelled as spiking train using (3).
Unlike in Jolivet et al. (2004), where a triangular pulse is
used to mimic the shape of the spike, we ignore the entire
spiking behaviour, using only a straight line to indicate the
occurrence of a spike.

Remark 2: Note that equation (3) introduces discontinuity
into the system modelled as (1), (2) and (3). Such
discontinuity makes traditional identification techniques
(e.g., least squares) not applicable to the identify parameters
in all system equations (1), (2) and (3). Therefore, in this
paper, we proposed a two-stage approach that separately
identifies parameters in (1) to (2) and (3). See next section
for more details.

Note that the model above only describes the sub-threshold
behaviour, and a voltage threshold needs to be defined to
indicate the initiation of a spike. In Izhikevich (2001), a
fixed threshold is used. However, empirical data suggests
that the voltage threshold for a spike depends not only
on the instantaneous value of the voltage, but also on the
rate of voltage change. The variation in the spike threshold
could also be a function of the instantaneous firing rate
(Azouz and Gray, 2000). Using an ion-channel-based
detailed neuronal model, the probability of firing as a
function of voltage was used to identify a specific value
that could be considered as a fixed threshold, but no
such value could be clearly identified. Figure 1 shows
the probability of firing as a function of voltage, showing
no obvious ‘jump point’ in firing probability that can be
defined as a ‘threshold’. The data used in Figure 1 was
generated from a detailed ion-channel-based spiking model
of McCormick et al. (1993) with parameters from Destexhe
et al. (1998). Therefore, Figure 1 suggests that the threshold
to have a stochastic distribution rather than a deterministic
value. Stochastic spike thresholds have been previously
proposed and proved in Bershadskii et al. (2003) and White
et al. (1998). Others have used a stochastic term in the
membrane dynamics to represent signal noise, e.g., see
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Lansky et al. (2006). In fact this is computationally identical
to subtracting the noise from the potential and adding it to
the threshold (Izhikevich et al., 2003). In this paper, the
threshold is assumed to be a random variable with i.i.d.
Gaussian distribution, i.e., Vt ∼ N(m,σ).

Figure 1 Firing probability v.s. membrane voltage
(see online version for colours)

Notes: For each voltage value, if there are N points at this value
in the database and n of them directly followed by a
spike, the the firing probability is defined as n/N .

Source: Data was generated from a detailed
ion-channel-based spiking model of
McCormick et al. (1993) with parameters
from Destexhe et al. (1998)

3 The estimation problem

Our goal is to estimate the following set of unknown
parameters associated with the resonate-and-fire neuron
model:

θ , (k1, k2, k3, a, b, c, d,m, σ) = (θl, θt)

where the partitions θl and θt will be explicitly defined
below. It is assumed that the input excitation and membrane
potential recordings are available for measurement. Given
the model of (1) to (3), the system parameters to be
estimated are divided into two sets; specifically, a set
θl , (k1, k2, k3, a, b), which is associated with the linear
dynamics of (1) and (2), and another set θt , (c, d,m, σ),
which is linked to the after-spike resetting and threshold
distribution parameters. In this section, we propose a two
stage approach to estimate both θl and θt. In the first
stage, the measurements of sub-threshold voltage are used
to estimate θl, while in the second stage, the estimated
θl together with the measured interspike intervals (ISIs,
computed from measured voltage recording) are utilised to
identify θt.

3.1 Stage I: Sub-threshold estimation

The linear system represented by (1) and (2) can be
analytically treated and solved, which is particularly useful

when using gradient-based or least squares-based estimation
techniques, thanks to the availability of the derivative of
the objective function with respect to the parameters. Based
on (1) and (2), the solution for the sub-threshold membrane
potential can be expressed as

v (t) = [k2 − k3u(t0)]f1(θl, t) + k3(f2 (θl, t) ∗ i)
+ v(t0)f2(θl, t) + k2af3(θl, t) (4)

where where u (t0) and v (t0) are initial values for u
and v, the symbol ∗ denotes the convolution operator on
two functions, while the functions f1 (θl, t) , f2 (θl, t), and
f3 (θl, t) in the solution are explicitly given in Appendix A.
Because of the dependence of v (t) on u (t0) and v (t0) as
can be seen in (4), v (t) depends not only on the parameter
set θl but also on the reset values c and d. However, at this
stage, the effect of c and d can be set aside by utilising
a spike-free continuous subsequence of the measured data
lying beyond an initial transient period. Functionally, this
is equivalent to a model with initial conditions u(t0) =
v (t0) = 0 in (4), resulting in voltage dynamics that are
independent of θt in the sub-threshold region, depending
only on θl such that v (t) can be compactly expressed as
follows

v = f(t, i, θl).

Given input i, f is a nonlinear function on the parameter set
θl. The estimate for θl is made via a nonlinear least squares
estimation-based technique (Kelley, 1999). Nonlinear least
squares is a form of least squares used to fit observations to
a model that is nonlinear in the parameters. Given a discrete
observed data sequence of length N , the objective function
to be minimised is

S =
N∑
i=1

(vi − v̂i)
2

where v̂i , f(i, t; θ̂l) denotes the estimated voltage at time
i and vi is the measured voltage at time i. The parameter
update law is given by

θ̂t+1
l = θ̂tl +∆θ̂l (5)

∆θ̂l = (J ′J)−1J ′∆v (6)

where ∆v = v − v̂ is a n× 1 vector defining the error
between the measured and the estimated voltage while J is
the N ×M Jacobian matrix, with elements given by

Jik =
∂v̂i

∂θ̂lk
. (7)

Here, M = 5, corresponds to the number of parameters in
the set θl. Furthermore, θ̂lk denotes the estimate of the kth

element of the parameter vector θl. Note that the Jacobian
matrix J is a function of the estimated parameters and
updates from one iteration to the next. The convergence of
the parameter estimates to their actual values is ensured by
utilising a persistently exciting input current injection as we
have demonstrated in our earlier work in Zhi et al. (2012).
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3.2 Stage II: Estimation of reset and threshold
distribution parameters

During this stage, the sub-threshold parameters θ̂l estimated
from the previous step are utilised in the reconstruction of
the membrane potential – specifically, we can write

v̂ = g
(
t, I, θ̂l, c, d

)
. (8)

Given i and θ̂l, it can be seen from (4) that v̂ is a
linear function of the unknown reset parameters c and
d. We remark that in Stage II, the reset parameters (i.e.,
the initial conditions) cannot be ignored because these
parameters strongly determine the rate of occurrence of
spikes. The insight here is that the reconstructed membrane
potential is allowed to evolve according to (8) and the
unknown parameters c, d,m, and σ are adjusted so as
to maximise the likelihood of occurrence of the observed
firing pattern. During this stage, it is assumed that the
only output measured from the cells is the location of
the spikes (i.e., spiking time). Since the spikes from real
neurons have finite width, the spike time tj is defined to
be the time of the peak of each spike. During the interval
t ∈ (tj−1, tj), the cell is not firing. All data points during
the intervals

∪
j

(tj−1, tj) can be denoted as ti, since the

data being examined has been discretised. The likelihood
function for the parameter set θt can therefore be defined as
the probability that the stochastic threshold Vt is below the
reconstructed membrane potential v̂ at spike times tj and
above v̂ at non-spike times ti. Mathematically, the profile
likelihood function can be expressed as follows

L(θt) = log
(∏

i

∫ ∞

v̂i

G(Vt;m,σ)dVt

×
∏
j

∫ v̂j

−∞
G(Vt;m,σ)dVt

)
=
∑
i

log
∫ ∞

v̂i

G(Vt;m,σ)dVt

+
∑
j

log
∫ v̂j

−∞
G(Vt;m,σ)dVt (9)

where G(Vt;m,σ) is the Gaussian probability density
function of the threshold Vt with mean m and variance
σ2. L(θt) could be referred to as ‘log-likelihood’ as a
more appropriate term, but for simplicity, it is referred to
simply as ‘likelihood’. Based on the likelihood function (9),
the maximum likelihood estimation (MLE) parameters are
given by

θ̂t = argmax
θt

L(θt). (10)

Before choosing a technique to solve (10), it is prudent to
first study the uniqueness of the maximum of (9). Since the
likelihood function is the log multiplication of a series of
basic functions, a sufficient condition for the log concavity
of the overall function of (9) is for each of the underlying

functions to be log concave. If this condition is met, then
the likelihood function has a unique maximum. In Appendix
B, we show that this sufficient condition is not satisfied.
Therefore, being unable to rule out the possibility that
the likelihood function has more than one maximum, it is
imprudent to utilise a gradient-based method, which is very
likely to get stuck at a local maximum. Instead, in the next
section, we explore the simulated annealing method.

3.3 Simulated annealing

Unlike gradient-based law or least squares which might
get stuck at a local maximum, simulated annealing (SA)
is designed for global optimisation (Kirkpatrick et al.,
1983; Corana et al., 1987). Thus, we use the simulated
annealing technique to find the maximum of the previously
formulated likelihood function of (9). This particular
technique has its origin in the metallurgic industry where
an annealing technique that involves the controlled heating
and cooling of a material is used to minimise the energy
of its crystals. After selecting an initial point, the algorithm
randomly selects a point s′ in the neighborhood of the
old point s at each iteration. The newly selected point is
considered or rejected as being a ‘better’ point depending
on the probability function P

P =

{
1 if L(s′) > L(s)

e−1/T otherwise
(11)

where T is denoted as the ‘temperature’. The possibility to
accept the worse point provides the algorithm the capability
of getting away from the local maximum. The SA algorithm
is allowed to move randomly in the entire parameter space
by initialising the ‘temperature’ with a large value T0. Then
the parameter gradually decreases. The ‘cooling’ algorithm
for the temperature T used here is given by

T = T0(1− n/N)2

where n is the current iteration, and N is the user-specified
maximum number of iterations, after which the algorithm
will stop. A detailed description of the algorithm is as
follows. Note that the initial point so and initial temperature
To are randomly selected, while the maximum number of
iterations N is user-specified.

Setp 0 Initialise the algorithm by selecting a starting
point so, a starting temperature To, and a
maximum number of iterations N . Set a boundary
for each direction if needed. Then compute the
likelihood for the initial point.

Setp 1 A new point s′ in the neighborhood of s is
generated. Projection applies if the new point
exceeds the preset boundary.

Setp 2 The likelihood of the new point s′ is computed.
The probability function (11) is called, and s is
replaced with s′ if P is larger than a randomly
chosen number between 0 and 1. Otherwise, s
remains untouched.
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Setp 3 The current iteration n is increased and the
temperature T is updated.

Setp 4 If n < N , go back to Step 2, otherwise stop the
search.

4 Data acquisition and processing methods

We applied the aforementioned two-stage estimation
strategy to two types of data, namely, simulated data and
in-vitro recording from embryonic rat motoneurons. For
generating simulated data, an ion-channel-based spiking
model of McCormick et al. (1993) with parameters from
Destexhe et al. (1998) was used in the NEURON (Hines
and Carnevale, 1997) simulation environment1. Please refer
to McCormick et al. (1993), Destexhe et al. (1998), Hines
and Carnevale (1997) and Hodgkin and Huxley (1952) for
details of this model. Using the current clamp mode of the
simulation, we injected pre-generated white noise current
to stimulate the cell and collected membrane potential data
sampled at 50 khz.

For the experimental part of the research, primary
cultures of embryonic rat motoneurons were prepared
according to NIH guidelines and in agreement with the
Institutional Animal Care and Use Committee (IACUC)
approved protocol. Rat spinal motoneurons were dissected
from day 14 (E14) embryos as published earlier (Das et al.,
2003). Cells were dissociated with trypsin (Invitrogen,
0.05%) and centrifuged for 15 min at 500 g. Motoneurons
were purified with immunopanning using antibodies
(antibody 192, 1:2 dilution, ICN Biomedicals, Akron, OH)
recognising the low affinity NGF receptor expressed only
by ventral motoneurons at this age. Purified motoneurons
were plated on 22 × 22 mm2 ornithine/laminincoated
coverslips at a density of 200 cells/mm2 in Neurobasal
(Gibco-BRL) medium supplemented with B27 (2% v/v;
Invitrogen), L-gluramine (0.5 mM), 2-mercaptoethanol
(25 µM), glial cell line-derived neurotrophic factor (1 ng/ml
CNTF; cell sciences) L-glutamate (25 µM) was added to
the culture medium during the first five days of growth.

Conventional whole-cell path clamp recordings were
performed on the culture cells between day 7 and 14 in
culture. The extracellular solution was Neurobasal culture
medium, the pH was adjusted to 7.3 with HEPES. Patch
pipets were prepared from borosilicate glass (BF150-86-10;
Sutter, Novato, CA) with a Sutter P97 pipet puller and
filled with intracellular solution (in mM: K-gluconate
140, EGTA 1, MgC12 2, Na2ATP 2, phophocreatine 5,
phophocreatine kinase 2.4 mg, Hepes 10; pH:7.2). The
resistance of the electrodes was 6–8 MΩ. Current clamp
experiments were performed with the Multiclamp 700A
amplifier (Axon, Union City, CA). Signals were digitised
at 10 kHz with an Axon Digidata 1322A interface. Data
recording and initial analysis were performed with pClamp
10 software (Axon). White noise current was injected in
current clamp mode from stimulus files at resting membrane
potential. The amplitude of the current signal was
adjusted to evoke sub-and-suprathreshold (action potential)
responses from the cells. Due to measurement error, there

can be a noise contained in the experimental data. To
account this, a low-pass filter was applied to remove the
high frequency component, before feeding the data into
the proposed estimation algorithms. In particular, an 8th
order Butterworth low-pass filter with a cut-off frequency
of 600 Hz was utilised. The filtered data was then processed
to determine the location of spikes in the spike train. A
sufficiently long piece of subthreshold data (i.e., a data
subsequence without any spikes) was also selected for the
first stage (i.e., sub-threshold estimation) of the proposed
two-stage estimation strategy.

5 Results and discussion

In this section, target data refers to measurements that are
generated either by Hodgkin-Huxley model or experimental
data, while predicted data refers to that generated by the
model (1), (2) and (3) with estimated parameters.

5.1 Detailed Hodgkin-Huxley model (simulation)

In this section, the results of the proposed method
are presented for the simulated data generated from
Hodgkin-Huxley model. From the subsequence of data
streams shown in Figure 2(a), one can see that the
sub-threshold traces of the target and predicted data are
very close, showing that dynamics (1) and (2) yield good
approximations in the sub-threshold region. Figure 2(b)
shows that the predicted spike trains closely follow the
target with the same adaptation rate. The proposed method
was evaluated ten times. It was seen that the estimated
parameters led to 16.3 spikes in average, while the target
train had 15 spikes under the same input stimulus, thus,
there was an average overprediction of 1.3 spikes. Figure 3
shows the evaluation results under a step input current
injection. It can be seen that the prediction closely follows
the first three spikes in the target train but misses the fourth
one, although the prediction still successfully replicates the
spike adaptation pattern encoded in the target train.

5.2 Experimental results

In this section, the results of the proposed method are
presented for the experimental data obtained from in-vitro
recordings from embryonic rat motoneurons. As in the case
of the detailed Hodgkin-Huxley model, the results presented
here for evaluation use previously unseen data, i.e., the
data stream utilised for model evaluation is different from
that utilised for generating the estimated model. Figure 4(a)
shows the sub-threshold approximation using the estimated
parameters from which it is clear to see that the linear
model dynamics of (1) and (2) are a good approximation in
the sub-threshold regime. Figure 4(b) shows a subsequence
of the target and predicted spike trains, where the prediction
misses one spike but locates the remaining spikes correctly.
The statistics after ten evaluations of the experimental data
revealed that 16 spikes were predicted while the target data
only had 14, i.e., the mean error was two spikes.
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Figure 2 Estimation results using simulated reference data, (a) comparison of sub-threshold dynamics, target data is generated
under the same type of input as the one used in the reference data generation (b) comparison of spike train, target data is
generated under the same type of input as the one used in the reference data generation (see online version for colours)

(a) (b)

Figure 3 Estimation results using simulated reference data:
prediction and target data under DC current
(see online version for colours)

5.3 Discussion

In our formulation, we assume that the sub-threshold trace
could be defined as a ‘linear zone’ where the dynamics (1)
and (2) are a good approximation. This sub-threshold region
is upperbounded by the variable threshold. Results shown
in the last section indicate the validity of this assumption,
since the error between the prediction and the target in
Figures 2 and 4 is below 5%. Since the linear model
is capable of replicating only the sub-threshold dynamics,
the reference voltage trace used for the nonlinear least
squares estimation should not contain any supra-threshold
activities. This is ensured by choosing a sufficiently long
data subsequence between spikes, with starting and ending
points far away from the nearest spike. By sufficiently

long subsequence, it is meant that the data should be rich
enough to lead to sub-threshold parameter convergence.
Furthermore, by ensuring that the starting point of the
data is far away from a spike, one can ignore the
transient artifacts related to the initial conditions (i.e., reset)
immediately following a spike.

Another assumption made in this formulation is that
all the stochastic components in the system, including
system noise (either caused by measurement noise or by
the environment of the cell) as well as the variability of
the threshold, can be captured by the threshold distribution
that we have employed. Our results suggest that such a
simplification leads to overprediction of the firing rate.
However, the results are still acceptable – the errors are
small in percentage and the predicted spike trains have
remarkably similar spiking patterns as the targets that they
are intended to emulate. We believe that a model with more
sophisticated assumptions or additional components could
address the overprediction issue, yet this would result in a
larger computation cost.

Computation of the likelihood function (9) is the major
cost of computation in the proposed two-stage strategy.
The original likelihood function is defined over all time
instants. The simulated data is sampled at 50kHz and
the experimental data is sampled at 10kHz. This results
in a large size of {ti} as defined in Section 3.2. In
practice, considering the fact that G(Vt;m,σ) is a Gaussian
probability density function which is practically zero
beyond 3σ distance from the mean m, the voltage trace
is preprocessed to make {ti} only contain points that are
not too far away from the mean. This requires us to have
some a priori knowledge about the parameters before we
delve into the estimation. This is deemed acceptable since
by looking at the reference train, one can easily draw
reasonable bounds for the parameters m and σ.
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Figure 4 Estimation results using in-vitro reference data, (a) comparison of sub-threshold dynamics, target data used here
has not been used in estimation process before (b) comparison of spike trains, target data used here has not been
used in estimation process before (see online version for colours)

(a) (b)

6 Conclusions

In this paper, a systematic data-driven approach
was proposed for parameter estimation in stochastic
resonate-and-fire neuronal model. Different from literature,
the spiking threshold was modelled as a random process,
inspired by empirical data. Further, Gaussian distribution
was assumed for the random threshold. A two-stage
estimation problem was formulated, first stage of which
is a nonlinear least squares estimator for identifying
parameters related to sub-threshold behaviour utilising
measurement data that do not involve any spiking, while
the second stage is a maximum likelihood estimator for
identifying parameters related to spiking pattern. Both
simulated and experimental data (obtained from embryonic
rat motoneurons) are used to validate the proposed
estimation approach, both showing excellent match between
measurement and the prediction of identified model.
Future research directions include (1) improved problem
formulation that allows analytic optimisation technique
for finding optimal parameters, (2) improved metrics to
evaluate prediction error that uses the expectation of
number of spikes (since spiking is a stochastic process) and
(3) implementation of the proposed approach as a generic
computational tool.

Acknowledgements

The study was supported by Award # R15NS062402 from
the National Institute of Neurological Disorders And Stroke
(NINDS). The content is solely the responsibility of the
authors and does not necessarily represent the official views
of the NINDS or the NIH.

References
Azouz, R. and Gray, C.M. (2000) ‘Dynamic spike threshold

reveals a mechanism for synaptic coincidence detection
in cortical neurons in vivo’, Proceedings of the National
Academy of Sciences, Vol. 97, No. 14, pp.8110–8115.

Bershadskii, A., Dremencov, E. and Yadid, G. (2003) ‘Short-term
memory and critical clusterization in brain neurons spike
series’, Physics Letters A, Vol. 313, No. 1, pp.158–161.

Brette, R. and Gerstner, W. (2005) ‘Adaptive exponential
integrate-and-fire model as an effective description of
neuronal activity’, Journal of Neurophysiology, Vol. 94,
No. 5, pp.3637–3642.

Burkitt, A.N. (2006) ‘A review of the integrate-and-fire
neuron model: I. homogeneous synaptic input’, Biological
Cybernetics, Vol. 95, No. 1, pp.1–19.

Chen, J. and Kumar, R. (2014) ‘Pattern mining for
predicting critical events from sequential event data log’,
in International Workshop on Discrete Event Systems,
France, May, pp.1–6.

Chen, J. and Kumar, R. (2015a) ‘Stochastic failure prognosability
of discrete event systems’, IEEE Transactions on Automatic
Control, Vol. 60, No. 6, pp.1570–1581.

Chen, J. and Kumar, R. (2015b) ‘Fault detection of discrete-time
stochastic systems subject to temporal logic correctness
requirements’, IEEE Transactions on Automation Science
and Engineering, Vol. 12, No. 4, pp.1369–1379.

Chen, J., Suarez, J., Molnar, P. and Behal, A. (2011)
‘Maximum likelihood parameter estimation in a stochastic
resonate-and-fire neuronal model’, in Computational
Advances in Bio and Medical Sciences (ICCABS), IEEE
1st International Conference on, Orlando, FL, February,
pp.57–62.

Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987)
‘Minimizing multimodal functions of continuous variables
with the “simulated annealing” algorithm corrigenda for this
article is available here’, ACM Transactions on Mathematical
Software (TOMS), Vol. 13, No. 3, pp.262–280.



Identification of a stochastic resonate-and-fire neuronal model 229

Das, M., Molnar, P., Devaraj, H., Poeta, M. and Hickman, J.J.
(2003) ‘Electrophysiological and morphological
characterization of rat embryonic motoneurons in a
defined system’, Biotechnology Progress, Vol. 19, No. 6,
pp.1756–1761.

Destexhe, A., Contreras, D. and Steriade, M. (1998) ‘Mechanisms
underlying the synchronizing action of corticothalamic
feedback through inhibition of thalamic relay cells’, Journal
of neurophysiology, Vol. 79, No. 2, pp.999–1016.

Du, Z., Li, X. and Mao, Q. (2015) ‘A new online hybrid learning
algorithm of adaptive neural fuzzy inference system for fault
prediction’, International Journal of Modelling, Identification
and Control, Vol. 23, No. 1, pp.68–76.

FitzHugh, R. (1966) Mathematical Models of Excitation and
Propagation in Nerve, Publisher Unknown.

Guo, Y., Guo, L.Z., Billings, S.A. and Wei, H-L. (2015)
‘Identification of nonlinear systems with non-persistent
excitation using an iterative forward orthogonal least squares
regression algorithm’, International Journal of Modelling,
Identification and Control, Vol. 23, No. 1, pp.1–7.

Hines, M.L. and Carnevale, N.T. (1997) ‘The neuron
simulation environment’, Neural Computation, Vol. 9, No. 6,
pp.1179–1209.

Hodgkin, A.L. and Huxley, A.F. (1952) ‘A quantitative
description of membrane current and its application to
conduction and excitation in nerve’, The Journal of
Physiology, Vol. 117, No. 4, p.500.

Izhikevich, E.M. et al. (2003) ‘Simple model of spiking neurons’,
IEEE Transactions on Neural Networks, Vol. 14, No. 6,
pp.1569–1572.

Izhikevich, E.M. (2001) ‘Resonate-and-fire neurons’, Neural
networks, Vol. 14, No. 6, pp.883–894.

Izhikevich, E.M. (2007) Dynamical Systems in Neuroscience,
MIT Press.

Jabalameli, A. and Behal, A. (2015) ‘A constrained linear
approach to identify a multi-timescale adaptive threshold
neuronal model’, in IEEE International Conference on
Computational Advances in Bio and Medical Sciences
(ICCABS), Miami, FL, October, pp.1–6.

Jolivet, R., Lewis, T.J. and Gerstner, W. (2004) ‘Generalized
integrate-and-fire models of neuronal activity approximate
spike trains of a detailed model to a high degree of
accuracy’, Journal of Neurophysiology, Vol. 92, No. 2,
pp.959–976.

Kelley, C.T. (1999) Iterative Methods for Optimization, Vol. 18,
Siam.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. et al. (1983)
‘Optimization by simulated annealing’, Science, Vol. 220,
No. 4598, pp.671–680.

Kobayashi, R., Tsubo, Y. and Shinomoto, S. (2009)
‘Made-to-order spiking neuron model equipped with
a multi-timescale adaptive threshold’, Frontiers in
Computational Neuroscience, September, Vol. 3, DOI:
10.3389/neuro.10.009.2009.

Lansky, P., Sanda, P. and He, J. (2006) ‘The parameters of the
stochastic leaky integrate-and-fire neuronal model’, Journal
of Computational Neuroscience, Vol. 21, No. 2, pp.211–223.

LeMasson, G. and Maex, R. (2001) ‘Introduction to equation
solving and parameter fitting’, Computational Neuroscience:
Realistic Modeling for Experimentalists, CRC Press, London,
pp.1–23.

Mahmoud, M.S. and Qureshi, A. (2012) ‘Model identification and
analysis of small-power wind turbines’, International Journal
of Modelling, Identification and Control, Vol. 17, No. 1,
pp.19–31.

McCormick, D.A., Wang, Z. and Huguenard, J. (1993)
‘Neurotransmitter control of neocortical neuronal activity and
excitability’, Cerebral Cortex, Vol. 3, No. 5, pp.387–398.

Naud, R., Marcille, N., Clopath, C. and Gerstner, W. (2008)
‘Firing patterns in the adaptive exponential integrate-and-fire
model’, Biological Cybernetics, Vol. 99, Nos. 4–5,
pp.335–347.

Paninski, L., Pillow, J.W. and Simoncelli, E.P. (2004) ‘Maximum
likelihood estimation of a stochastic integrate-and-fire neural
encoding model’, Neural Computation, Vol. 16, No. 12,
pp.2533–2561.

Paninski, L., Pillow, J. and Simoncelli, E. (2005) ‘Comparing
integrate-and-fire models estimated using intracellular and
extracellular data’, Neurocomputing, Vol. 65, pp.379–385.

Prinz, A.A., Billimoria, C.P. and Marder, E. (2003) ‘Alternative
to hand-tuning conductance-based models: construction and
analysis of databases of model neurons’, Journal of
Neurophysiology, Vol. 90, No. 6, pp.3998–4015.

Shamsudin, S.S. and Chen, X.Q. (2012) ‘Identification of an
unmanned helicopter system using optimised neural network
structure’, International Journal of Modelling, Identification
and Control, Vol. 17, No. 3, pp.223–241.

Vanier, M.C. and Bower, J.M. (1999) ‘A comparative survey
of automated parameter-search methods for compartmental
neural models’, Journal of Computational Neuroscience,
Vol. 7, No. 2, pp.149–171.

Weaver, C.M. and Wearne, S.L. (2006) ‘The role of action
potential shape and parameter constraints in optimization
of compartment models’, Neurocomputing, Vol. 69, No. 10,
pp.1053–1057.

White, J.A., Klink, R., Alonso, A. and Kay, A.R. (1998)
‘Noise from voltage-gated ion channels may influence
neuronal dynamics in the entorhinal cortex’, Journal of
Neurophysiology, Vol. 80, No. 1, pp.262–269.

Young, G. (1937) ‘Note on excitation theories’, Psychometrika,
Vol. 2, No. 2, pp.103–106.

Zhang, P. and Feng, J. (2002) ‘Ideal observer of single neuron
activity’, Neurocomputing, Vol. 44, pp.243–247.

Zhang, X., You, G., Chen, T. and Feng, J. (2009) ‘Maximum
likelihood decoding of neuronal inputs from an interspike
interval distribution’, Neural Computation, Vol. 21, No. 11,
pp.3079–3105.

Zhi, L., Chen, J., Molnar, P. and Behal, A. (2012) ‘Weighted
least-squares approach for identification of a reduced-order
adaptive neuronal model’, Neural Networks and Learning
Systems, IEEE Transactions on, Vol. 23, No. 5, pp.834–840.

Notes

1 For the interested reader, we note that code for this
model is available at http://senselab.med.yale.edu/senselab/
modeldb/ShowModel.asp?model=3817.



230 J. Chen et al.

Appendix

Appendix A

The functions f1 (θl, t) , f2 (θl, t), and f3 (θl, t) in (4) are
explicitly defined as follows

f1 (t) =
1√
∆

{
exp

(
− (a− k1) +

√
∆

2
t

)

− exp

(
− (a− k1)−

√
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2
t

)}

f2 (t) =

(
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2
√
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1

2

)
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2
√
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1

2
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2
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)

f3 (t) =
1

a (k3b− k1)
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√
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2a (k3b− k1)
√
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2
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)

− − (a− k1) +
√
∆

2a (k3b− k1)
√
∆
exp

(
− (a− k1)−

√
∆

2
t

)

where k1, k3, a, and b are parameters that have previously
been defined while the constant ∆ is defined as follows

∆ = (a− k1)
2 − 4a (k3b− k1) .

Appendix B

In this appendix, we will show that
∫ vi

−∞ G (Vt;m,σ) dVt is
not log-concave. We begin by defining

I =

∫ v

−∞
G (Vt;m,σ) dVt

F = log I

The Hessian matrix of F is

H =


∂2F
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
where xi denotes the ith component of the vector x which
is defined as follows

x = θt = [c, d,m, σ]
T
.

Since H is a symmetric matrix, we define the unique
elements as follows
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By appropriately choosing an invertible matrix C, we can
diagonalise H to obtain the matrix D as follows

D = CTHC =


(
I v−m

σ2 +G
)

0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 .

It is clear to see that D has both positive and
negative eigenvalues; thus, it is indefinite. implying that∫ vi

−∞ G (Vt;m,σ) dVt is not log-concave. We note here that
it is not essential to explicitly find the matrix C. In fact,
the diagonal matrix D was obtained through an appropriate
sequence of row and column operations.


