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Abstract: This paper studies the gain scheduling problem for extended Kalman filter (EKF). To
save throughput, the steady gain is usually used for Kalman Filter. In the context of EKF, there is
no universal steady gain. In this paper, we propose a methodology to schedule the steady gain for
EKF. The idea is to offline linearise the nonlinear model at various operating points, and for each
of the linearised systems, to compute the steady gain corresponding to conventional Kalman filter
by solving the corresponding algebraic Riccati equation. The operating space is then divided into
multiple zones, through k-means clustering algorithm, so that within zone, the steady state gains are
close to each other. For real time filtering, the centroid of each zone is used as gain for correction
step, instead of computing the time-varying gain online, hence saving throughput. We demonstrate
the proposed methodology in a two-state nonlinear system.
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1 Introduction

To improve the applicability of Kalman filter, one practice
that is often used to save throughput is to schedule the
gains, which would normally be calculated online in the
conventional algorithm. It is then well known that the finer the
gain scheduling is, the better results the filter can provide. For
example, ref (Hollander et al., 1968) studies the gain schedule
of a 15-state linear Kalman filter for inertial navigation
system. Closed form expression for Kalman gain is proposed
in Crotteau (1969), by fitting the Kalman gain trajectories (if
computed online) to a curve. The mathematical concept on
how to schedule gains for linear regulator problem is studied
in Kleinman and Athans (1968) and Kleinman et al. (1968).
Though different from state estimation problem, these studies
provide a theoretical framework that can also be adopted for
Kalman filter gain scheduling.
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More recently, extended Kalman filter (EKF) has attracted
a lot of attention in both academia and industries, due to its
capability to handle nonlinear system dynamics (Julier and
Uhlmann, 2004; Wang and Papageorgiou, 2005; Reif et al.,
1999; Kim et al., 1994; Hoshiya and Saito, 1984; Sabatini,
2006; Pham et al., 1998; Wan and Van Der Merwe, 2000;
Song and Speyer, 1985; Lee and Ricker, 1994). And its
gain scheduling has been studied in Kobayashi et al. (2005),
Andersson (2005) and Yoo et al. (2011), for various industrial
applications, such as aerospace, vehicle, engine control, etc.
Note that different from steady EKF, or constant gain EKF,
the gain scheduling EKF has the capability to use different
gain according to the operating points, though within small
range the gain remains constant. One commonality of these
studies is to fit the gain to a smooth function, which can then
be scheduled online without additional complexity. However,
such approach requires the practitioner to have very thorough
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domain knowledge in order to choose the best function/space
to fit the gain. Another drawback of these approaches is that
the gain for a specific operating point is obtained by fine
tuning, hence lack of theoretic foundation.

In this paper, we propose a methodology to schedule gain
for EKF. The idea is to offline linearise the nonlinear model
at various operating points, and for each of the linearised
systems, to compute the steady state gain corresponding to
conventional Kalman filter by solving a algebraic Riccati
equation (hence different from the aforementioned work).
The operating space of the nonlinear model is then divided
into multiple zones, through k-means clustering algorithm, so
that within zone, the steady state gains are close to each other.
Note that these steps are performed offline, hence without
adding computing requirement for online filtering. For real
time filtering, the centroid of each zone is used as gain for
correction step, instead of computing the time-varying gain
online, hence saving throughput. The results obtained through
a two-state nonlinear system show the throughput saving
without impacting filtering performance.

Comparing to literature, the methodology proposed in
this paper allows EKF gain scheduling based on the
characteristics of the linearised model, as opposed to manual
scheduling that are widely used in literature. Furthermore, the
proposed method only incurs minimal throughput increase,
allowing real-time implementation in embedded systems.

The remainder of this paper is organised as follows.
Section 2 presents background information on EKF and
k-means clustering algorithm. Our proposed algorithm is
presented in Section 3, with Section 4 shows numerical
results on a two-state nonlinear systems. The paper is
concluded with Section 5.

2 Background

2.1 Extended Kalman filter
Consider the following nonlinear systems

Try1 = fre(or, up) + wy ()
Yk = hi(zr) + v, ()

where u, x, and y denote the input, state, and output of the
system. w is the process noise and v the measurement noise,
with covariance matrices () and R respectively. Without
loss of generosity, ) and R are diagonal matrices. As an
operating point (u, z), denote the corresponding linearised
time invariant systems as

Tpq1 = Axy + Buy + wy, 3)
yr = Cxp + vy 4

For simplicity of notation, the time index k for A, B and C
are omitted. Furthermore, we define the following operators:

= (kIb)
T= (K[l —1)

In other words, * is the a posteriori estimation and - is the
a priori estimation, of the corresponding variable.

Given state estimation Z := x(k|k — 1), covariance
matrix P := P(k|lk—1), and measurement 1y, the
measurement update of EKF is as follows

=2+ K(y—hy(2)) ®)
K = PCT(CPCT + R)™! (©6)
P=pP-K/PCcHT (7

Given state estimation & := x(k|k) and covariance matrix
P := P(k|k), the time update of EKF is as follows

T = fi(Z,up) (8
P=APAT +Q )

Note that with abuse of notation, Z and P for time update
correspond to one step prediction at time k, i.e., & = z(k +
1|k) and P = P(k + 1]k).

Note that to implement the conventional EKF, the
following online computations are necessary for each time
step

e online linearisation of equations (1) and (2) to obtain
matrices A, B, ad C for equations (3) and (4)

e prediction using equation (8) and correction using
equation (5)

e computing Kalman gain for correction step according to
equation (6)

e updating covariance matrix in both time and
measurement updates, according to equations (7) and

).

Note that the gain scheduling for EKF usually aims to
eliminate the online computation for calculating K and
updating P, i.e., equations (6), (7), and (9).

2.2 k-means clustering

Given a set of observations 1, ..., ,, k-means (Lloyd,
1957) aims to find & clusters (or groups) such that a point
is considered to be in a particular cluster if it is closer to
that cluster’s center (called centroid) than any other centroid.
The classical k-means algorithm finds the best clustering by
iteration, and at each iteration, the algorithm

e  assigns data points to clusters based on the centroids of
current iteration

e update centroids according to the points of the newly
formed cluster.

The algorithm terminates when the cluster membership does
not change, or the preset maximum allowable iteration is hit.
Note that for k-means, the number of clusters k, is an input
parameter that must be specified.
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3 EKF gain scheduling

Recall that the EKF gain scheduling problem considered
in this paper aims to eliminate the online computation for
calculating K and updating P, i.e., equations (6), (7), and
(9). In order to do so, given a nonlinear system (1) and (2),
the following steps are performed offline to computer the
steady Kalman gain and cluster the input-state space (u, x)
according to the steady gain:

e  Generating N random operating points (u, zx ), and
for each of the operating point, obtain the LTI system
(3) and (4).

e  For each of the LTI system obtained the corresponding
steady state covariance matrix P by solving the Ricatti
equation

APAT + Q=P — PCT(CPCT + R)'CPT

Once such P is found, the steady state Kalman gain K
is computed according to

K = PCT(CPCT + R)™!

e Given the set of steady state Kalman gains
Ki,..., Ky, one for each LTI, perform k-means
clustering to divide them into & clusters, and computed
the centroid K, 1, ..., K, j for each of the cluster. The
operating space (u, z) are also grouped according the
clustering on K.

Upon the completion of the offline computation, the input-
state space (u, ) is divided into k clusters, such that within
each cluster, the steady Kalman gain is very similar, and can
be represented by the centroid K. Note that the number of
random operating points N, and the number of clusters k,
are both input parameters to the proposed algorithm, and are
selected through calibration.

The following steps are then performed online for each
time step,

e perform the time update according to equation (8)

e according to the pair of input u and current state
estimate 2, find the corresponding cluster and its
centroid K,

e upon arrival of new measurement y, perform
the ‘measurement update (5) with the scheduled
Kk

It can be easily noted that the new online computation,
compared to the conventional one, save the throughput
greatly, and hence suitable for embedded computing
environment. However, since the steady gain is used, as can
be seen in Section 4, there is some minor degradation in
estimation performance, which is acceptable. Furthermore,
since the covariance matrices P and P are no longer

computed, the information concerning robustness of the
estimated state  is no longer available.
4 Results

In this section, the proposed approach is applied to the
following nonlinear systems

3
o1 g1 =21k + Ts(kwy p + kowy gk — k3 — 221 + kaug)

+ w1 g (10)
T 1 =Tk + Tea(bry g — ksx3 ) + wak (11)
Yk =Tk + Vg (12)

with parameters in Table 1.

Table 1 List of model parameters for numerical analysis

Parameter Values
k1 -0.04
ko 5

ks 140
ka 300
ks 0.4
a 0.02
b 0.2

c =50
Ts 0.01

For numerical analysis, the covariance matrices are selected

as
0.01 0
Q_[()am}
R=0.01

The number of gain clusters is selected to be three, and
the number of random operating point is chosen as 10,000.
Table 2 lists all the parameters that are used in algorithm
simulation. Note that to assess the robustness of the proposed
algorithm, the covariance matrices used for simulating wy
and vy in the plant model are different from those used in
EKF.

Table 2 List of algorithm parameters for numerical analysis

Parameter Values

Q [0.01, 0; 0, 0.01]
R 0.01

k 3

N 10,000

The clustering results are shown in Figures 1 and 2. In
particular, this nonlinear system has 2 states and 1 measured
output, and hence the gain matrix is a 2 X 1 matrix. Figure 1
plots the clustering results in the space of the elements of
the gain matrix. Similarly, Figure 2 plots the corresponding
clusters in the (u, x) space.



Extended Kalman filter steady gain scheduling using k-means clustering 161

Figure 1 Clustering results of the steady state gain matrix
(see online version for colours)
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Figure 2 Clustering results of the operating space (u, x)
(see online version for colours)

Figure 3 Comparison of estimated state 2:(2): conventional EKF
vs. proposed gain scheduled EKF (denoted as SEKF in
figure) (see online version for colours)
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The online state estimation performance of the proposed
algorithm is presented in Figures 3-5. In particular,
Figure 3 plots the true state xo, the estimation obtained by
conventional EKF using equations (5)-(9), and the estimation
obtained by the proposed gain scheduling EKF. It is clear

to see from Figure 3 that the propose approach gives very
comparable results against the conventional EKF. Figure 4
shows a zoom-in version of Figure 3, further illustrating the
performance of the proposed approach. Note that since in the
proposed gain scheduling EKF, the steady state gain matrix
is used, so there is some level of performance degradation as
can be seen from Figure 4. However, the proposed approach
avoids the various matrix multiplication that is normally
required by conventional EKF in equations (6), (7) and (9),
hence saving throughput for applications that have limitation
in throughput.

Finally, Figure 5 plots the histogram of estimation error
of x4 for the proposed approach. It can be seen that, though
using scheduled steady gain, the estimation error is well
within reasonable range and does not have any bias.

Figure 4 A zoom-in version of Figure 3 (see online version
for colours)
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Figure 5 Histogram of estimated error of 2:(2) by gain scheduled
EKEF (see online version for colours)
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5 Conclusion

In this paper, a gain scheduling approach is proposed for
EKF to avoid several matrix multiplications that are normally
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required by conventional EKF. The idea is to offline linearise
the nonlinear model at various operating points, and for each
of the linearised systems, to compute the steady state gain
corresponding to conventional Kalman filter. The operating
space of nonlinear model is then clustered into multiple
zones through k-means clustering algorithm, so that within
zone, the steady state gains are close to each other. For
real time filtering, the centroid of each zone is used as gain
for correction step, instead of computing the time-varying
gain online, hence saving throughput. The numerical results
by a two-state nonlinear system show great potential of
the proposed approach, demonstrating by the comparable
performance against the conventional EKF as well as reduced
throughput. The future work will consider applying the
proposed approach in a wider range of applications, such as
parameter identification (Chen et al., 2017), energy systems
(Chen and Rabiti, 2017), industrial reverse osmosis (Kim
et al., 2016), failure diagnosis (Wang et al., 2019; Na et al.,
2019), etc.
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