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multiple energy inputs and multiple energy outputs to enable increasing penetration of clean
energy such as wind power. To optimise the system design, extensive datasets of renewable
resources for the given location are required, whose availability may be limited. To address
this limitation, this paper proposes an innovative methodology to generate synthetic wind
speed data. Specifically, artificial neural networks are adopted to characterise historical wind
speed data and to generate synthetic scenarios. In addition, Fourier transformation is used
to capture the characteristics of the low frequency components in historical data, allowing
the synthetic scenarios to preserve seasonal trends. The proposed methodology enables the
possibility of Monte Carlo simulation of HES for probabilistic analysis using large volumes of
heterogeneous scenarios. Case study of probabilistic analysis is then performed on a particular
HES configuration, which includes nuclear power plant, wind farm, battery storage, electric
vehicle charging station, and desalination plant. Wind power availability and requirements on
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1 Introduction

Hybrid energy systems (HESs) have been proposed in
literature (Chen and Garcia, 2016a; Kim et al., 2016; Garcia
et al., 2016; El Fadil et al., 2020; Chen et al., 2016,
2021a; Chen and Garcia, 2016b; Zioui and Mahmoudi,
2020; Di Silvestre et al., 2014; Zhu et al, 2015;
Graditi et al., 2015) to enable higher level of renewable
energy penetration. HES usually consist of multiple energy
generations and utilisation units, and have been shown to
be flexible to accommodate the high variability introduced
from renewable generation, modern loads [such as electric
vehicles (EVs)], and electric markets (Kim et al., 2016;
Garcia et al., 2016; Chen et al.,, 2016; Chen and Garcia,
2016b). In addition, HES can also participate in both
day-ahead and real-time electricity markets, as well as
ancillary service markets (Chen and Garcia, 2016b) to
increase their economic viability and improve power
systems reliability. However, these prior analyses were
performed based on historical measurements data on
renewable energy, whose availability is very limited for
a given location. For example, the studies carried out in
Chen and Garcia (2016b) were based on one year of
wind speed data, and therefore the conclusion drawn there
could be strongly biased towards that particular dataset.
To address the data scarcity issue, this paper proposes an
innovative methodology to generate synthetic wind speed
scenarios, which need to be statistically conformed to
historical measurements.

The topic of generating synthetic wind speed scenarios
has been studied in the literature to some extent. For
example, Meibom et al. (2011) uses autoregressive moving
average (ARMA) model to generate synthetic residues,
which are then added to the historical data to provide
dataset with different waveforms. Similarly, Chen and
Rabiti (2017), Chen et al. (2017), Morales et al. (2010),
Papavasiliou et al. (2011) and Ma et al. (2013) use ARMA
or AR model, together with sampled white noise, to
generate scenarios. One of the assumptions of ARMA is
that the underlying time series is normally distributed. To
satisfy such assumption, the measurement data needs to
be recast into Gaussian distribution before being used to
train ARMA model. On the other hand, artificial neural
networks (ANN) have also been used for this task in
literature. For example, Gonzalez-Romera et al. (2006)
decomposes the load data into two components, one with
low frequency to represent deterministic seasonal trend and
the other with high frequency to represent the intermittency
of the renewable resources. Both high and low frequency
components are used to train two ANN, one for each part.
Amjady and Keynia (2009) combines wavelet transform
with ANN approach, while Steckler et al. (2013) adopts
Bayesian belief network to improve load prediction. Fourier
transform has also been utilised to capture the seasonal
trend from the low frequency components (Soares and
Medeiros, 2008; Sumer et al., 2009). In addition, Gaussian
process has also been found to be effective for scenarios
generation. For example, Mori and Kurata (2008) trains a
Gaussian process model based on metrological data and

wind speed measurements, and the trained model can then
be used for prediction. Note that Lee and Baldick (2014a)
adopts similar methodology. Even though this work focuses
on point prediction rather than scenarios generation, it
is worth noting that the reported methodologies can be
straightforwardly extended for scenarios generation, since
the estimated model essentially characterises a distribution.
Furthermore, Lee and Baldick (2013) uses factor analysis
for scenario synthesis, which statistically models the
variability among observed correlated variables in terms of
a potentially lower number of unobserved variables. Finally,
Lee and Baldick (2014b) utilises the power spectrum
density (PSD), as extracted from measurement data, to
synthesise PSD based on future capacity, and generates
sample waveform by inverse fast Fourier transformation of
synthesised PSD.

Though the aforementioned works provide good
synthetic results, they do require domain knowledge about
the data being generated, and the methodologies are
generally portable from one dataset to another. In this
paper, a new methodology to generate synthetic wind speed
scenarios is proposed. In particular, ANN is utilised to
characterise historical wind speed measurements and then to
synthesise scenarios. Furthermore, the seasonal trend in the
historical data is isolated by using Fourier transformation,
allowing the synthetic scenarios to preserve seasonal trend.
After training the model over historical data by finding
optimal parameters, the combined model (ANN and Fourier
series) can then be used to generate synthetic scenarios
by first generating residue terms for each time step using
the trained ANN model and then adding the Fourier
terms representing low frequency components (seasonal
trends). Since the synthetic high frequency components
have introduced sufficient variability compared to dataset,
the low frequency components, as identified by Fourier
transformation, are adopted from historical data, i.e., no
training and model evaluation are required and hence saving
computation. To validate the quality of the synthetic wind
speed scenario, statistical analysis (e.g., mean, variance,
and empirical cumulative distribution function) as well
as frequency analysis are performed to compare the
synthetic scenario to the historical measurements. The
generated synthetic wind speed scenarios will in turn be
utilised to analyse a particular HES configuration, which
includes nuclear power plant, wind farm, battery storage,
EV charging station, and desalination plant. Wind power
availability and requirements on component ramping rate
are then investigated.

Note that our approach differs from Gonzalez-Romera
et al. (2006), which uses ANN to model both high
frequency and low frequency components of electricity load
data. It is also worth noting that our approach differs
from that of Chen et al. (2018) which use generative
adversal net (GAN) to generate wind power profile instead
of wind speed. Since wind turbine can be seen as a
low pass filter, wind power usually has lower variation
compared to wind speed profile. Therefore, the problem
addressed in Chen et al. (2018) can be considered as
a less difficult task. Furthermore, we demonstrate that a
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shallow network is sufficient to model the wind speed,
hence saving computational time compared to the GAN
approach as adopted in Chen et al. (2018). A preliminary
version (Chen and Zhao, 2021) of this paper has been
presented at 2021 IEEE International Symposium on
Industrial Electronics (ISIE), held 20-23 June 2021 in
Kyoto, Japan. This paper differs from its conference version
by complementing literature review, including more details
on algorithm description, and adding more simulation
results to demonstrate the effectiveness of the proposed
methodology.

The rest of this paper is organised as follows. Section 2
presents the algorithms to train and evaluate ANN for
generating synthetic wind speed scenarios, together with
numerical results, while Section 3 presents the revised
algorithms to extract low frequency components from
historical dataset. Probabilistic analysis on HES is discussed
in Section 4, and the paper is concluded in Section 5.

2 Synthetic wind speed scenarios based on ANN

We start this section by giving a brief introduction of
ANNSs, which is later employed to capture the nonlinear
autocorrelation function of wind speed. Readers can refer
to Bishop et al. (1995) and Mohri et al. (2018) for more
details.

2.1 Artificial neural network

ANN is a popular machine learning technique for modelling
complex nonlinear relationship between inputs and outputs
(Bishop et al., 1995). Figure 1 shows a typical feedforward
ANN model with two inputs, one output, and multiple
hidden layers (HLs). Each neuron in ANN receives multiple
inputs and produces one output. The arrow from neuron 4 to
neuron j indicates that the output of neuron ¢ becomes one
of the inputs to neuron j. Denote x as the input to a neuron
i, its output y is computed according to the following
activation function

Y= fac(w;'rx + bz)

where the weights w; and bias b; are model parameters to
be identified from data through training process. Denote the
number of input neurons as p, and the number of output
neurons as [, to train a neural network requires training
data consisting of input X, «x and output Y;, , where N
is the number of samples. Given a uni-variate time series
X = x1,%2,...,2L, in order to capture the autocorrelation,
one can construct the following training data with N =
L —p and [ =1, where p can be chosen as the lag of
autocorrelation,

Tr1 X2 © TL—p
Ty T3 - TL—pt1

XZDX(L_I’) = : : : (1)
‘/'Up l‘erl PRI xL*l

Yis(r—p) = [Tp+1 Tps2 - xL] ()

In this paper, the MATLAB Deep Learning Toolbox
is utilised to implement, train, and evaluate ANN
model. Specifically, tangent hyperbolic function is
used as activation function, ie., y = tanh(wl'z +b;),
and Levenberg-Marquardt algorithm (Levenberg, 1944;
Marquardt, 1963) is utilised to train the ANN model.

Figure 1 An ANN model with two inputs, one output, and
multiple HLs

%3

Hidden
Layers

Input
Layer

Output
Layer

2.2 Historical dataset and ANN Training

To capture the autocorrelation of wind speed, a one-year
historical wind speed dataset' is utilised to train ANN,
which is a discrete time uni-variate time series with five
minutes interval. Figure 2(a) shows the time profile of the
wind speed being used, while Figure 2(b) shows the time
profile of wind speed for a selected period of seven days
(e.g., day 150—-156 of the year).

Figure 2 (a) Wind speed data for one year (b) Wind speed
data for a selected period of seven days
(see online version for colours)
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To train ANN, this wind speed dataset, denoted as x,, =
Ty, T2, ..., £, where L = 105,120, can be transformed
into training input X, (;—,) and output Y7, according
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to equations (1) and (2). The number of input neurons,
p, which captures the lag of the autocorrelation of wind
speed, can be selected based on the partial autocorrelation
function of wind speed. In particular, Figure 3 plots the
empirical partial autocorrelation function of x,,. Each lag
indicates a five minutes interval, corresponding to the
highest resolution available in the historical dataset. The
blue lines correspond to =+0.05, indicating 5% partial
autocorrelation. As indicated in Figure 3, a lag of 3 is
sufficient to capture the autocorrelation of the data.

Figure 3 Sample partial autocorrelation function of wind speed
data (see online version for colours)

! Partial Autocorrelation Function of Wind Speed

Sample Partial Autocorrelations
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Notes: Each lag represents 5-minute interval. The blue lines
correspond to the value of £0.05, indicating a lag of 3
is sufficient to capture the autocorrelation of the data.

Remark 1: It is a well known fact that wind speed is
not a stationary process, which makes it impractical to
use time series techniques like auto-regressive moving
average (ARMA) for its modelling, as it would require
the underlying time series to possess stationarity property.
Note that in Chen and Rabiti (2017); Chen et al. (2017), an
ARMA model is used to fit into wind speed data and used
for synthetic data generation. Despite of the reasonable
results, the approach studied in Chen and Rabiti (2017);
Chen et al. (2017) clearly violates the theoretical foundation
of ARMA.

After construction of training dataset X, (;_p) and Y _,,
an ANN can be trained by using MATLAB Deep Learning
Toolbox. In particular, the feedforward ANN used in
this paper consists of one input layer, two HLs, and one
output layer, with 3p neurons on each HL. Algorithm 1
summarises the procedure for data preprocessing and model
training for synthetic wind speed scenarios generation.

Remark 2: Note that the primary contribution of this
work is to propose a framework for wind speed scenarios
generation. Hence a simple feedforward ANN is used
in Algorithm 1 for the sake of simplicity. The proposed
framework and Algorithm 1 are flexible to accommodate

more complex ANN architecture, such as recurrent neural
networks, which remains as a future work. See conclusions
section.

Algorithm 1 Algorithm to train ANN for generating synthetic
wind speed scenarios

1: procedure SYNTHETIC_WIND_TRAIN(X.)

2: Compute empirical partial autocorrelation pacf of Xy ;
3: p < arg maxy |pacf(k)| > 0.05;

4: Construct  X,w(—py and Y,

equations (1)—(2);

5 Instantiate net <— an ANN with p inputs and 1 output;
6: Train net on X, (—p) and Yi_p;
7
8

according to

return net
: end procedure

2.3 Synthetic scenarios generation using trained ANN

Once the ANN is trained, it can be utilised to generate
synthetic wind speed scenarios by recursively evaluating
it over the past p data point in the synthetic time series.
Denote the synthetic wind speed data as X,,, and assume the
first p elements (i.e., £1, ..., ;) are given (whose generation
will be detailed shortly). Then for k=p+1,..., L,

#r = net([Ex_p - dx1]") + ok 3)

where oy, denotes a random noise to avoid degeneration.

Remark 3: Note that the purpose of adding o in
equation (3) is to sufficiently excite the recursive generation
process. Otherwise the recursion may degenerate and the
synthesised time series may converge to a constant value.
Note that o5 can be sampled either through a pre-selected
distribution, or through the error vector between the trained
ANN (denoted as net) and Y7,_,. Denote the error vector
e with length L — p, then for k =1,..., L — p,

T
€k :net([xk -~-xk+p,1} ) — Thtp- (4)

Algorithm 2 summarises the procedure that generates N
synthetic wind speed scenarios based on trained ANN net.

Algorithm 2  Algorithm to generate synthetic wind speed

scenarios

1: procedure SYNTHETIC_WIND_GENERATE(net, V)

2: e net(X, (r_p) — Yi_p;

3: forn=1,...,N do

4: Obtain e, by sampling from elements of e for L

times;

5: for k=1,...,p do

6: Xn (k) < Xw(k) + en(k)

7 end for

8 for k=p+1,....,L do

9: d [fnlk—p) - Ra(k—1)]"

10: X, (k) < net(d) + en (k)

11: end for

12: end for

13: fi(*[ﬁli]\]]

14: return X

15: end procedure
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2.4  Numerical results and discussion

This section presents numerical results of the procedures
presented in Algorithms 1 and 2. Recall that the model
depth p is selected to be 3, and the ANN consists of two
HLs, each of which has nine neurons.

Figure 4 shows the model error e of the trained ANN,
which will be sampled to generate the noise signal in
equation (3). Figure 5 compares seven days of the synthetic
wind speed and that of the historical dataset. As can be
seen, the synthetic scenario presents completely different
time profile compared to that of the dataset, which can
be utilised to perform probabilistic analysis of wind power
generation.

Figure 4 Histogram of ANN model errors that are within 5
and 95 percentile (see online version for colours)
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Figure 5 Synthetic wind speed versus historical dataset for a
selected period of seven days (see online version
for colours)
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Despite the completely different time profiles, the synthetic
wind speed and historical dataset actually possess similar
statistical characteristics. Several key statistics of the
synthetic scenarios and dataset are summarised in Table 1,

showing good alignment between the synthetic scenarios
and dataset. Furthermore, Figure 6 plots the empirical
cumulative density function (CDF) between synthetic wind
speed and historical dataset, where satisfactory statistical
conformance can also be found, despite of the completely
different time profile as shown in Figure 5. Furthermore,
Table 2 compares the power density of the synthetic
scenarios and historical dataset, again showing good
alignment between the two.

Figure 6 Empirical CDF for synthetic wind speed versus
dataset (see online version for colours)
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Table 1 Comparison of key statistics of synthetic scenarios and
historical dataset

Stats Dataset Synthetic
Max 30.60 30.82
95 percentile 14.67 14.38
Mean 8.16 8.16
Median 8.09 8.29
Standard deviation 391 3.78
S percentile 2.04 1.97
Min 0.02 0.01

Table 2 Comparison of power density of synthetic scenarios and
historical dataset

Period Dataset (dB/Hz) Synthetic (dB/Hz)
>3 months 75.53 72.47
>1 month 62.18 57.12
>1 week 59.20 60.24
>1 day 55.27 55.54
>1 hour 33.06 33.45
>0.5 hour 21.70 22.30
<0.5 hour 10.50 9.92

Despite the good statistical conformance discussed above,
the proposed procedure does present one drawback. As
can be noticed from Algorithms 1 and 2, the timing
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information (e.g., time of the year) is not taken into
account when generating the synthetic scenarios. The lack
of such information does not impact the overall statistical
distribution; however, it does impact the monthly (or
even weekly) trend that the historical dataset presents. In
particular, Figure 7 compares the monthly average wind
speed of synthetic scenarios and historical dataset. It is
clear that the synthetic wind speed does not preserve the
seasonal trend that exists in the dataset. Note that this
may not be an issue for analysis that does not depend on
seasonal trend, but for analysis that does, such limitation
can be problematic. To overcome this, in the following
section, we proposed a revised procedure that removes the
low frequency components from the training and generation
process.

Figure 7 Monthly trend of the historical dataset and synthetic
scenario (see online version for colours)
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3 Synthetic wind speed scenarios generation
preserving seasonal trend

In this section, we propose a revised procedure that
removes the low frequency components from the training
and generation process. In other words, the ANN is only
used to generate synthetic high frequency components,
while the low frequency components are taken from the
historical dataset. We start this section by giving a brief
introduction of discrete Fourier transform (DFT) and fast
Fourier transform (FFT). More details can be found in
Oppenhiem et al. (1983).

3.1 Discrete Fourier transform

Given a time series X = xzg, Z1, .., *r_1, the DFT
transforms it into another sequence X = T, T1, ..., T[—_1
defined by

L—1
B _i2n
Ty = E Tpe Lk
n=0

L—1
2T . 2T
= Z Ty, [cos (Lkn> — g sin <Lkn>} .

n=0

Denote this transform by F, we have X = F(x). The
inverse DFT, denoted as F !, transforms X back to x, i.e.,
x = F~}(X), and can be computed according to

L—-1
1 27 Joo

T = N fne L

n=0
L—1
1 _ 2m . 2T
= nEZO T {cos (L/m> + 7 sin (Lknﬂ .

It is easy to see that Z, denotes the amplitude of the
component at period of %Ts (or equivalently at frequency
of LLTS), where T is the sampling interval of the time series
X.

Evaluating F according to its definition requires
computational complexity of O(N?), while an FFT
algorithm can compute it with complexity of O(N log N).
In this paper, the MATLAB implementation £ft and ifft
are utilised to compute F and F !, respectively, which are
based on Frigo and Johnson (1998).

3.2 Revised algorithm preserving seasonal trend

According to Subsection 3.1, given a wind speed time

series x,, with length L, its Fouries transformation can be

computed by X,, = F(x,,) such that the nth element z,, of

X,, indicates the amplitude of the component at frequency
n

77+ Given ¢ such that ;% (approximately) equals to a

cutoff frequency f., and

XL = [Z1,..24,0,...,0] (5)

Xy = [67...(_),i'q+1,...,{fL] , (6)
then the high frequency components xz and low frequency
components Xz, of x,, can be computed by

xp = F 1(xp) (7)
X :‘/Til()_(H). (8)

Figure 8 shows the low frequency and high frequency
components of the historical wind speed dataset, where f.
= 1.649 pHz, corresponding to a period of one week.

Once xy and x;, are obtained, an ANN net_h can be
trained over xy utilised Algorithm 1, which can then be
used to generate synthetic high frequency components using
Algorithm 2. The synthetic high frequent components are
then shifted by x;, to obtain the synthetic wind speed. This
procedure is summarised in Algorithms 3 and 4.

3.3  Numerical results and discussion

Figures 9 and 10 summarise the results using Algorithms 3
and 4 with f. = 1.649 pHz. In particular, Figure 9 plots
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the synthetic wind speed versus historical dataset for
a selected period of seven days, where only the high
frequency components are synthetic. Figure 10 compares
the monthly average wind speed of synthetic scenarios
and historical dataset, which shows that the synthetic wind
speed can preserve the monthly trend exhibited in the
dataset. Therefore, the proposed algorithms in this section
can generate a set of wind speed profiles that possess rich
variation in terms of time series, while at the same time
preserves the seasonal trends exhibited in the dataset.

Algorithm 3  Algorithm to train ANN using only high
frequency components

: procedure SYNTHETIC_-WIND_HIGH_TRAIN(Xy, fe)
X ¢ F(Xw); XH Xy X1 ¢ Xu;
q < [feLT];
for k=1,...,q do
end for
fork=q+1,...,
x(k) <0

L do

189

Specifically, the root mean square error (RMSE) between
synthetic wind speed and historical dataset is used to
quantified the impact of f.. As can be seen, as f, increase,
higher frequency components are removed from the training
and evaluation process, leaving less components being
synthetic. Consequently, the synthetic wind speed presents
a more similar time profile compared to dataset, resulting a
smaller RMSE, as demonstrated in Table 3.

Figure 9 Synthetic wind speed versus historical dataset for a
selected period of seven days, with only high
frequency components being synthetic
(see online version for colours)
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end for

X7, ]:71()_([,); XH .Fil()_(H)
net_h < SYNTHETIC_WIND_TRAIN(Xf7)
return net_h, xr,

Algorithm 4 Revised algorithm to generate synthetic wind

speed scenarios

1
2
3
4:
5:
6
7
8

: procedure SYNTHETIC_WIND_HIGH_GENERATE(net_h, xr, V)

forn=1,..., N do
X1 < SYNTHETIC_WIND_GENERATE(net_h, 1)
X1 < X1, + X1
end for
X +— [)Ail e
return X

i ]

: end procedure

Figure 8 Low frequency and high frequency components of

historical wind speed dataset (see online version
for colours)
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Figure 10 Monthly trend of the historical dataset and synthetic
scenarios, with only high frequency components
being synthetic (see online version for colours)
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Finally, Table 3 analyses the impact of f. in Algorithms 3
and 4, by sweeping f. through different values.
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Remark 4: Note that RMSE is used as a metric to measure
the variation of the synthetic data. Note also that here the
larger RMSE the better, as the objective is to generate
a time profile that is different from historical dataset.
However, as illustrated in Figures 7 and 10, seasonal trend
may loss when the RMSE is too large, which can be
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important for some studies such as economic analysis
where the electrical price presents strong seasonal trend.

Remark 5: The selection of frequency f. depends on the
desired variation among generated datasets. In general, if
higher variation is desirable, lower frequency can be used
for Fourier series.

Remark 6: Note that instead of using Fourier series to
preserve seasonality, it is use conditional machine learning
that integrates the seasonal trend as part of ANN training
process. We reserve this as future study.

Table 3 Root mean square error between synthetic wind speed
and historical dataset

fe (uHz) Period RMSE (m/s)
0.0634 3 months 5.3503
0.3805 1 month 5.2525
1.649 1 week 4.8264
11.57 1 day 3.5168
277.8 1 hour 2.5016

Figure 11 Topology of the HES configuration under study in
this paper (see online version for colours)
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4 Probabilistic analysis of HES

This section applies the proposed method to probabilistic
analysis of a specific HES configuration, whose topology is
shown within the dotted line in Figure 11. Specifically, the
HES under study includes the following components:

e A baseline electricity generation unit with 180 MW
capacity. Specifically, this generation unit consists of
a small modular reactor (SMR), a steam generator, a
power cycle converting steam into electricity.

e A series of wind turbines as renewable power
generation unit with total capacity of 15 MW.

e An energy storage element (ESE) used for power
smoothing of the electricity generated by wind
turbines.

e A reverse osmosis (RO) plant used to convert saline
water into potable water and consumed electricity
between 14.5 MW and 30 MW.

e An EV charging station consuming electricity
between 0 and 500 kW.

e Finally, an electric grid connected to HES at a point
of common coupling to consume 165 MW electricity
from HES.

The kinetic energy in wind is captured and converted into
electricity by wind turbines. This process can be modelled
as a static mapping function from wind speed to wind
power, as follows.

Pren
0 if V<3m/sorV >25m/s

=14 0.5 7pV3L if 3 m/s < V < 14 m/s 9)
1.5 if 14 m/s <V < 25 m/s

where 7 is the conversion efficiency of the wind turbine, p
is the density of the air at the turbine, V' is the wind speed,
and d is the diameter of the turbine blades. In this study
the values used for each parameter in equation (9) are: n =
35%, p = 1.17682 g/m3, d = 58.13 m. Note that with these
parameters, a wind turbine has rated maximum capacity of
1.5 MW.

Figure 12 Histogram of average wind turbine power
generation using synthetic wind speed
(see online version for colours)
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The operations of the HES is as follows. First, a constant
of 165 MW of electricity is supplied to the power grid,
with the volatility from EV charging station and wind farm
being absorbed by RO plant and ESE. To flexibly operate
RO plant to accommodate the volatility, an operation
optimisation framework as report in Chen and Garcia
(2016a, 2016b) is used. To test this operation scheme,
Algorithms 3 and 4 with f. = 1.649 pyHz are used to
generate 3,000 synthetic wind speed profiles and the HES
operations are simulated under these generated scenarios.
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Figure 13 Histogram of average wind turbine down time
(see online version for colours)
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Figure 14 Histogram of average ramp-up/-down rates for RO
chemical plant (see online version for colours)
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Figure 12 plots the histogram of the wind farm power
generation, with a mean of 4.264 MW and standard
deviation of 0.129 MW. Figure 13 depicts the average down
time of wind turbine (recall that according to equation (9),
wind turbine is shut off and produces zero power when the
wind speed is below 3 m/s or above 25 m/s). Note that,
results shown in Figure 13 can be used to determine the
amount of maintenance required and its variation, which is
critical in calculating the operational cost when conducting
economic analysis of HES (Chen and Garcia, 2016b).

Finally, Figure 14 plots the histogram of the maximum
RO ramp-up and ramp-down rate required to absorb
the volatility. Note that the effect of ESE has been
considered in these plots. These results can be helpful when
considering the resiliency of the HES to accommodate both
the average and worst case scenarios.

5 Conclusions

This paper focuses on synthetic scenarios generation for
wind speed. More specifically, ANNs are utilised to
capture the characteristics in the historical wind speed
measurements and to generate synthetic data. In addition,
Fourier transformation is used to model the low frequency
components in historical datasets to preserve seasonal
trends. The usefulness of the synthetic wind speed scenarios
is demonstrated by performing probabilistic analysis of
a HES that includes nuclear power plant, wind farm,
battery storage, EV charging station, and desalination
chemical plant. Wind power availability and requirements
on component ramping rate are then investigated. Future
work includes

1 parallel computing to allow fast scenarios generation
and HES simulation

2 investigating the impact on the EV adoption (Chen
et al., 2021b, 2021c¢)

3 using the synthetic dataset for state estimation (Chen,
2020)

4  finally, designing the optimal ANN architecture is
another future direction.

References

Amjady, N. and Keynia, F. (2009) ‘Short-term load forecasting
of power systems by combination of wavelet transform
and neuro-evolutionary algorithm’, Energy, Vol. 34, No. 1,
pp-46-57.

Bishop, C.M. et al. (1995) Neural Networks for Pattern Recognition,
Oxford University Press, Oxford, UK.

Chen, J. (2020) ‘Extended kalman filter steady gain scheduling
using k-means clustering’, International Journal of Modelling,
Identification and Control, Vol. 34, No. 2, pp.158-162.

Chen, J. and Garcia, H.E. (2016a) ‘Operations optimization of hybrid
energy systems under variable markets’, in Proc. 2016 American
Control Conference, Boston, MA, July, pp.3212-3218.

Chen, J. and Garcia, H.E. (2016b) ‘Economic optimization of
operations for hybrid energy systems under variable markets’,
Applied Energy, Vol. 177, pp.11-24.

Chen, J. and Rabiti, C. (2017) ‘Synthetic wind speed scenarios
generation for probabilistic analysis of hybrid energy systems’,
Energy, Vol. 120, pp.507-517.

Chen, J. and Zhao, J. (2021) ‘Synthetic wind speed scenarios
generation using artificial neural networks for probabilistic
analysis of hybrid energy systems’, in 30th IEEE International
Symposium on Industrial Electronics, Kyoto, Japan, 2023 June.

Chen, J., Garcia, H.E., Kim, J.S. and Bragg-Sitton, S.M. (2016)
‘Operations optimization of nuclear hybrid energy systems’,
Nuclear Technology, Vol. 195, No. 2, pp.143—-156.



192 J. Chen and J. Zhao

Chen, J., Kim, J.S. and Rabiti, C. (2017) ‘Probabilistic analysis of
hybrid energy systems using synthetic renewable and load data’,
in Prof. 2017 American Control Conference, Seattle, WA, May,
pp.4723-4728.

Chen, Y., Wang, Y., Kirschen, D. and Zhang, B. (2018) ‘Model-free
renewable scenario generation using generative adversarial
networks’, [EEE Transactions on Power Systems, Vol. 33,
No. 3, pp.3265-3275.

Chen, J., Li, Z. and Yin, X. (2021a) ‘Optimization of energy storage
size and operation for renewable-EV hybrid energy systems’, in
2021 IEEE Green Technologies Conference, Denver, CO, 7-9
April.

Chen, J., Liang, M. and Ma, X. (2021) ‘Probabilistic analysis of
electric vehicle energy consumption using MPC speed control
and nonlinear battery model’, in 2021 IEEE Green Technologies
Conference, Denver, CO, 7-9 April.

Chen, J., Behal, A. and Li, C. (2021c) ‘Active cell balancing by
model predictive control for real time range extension’, in 2021
IEEE Conference on Decision and Control, Austin, TX, USA,
13—-15 December.

Di Silvestre, M.L., Graditi, G. and Sanseverino, E.R. (2014)
‘A generalized framework for optimal sizing of distributed
energy resources in micro-grids using an indicator-based swarm
approach’, IEEE Transactions on Industrial Informatics, Vol. 10,
No. 1, pp.152-162.

El Fadil, H., El Idrissi, Z., Intidam, A., Rachid, A., Koundi, M. and
Bouanou, T. (2020) ‘Nonlinear control and energy management
of the hybrid fuel cell and battery power system’, International
Journal of Modelling, Identification and Control, Vol. 36, No. 2,
pp-89-103.

Frigo, M. and Johnson, S.G. (1998) ‘FFTW: an adaptive software
architecture for the FFT’, in Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP ‘98 (Cat. No. 98CH36181), 1EEE, Vol. 3,
pp.1381-1384.

Garcia, H.E., Chen, J., Kim, J.S., Vilim, R.B., Binder, W.R.,
Sitton, S.M.B., Boardman, R.D., McKellar, M.G. and
Paredis, C.J.J. (2016) ‘Dynamic performance analysis of two
regional nuclear hybrid energy systems’, Energy, Vol. 107,
pp.234-258.

Gonzalez-Romera, E., Jaramillo-Moran, M.A. and
Carmona-Fernandez, D. (2006) ‘Monthly electric energy
demand forecasting based on trend extraction’, [EEE Trans.
Power Syst., Vol. 21, No. 4, pp.1946-1953.

Graditi, G., Di Silvestre, M.L., Gallea, R. and Sanseverino, E.R.
(2015) ‘Heuristic-based shiftable loads optimal management in
smart micro-grids’, [EEE Transactions on Industrial Informatics,
Vol. 11, No. 1, pp.271-280.

Kim, J.S., Chen, J. and Garcia, H.E. (2016) ‘Modeling, control,
and dynamic performance analysis of a reverse osmosis
desalination plant integrated within hybrid energy systems’,
Energy, Vol. 112, pp.52—66.

Lee, D. and Baldick, R. (2013) ‘Synthesis of sample paths of wind
power through factor analysis & cluster analysis’, in Proc. 2013
North American Power Symposium (NAPS), Manhattan, KS,
22-24 September, pp.1-6.

Lee, D. and Baldick, R. (2014) ‘Short-term wind power ensemble
prediction based on gaussian processes and neural networks’,
IEEE Trans. Smart Grid, Vol. 5, No. 1, pp.501-510.

Lee, D. and Baldick, R. (2014b) ‘Future wind power scenario
synthesis through power spectral density analysis’, IEEE Trans.
Smart Grid, Vol. 5, No. 1, pp.490-500.

Levenberg, K. (1944) ‘A method for the solution of certain
non-linear problems in least squares’, Quarterly of Applied
Mathematics, Vol. 2, No. 2, pp.164—168.

Ma, X-Y., Sun, Y-Z. and Fang, H-L. (2013) ‘Scenario generation
of wind power based on statistical uncertainty and variability’,
IEEE Trans. Sustainable Energy, Vol. 4, No. 4, pp.8§94-904.

Marquardt, D.W. (1963) ‘An algorithm for least-squares estimation
of nonlinear parameters’, Journal of the Society for Industrial
and Applied Mathematics, Vol. 11, No. 2, pp.431-441.

Meibom, P., Barth, R., Hasche, B., Brand, H., Weber, C. and
O’Malley, M. (2011) ‘Stochastic optimization model to study
the operational impacts of high wind penetrations in Ireland’,
IEEE Trans. Power Syst., Vol. 26, No. 3, pp.1367-1379.

Mohri, M., Rostamizadeh, A. and Talwalkar, A. (2018) Foundations
of Machine Learning, MIT Press, Cambridge, MA.

Morales, J.M., Minguez, R. and Conejo, A.J. (2010) ‘A methodology
to generate statistically dependent wind speed scenarios’,
Applied Energy, Vol. 87, No. 3, pp.843-855.

Mori, H. and Kurata, E. (2008) ‘Application of Gaussian process
to wind speed forecasting for wind power generation’, in
Proc. 2008 IEEE Int. Conf. Sustainable Energy Techn., 1EEE,
Pp-956-959.

Oppenhiem, A.V., Willsky, A.S. and Nawab, S.H. (1983) Signals and
Systems, Prentice-Hall, Hoboken, NJ.

Papavasiliou, A., Oren, S.S. and O’Neill, R.P. (2011) ‘Reserve
requirements for wind power integration: a scenario-based
stochastic programming framework’, I[EEE Trans. Power Syst.,
Vol. 26, No. 4, pp.2197-2206.

Soares, L.J. and Medeiros, M.C. (2008) ‘Modeling and forecasting
short-term electricity load: a comparison of methods with
an application to Brazilian data’, International Journal of
Forecasting, Vol. 24, No. 4, pp.630-644.

Steckler, N., Florita, A., Zhang, J. and Hodge, B.M. (2013) ‘Analysis
and synthesis of load forecasting data for renewable integration
studies’, in Proc. 12th International Workshop on Large-Scale
Integration of Wind Power into Power Systems, London,
England, 22-24 October.

Sumer, K.K., Goktas, O. and Hepsag, A. (2009) ‘The application
of seasonal latent variable in forecasting electricity demand
as an alternative method’, Energy Policy, Vol. 37, No. 4,
pp.1317-1322.

Zhu, B., Tazvinga, H. and Xia, X. (2015) ‘Switched model predictive
control for energy dispatching of a photovoltaic-diesel-battery
hybrid power system’, [EEE Trans. Control Syst. Tech., May,
Vol. 23, No. 3, pp.1229-1236.

Zioui, N. and Mahmoudi, A. (2020) ‘Modal analysis and modelling
approach for piezoelectric transducers based energy harvesting

applications’, International Journal of Modelling, Identification
and Control, Vol. 36, No. 4, pp.304-314.

Notes

1  Downloaded from the Eastern Wind dataset maintained by
National Renewable Energy Laboratory (NREL) at http:/
www.nrel.gov/electricity/transmission/eastern_wind_dataset.
html on 21 November 2019.



