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Abstract: The time that a vehicle merges in a lane reduction can significantly affect passengers’ safety,
comfort, and energy consumption, which can, in turn, affect the global adoption of autonomous
electric vehicles. In this regard, this paper analyzes how connected and automated vehicles should
cooperatively drive to reduce energy consumption and improve traffic flow. Specifically, a model-free
deep reinforcement learning approach is used to find the optimal driving behavior in the scenario in
which two platoons are merging into one. Several metrics are analyzed, including the time of the
merge, energy consumption, and jerk, etc. Numerical simulation results show that the proposed
framework can reduce the energy consumed by up to 76.7%, and the average jerk can be decreased
by up to 50%, all by only changing the cooperative merge behavior. The present findings are
essential since reducing the jerk can decrease the longitudinal acceleration oscillations, enhance
comfort and drivability, and improve the general acceptance of autonomous vehicle platooning as a
new technology.

Keywords: vehicle platoon; merging; deep reinforcement learning; proximal policy optimization;
fuel consumption

1. Introduction

Most highways in urban areas are congested to some extent, reducing mobility and
increasing travel times for drivers, which results in wasted fuel consumption and additional
traffic emissions. Vehicle platooning is a promising road management system to reduce
congestion, fuel consumption, and accidents [1,2]. By platooning, multiple partially or
fully automated vehicles are arranged in a train-like formation, with the lead vehicle at the
front and multiple following vehicles. Vehicles in a platoon are coordinated to move at the
same speed while maintaining a desired inter-vehicle distance [3]. In some road situations,
the platoon has to perform lateral transitional maneuvers essential for safety and driving
efficiency, such as joining, merging, and leaving the platoon [4].

The way vehicles merge significantly impacts road safety and traffic conditions. For hu-
man drivers, it is known that the zipper merge is one of the best approaches to go about
when one of the lanes is closed. According to [5], the zipper merge strategy can reduce
the overall length of traffic backup by up to 40%. Though counterintuitive, vehicles on the
terminating lane should not ask to merge too early but rather wait until its lane is about
to end to take turns merging to the open lane. Such strategy can ensure that all of the
road capacity is fully utilized. However, platoon merging for connected and automated
vehicles (CAV) is still challenging due to different interpretations of standards, and wireless
communication [6,7]. In addition, the platoon merging involves multi-CAV interactions,
requiring accurate real-time control with limited inter-vehicular communication cost [8].
Furthermore, according to [9], the merging approach for cooperative driving is still chal-
lenging to complete because of the significant interference created by unintentional vehicles
interacting with the platoon resulting in aborting the platoon merge maneuver.
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To address these challenges, Reference [10] investigated the cooperative merging
algorithms in the presence of human-driven vehicles using a model predictive control
(MPC) scheme. The controller solves the sub-problem of triplets of vehicles and finds
smooth motion trajectories for different types of triplets. Reference [11] investigated the
cut-in situations when a human-driven vehicle changes lanes into a platoon of CAVs.
During the study, thirty-seven drivers participated in driving the human-driven vehicle
using a driving simulator. The suggested inter-vehicular gap is 15 m to prevent human
drivers from trying to cut in, which will create congestion at the merging point. Conversely,
30 m is found to be comfortable and easier to merge into the platoon. Authors of [12]
produced an optimal speed profile during platoon merging on highway on-ramp to reduce
the energy consumption of battery electric vehicles (BEVs), while [13] evaluated three
different interactions protocols of two platoons facing lane-merging to optimize the total
time to complete the maneuver, the string platoon length, and the average speed of the
platoon. Two platoons of five vehicles were used in the simulation environment SUMO. To
summarize, the motivation and benefits of this paper are as follows.

• Implementing platoons can decrease traffic congestion, reducing the time spent travel-
ing, the amount of fuel consumed, and traffic emissions.

• The position where the platoon starts to merge in a road reduction significantly affects
the vehicle’s performance.

• Improve road capacity utilization by decreasing the inter-vehicular gaps without
raising safety concerns.

• Platoons can reduce traffic oscillations by eliminating extreme acceleration and deceleration.
• Studying the fuel consumption of electric vehicles will improve the driving range of

such technology, which will help its adoption.

In this paper, the optimal merging technique is investigated. Specifically, the aim of
this paper is to find the best distance between the merging vehicle and the start of the
merge at which each vehicle in a platoon initiates a merging request in order to achieve
the best possible performance. Several objectives are considered, including reducing travel
time, ensuring passengers’ comfort by eliminating extreme acceleration and deceleration,
improving environmental friendliness by decreasing energy consumption, etc. A model-
free reinforcement learning (RL) approach, i.e., proximal policy optimization (PPO) [14,15],
was used to learn the optimal merging policy. PPO is a deep reinforcement learning (DRL)
method that falls into policy gradient methods, which is based on actor–critic methods.
The actor maps observation to actions, and the critic returns the rewards estimate of the
observation received. It starts by collecting the trajectories using the current stochastic
policy. Then the cumulative rewards and the advantage estimates are calculated based on
the interactions collected and used to update the actor and critic neural networks. Finally,
using the clipping function introduced in PPO, the policy is updated for multiple epochs
without the concern of changing the policy too far from the current policy.

The contribution of this paper is as follows.

• First, a DRL-based learning framework is proposed to learn the optimal merging
behavior for fully connected and autonomous platoons.

• Second, a simulation environment is constructed to facilitate the DRL training. Low
level longitudinal and lateral controllers are implemented based on PID, with the
Beizer curve being used for path planning for the lane change.

• Thirdly, several metrics are studied to quantify the performance of different merging
strategies, including time to merge, jerk, maximum jerk, speed, and energy consumed.

The remainder of this paper is organized as follows. Section 2 reviews relevant
literature and highlights the contribution of the proposed work. The vehicle model and
platoon’s configuration are presented in Section 3, while a preliminary study on RL is
given in Section 4. The proposed DRL-based merging framework is discussed in Section 5,
and numerical results are discussed in Section 6. Section 7 concludes the paper.
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2. Literature Review

Several methods have been previously suggested to solve the CAV joining, merging,
and leaving the platoon. Table 1 summarizes recent articles regarding platoon control
maneuvers. In [16], a platoon merging approach was proposed using distributed MPC
to reduce fuel consumption. Reference [17] studied the effect of lane change maneuvers
on vehicle platooning. Evaluation of the lateral trajectories of platoons when one/several
vehicles merge from the adjacent lane into the main vehicle platoon was discussed in [18].
The merging of heterogeneous vehicular platoons was studied in [19], where the authors
concluded that the proposed controllers’ performance is satisfactory, but a more compli-
cated scenario is needed for testing. A distributed MPC was proposed to generate the
merging trajectories, while a linear quadratic regulator (LQR) controller was designed
to create a gap for the merging platoon. Reference [20] proposed a novel PID controller
for heavy-duty vehicle platoon maneuvers, while the authors of [21] showed that using
cooperative adaptive cruise control (CACC) for highway-merging scenarios improves
traffic-flow stability and efficiency. However, the proposed approach of [21] only consid-
ered longitudinal vehicle control, which means only vehicle speed would be automated
using vehicle-to-vehicle communication, while the active steering of the ego vehicle and
the behavior of the surrounding vehicles were not considered.

The most relevant study to this paper is [22], where the authors proposed a distributed
controller utilizing a state feedback law to guarantee a collision-free vehicle merging when
facing a road reduction. However, the lateral movement of the merging vehicles was not
included in the analysis. Furthermore, the optimal merging location (as measured by the
distance between the end of the lane and the merging vehicle) at which the merging vehicle
should initiate a merge request was not investigated but assumed. Note the merging
location can significantly affect the system level efficiency and safety, and the optimal
merging location is not obvious given a particular scenario. Therefore, the assumption that
the optimal merging location is known, as made by [22], is not realistic. This paper fills
this gap by utilizing RL to interactively learn the optimal merging location to improve fuel
efficiency and ride comfort.

The learning capacity of RL has recently been significantly improved by utilizing deep
neural networks (DNNs), and the resulting deep reinforcement learning (DRL) algorithms
have shown a human-level performance on complicated tasks such as playing Go, Chess,
and Shogi [23,24]. With the increasing accessibility of low-cost, high-performance comput-
ing technology, DRL has been effectively applied to various areas. With the help of neural
networks as function approximators, DRL can handle large dimensions of state or action
space [25–30], which is the case with autonomous vehicle platoons [31]. Using a model-free
DRL algorithm eliminates the need to model the environment’s complicated dynamics (the
transition function/probability distribution). Instead, agents can learn from interacting
with the environment for millions of time steps, and the more complicated the environment
is, the more interactions the agent will need to find the optimal actions at the given state
that maximize the long-term reward.

Autonomous vehicle maneuvers have been studied exhaustively using RL methods.
For example, References [32,33] proposed a lane-keeping model using RL, while lane
change maneuvers were performed using RL in [34], where the trained agent could per-
form a proper lane change under unforeseen scenarios. Reference [35] proposed a recurrent
architecture for a DRL approach to execute an on-ramp merge safely. A multiple-objective
RL method capable of lane keeping and performing an overtaking maneuver with collision
avoidance is proposed in [36]. On the other hand, using RL to perform a platoon-related
task is relatively new. Reference [37] introduced an RL scheme to find the optimal path for
autonomous vehicles to form a platoon. The authors used the greedy Q-learning technique
to find the optimal path that reduces energy consumption. In [38], the authors proposed a
hybrid RL technique with a genetic algorithm (GA) method to control platoon formation
and reduce traffic congestion and fuel consumption. GA is adopted to enhance the explo-
ration stage of training, reduce computational costs, and accelerate the convergence rate.
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In [39], the longitudinal control of platoons is studied. The proposed RL approach reduced
the traffic oscillations by up to 42%.

Table 1. State-of-the-art articles on platoon control maneuvers.

References Vehicle Dynamics Environment Evaluation Application Control Technique

[12] Longitudinal MATLAB Fuel consumption On-ramp merging Optimal control

[19]
Longitudinal

and lateral
Not mentioned Controller stability Platoon Merging Distributed MPC

[20] Not mentioned VISSIM [40] String stability
Merging and

splitting of platoons
PID

[22] Longitudinal Not mentioned Collision avoidance
Platoon merging facing

road reduction
Distributed state

feedback controller

[38] Longitudinal
PLEXE [41]
and SUMO

Fuel consumption,
connectivity strength,

platoon stability,
platoon size,

and time

Platoon formulating Hybrid DRL

[39] Longitudinal SUMO
Traffic oscillation

and platoon stability
Platoon longitudinal

control
Soft actor–critic (SAC)

[42]
Longitudinal

and lateral
AUDRIC/
Dynacar

Safety Platoon Merging
Feedforward and

feedback controller

[43]
Longitudinal

and lateral
MATLAB
and ROS

Safety
Platoon maneuver

protocols

PID, adaptive MPC,
and Lyapunov

controller

[44] Longitudinal PLEXE String stability
Joining and

leaving platoon
Consensus-based

controller

[45]
Longitudinal

and lateral
SUMO

Traffic flow,
average speed,
and delay time

Platoons at non-
signalized intersection

PPO

[46] Longitudinal SUMO
String and

controller stability
Platoons gap

closing/opening
Deep deterministic

policy gradient (DDPG)

[47]
Longitudinal

and lateral
MATLAB Controller robustness

Multi-vehicle
merging into

platoon
Nonlinear MPC

This work
Longitudinal

and lateral
Python

Fuel consumption,
time, jerk,

maximum jerk,
and speed

Platoon merging facing
road reduction

Maskable PPO

Compared to the literature, the use of RL to determine the optimal merging location
has not been investigated, and this paper fills this gap by utilizing DRL to find the merging
strategy that optimizes several metrics, including time to merge, jerk, maximum jerk, speed,
and energy consumed.
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3. Simulation Environment
3.1. Vehicle Platoon

The platoon configuration we consider in this paper is shown in Figure 1, where the
destination platoon consists of ten vehicles to measure the impact of the merging technique
(nine followers and one leader). These vehicles are initialized to be 11 m away from each
other. On the other side, the merging platoon consists of four vehicles (three followers and
one leader). Suppose that the lane for the merging platoon is about to end, and the goal
here is to find the optimal merging location for the destination platoon. Therefore, by the
end of the simulation, all the merging vehicles should be merged to the destination platoon
on the other lane to form one single platoon of fourteen vehicles (thirteen followers and a
single leader).

Figure 1. Initial platoon configuration.

The platoon travels as one unit without the need to physically couple the vehicles of
the platoon, which can be achieved by maintaining a fixed spacing distance between the
platoon’s members. Two typologies are used in the literature to achieve that, i.e., constant
spacing policy and time headway policy. In the constant spacing policy, the platoon ensures
the desired spacing between each vehicle in the platoon regardless of the velocity of the
platoon. In the headway time policy, the desired spacing changes with respect to the
vehicle’s velocity so that the spacing distance is more extensive for higher velocities to
ensure safety by providing more time for the follower vehicle to react to breaks. The platoon
in this paper uses the constant distance spacing policy.

At the start of the scenario, the initial speed of the vehicles and the inter-vehicular gaps
are equal to their respective desired values. The desired speed, vd, equals 10 m/s. All the
merging platoon vehicles can ask to merge at any time during the simulation. Furthermore,
since the platoons consist of CAVs that are capable of communicating with each other
for cooperating merging when any vehicle asks to merge, a gap generation operation
will be cooperatively performed by nearby vehicles in both platoons to ensure sufficient
space for the merging vehicle to perform a lane change. Particularly, the controller selects
the vehicles that need to increase their spacing distance so that there is a safe distance
for the merging vehicle to merge into (Figure 2). The selection will be based on the
position of the merging vehicle. When the gap generation operation is complete, the lateral
controller of the merging vehicle will perform a lane change to merge with the destination
platoon. After the merging vehicle arrives at the target lane, a platoon reformulation occurs.
The reformulation reassigns the leader of the platoon to the front vehicle and the target
vehicle for each vehicle.
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Desired inter-vehicular distance

Destination platoon vehicles

Merging vehicle

Figure 2. Illustration of gap generation.

3.2. Vehicle Model

Both the longitudinal and lateral dynamics of vehicles are taken into consideration.
The vehicle dynamic model is briefly described in this section, and interested readers are
referred to the relevant reference, e.g., [48–50]. The model of the vehicle used is depicted in
Figure 3 and can be formulated as follows [48]:

v̇ = a (1a)

ṗx = v cos(φ) (1b)

ṗy = v sin(φ) (1c)

φ̇ =
v
l

tan(ζ), (1d)

where (px, py) denotes the position of the vehicle, l is the wheelbase, and φ is the yaw angle.
The control variables are the acceleration a and the steering angle ζ.

�

v

ζ

φ

x

y

Figure 3. Schematics of the vehicle dynamics model.

3.3. Longitudinal Control

In longitudinal control, the controller tracks the difference between the longitudinal
position of the follower vehicle and the longitudinal position of its target vehicle (the vehicle
in the front) to the desired value for each follower vehicle by controlling the acceleration of
the vehicle. A conventional PID controller is used to control the longitudinal inter-vehicular
distance between each vehicle and the vehicle in front of the same platoon. The PID is
formulated as

uk(t) = kp ek(t) + kd
d
dt

ek(t) + ki

∫ t

0
ek(t) dt, (2)
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where kp, kd, and ki represent the proportional, derivative, and integral gain of the controller,
respectively. uk(t) and ek(t) are the control variable and the error signal of the kth vehicle,
respectively. The error signal can be calculated as

ek(t) = xk+1 − xk − dre f , (3)

where xk+1 and xk are the longitudinal coordinates of the kth vehicle and its target vehicle,
respectively. dre f represents the desired inter-vehicular distance.

3.4. Lateral Control

When the gap generation operation is complete, the merging vehicle generates a lane-
changing path and follows it to the other lane. Using Bézier curves to generate the reference
trajectory results in smoother routes that are easy to track by the merging vehicles [51].
With n + 1 control points, a Bézier curve of order n is formulated as described by [51]

P[t0,tt1]
(t) =

n

∑
i=0

Bn
i (t) Pi, (4)

where Pi are control points, and Bn
i (t) is the Bernstein polynomial given by

Bn
i (t) =

(
n
i

)
(

t1 − t
t1 − t0

)n−i (
t− t0

t1 − t0
)i i ∈ {0, 1, ..., n} (5)

A Bézier curve has several unique properties, but the most satisfactory for lane-
changing maneuvers is that the curve’s starting and ending segments are tangent to the
first and last points. Therefore, the line between the first two control points and the line
between the last two control points can be selected to be parallel to the lanes (Figure 4).
By doing this, at the end of the lane change, the vehicle will have the same heading angle
as the lanes.

Initial location

P0(xv+L/2, yv)

P1(p0x+q, yv)

(xv, yv)

P2(p4x-q, ytv)

L

P3(xtv-L/2, ytv)

Target location

Figure 4. Lane changing cubic Bézier curve.

A third-order Bézier curve with four control points (p0, p1, p2, and p3) is used in this
paper. Therefore, (4) reduces to

P(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3, (6)

with t ∈ [0, 1]. As shown in Figure 4, the first and last control points (P0, P3) are positioned
at the front of the merging vehicle and the back of its target vehicle, respectively. The orien-
tation of lines P0P1 and P2P3 are parallel to the lane lines to reduce the vehicle’s post-curve
adjustment time. Furthermore, setting

q = P0,x − P1,x = P2,x − P3,x, (7)

yields a symmetric Bézier curve around the path center, making q the only hyperparameter
to be tuned to obtain a smooth curve.
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Similar to longitudinal control, a PID controller is used to track the lateral offset
between the vehicle and the Bézier trajectory. When the merging vehicle reaches the center
of the target lane, the PID lateral controller is then used to track the center line so that the
vehicle will be performing lane-keeping.

4. Preliminary Study on Reinforcement Learning
4.1. Deep Reinforcement Learning (DRL)

An RL algorithm can be formed as a Markov decision process (MDP) [25,28–30],
a statistical technique that samples from a complicated distribution and estimates its
characteristics. MDP is used to choose the appropriate action given a complete set of
observations [52]. When the environmental dynamics are complex to determine, at least
without oversimplifying, the best way to study it is through statistics. The mechanism can
be understood by sampling to find a correlation between specific events and state-action
pairs. MDP is a tuple of (s, a, p, r, γ) where s is a set of states, a is the set of actions the agent
can take, p is the transition probability matrix, r is the immediate reward emitted by the
environment upon the receipt of the actions from the agent, and γ is the discount factor.
The interactions between the agent and the environment help the policy better estimate
the probability distribution of the reward when selecting an action given a particular
state. For example, with the agent utilizing MDP to interact with the environment for
several time steps, the policy, π, may tend to increase the likelihood of selecting the actions
that maximize the cumulative discounted rewards it receives. In order to converge on the
optimal policy, the agent should balance exploring and maximizing the total rewards, which
is called the exploration and exploitation dilemma. The agent should start by collecting
information about the environment (exploring) to make good future decisions (exploiting).

DRL combines deep neural networks and a reinforcement learning technique to
help the agent increase the cumulative rewards. The need for more efficient function
approximators becomes more critical with the increase in states or actions dimension.
As the name indicates, deep reinforcement learning uses a deep neural network to estimate
the value function of each state, which is the case in value-based reinforcement learning
approaches [53]. Alternatively, the deep neural network can be used to learn the optimal
policy that maps states to actions, such as the REINFORCE method [54]. Some other
reinforcement learning algorithms use multiple neural networks to perform different tasks,
such as the actor-critic methods [55].

4.2. Proximal Policy Optimization Algorithm

In this work, the proximal policy optimization (PPO) algorithm is used [14,15], which
is a policy based on the policy gradient RL algorithm. In general, policy gradient methods
attempt to optimize the policy directly [56]. The policy, π, is a function approximator,
usually a neural network, parameterized with respect to a set of parameters θ. Essentially,
gradient ascent is used to change θ towards the increase in the cumulative rewards. Policy
gradient methods are significantly faster in practice [25], but they suffer from some funda-
mental problems. For example, the agent’s training data are based on the current policy
when the data were collected, which causes the rewards and observations distribution
to constantly change based on the current policy. This change leads to instability in the
whole training process. Furthermore, policy gradient methods are susceptible to hyper-
parameters such as entropy coefficient, learning rate, and weight initialization, to name a
few. To address these issues, PPO has been proposed in the literature as a scalable, robust,
and sample-efficient policy gradient algorithm that is also relatively easy to code.

For policy gradient methods, the loss is defined as follows:

LPG(θ) = Ê[log πθ(at|st)Ât], (8)
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where Ê is the expected return over a batch of data, Ât is the estimation of the advantage
function at time step t, and πθ is a stochastic policy. πθ(at|st) is the likelihood of choosing
the action a given the state s. The advantage function can be calculated as

Ât = Gt −Vt(s), (9)

where Gt is the total discounted rewards, and vt is a function or value estimation of the
state s. Making multiple optimization steps on this loss using the same data collected from
the environment is not advised because that might change the policy too much towards that
specific trajectory. TRPO [56] has already tried to solve this issue, but their solution (trust
region optimization method) includes a second-order derivative and its inverse, which
is very computationally expensive. PPO solved the same problem by introducing a soft
constraint that makes the objective function solvable using a first-order optimizer. The new
objective function will prevent the policy from changing too much by clipping the objective
value, making it possible to run multiple optimization steps on the cost function without
moving the policy too far in the parameter space. The loss function proposed by PPO is as
follows [15]:

LCLIP(θ) = Ê [min(rt(θ) Â, clip(rt(θ), 1− ε, 1 + ε))Â], (10)

where rt is the probability ratio of the policy before the new policy and the policy before
the update πθold(at|st). The epsilon is a hyperparameter that defines how much an update
can change the policy. In the PPO algorithm, the agent collects data by interacting with
the environment. Next, the advantage estimate of each state is calculated. Finally, for k
epochs, the stochastic gradient descent is applied with N mini-batches of the collected data
to update the policy. A pseudocode of the PPO algorithm is shown in Algorithm 1.

Finally, Figure 5 shows a flow chart of the PPO algorithm.

Figure 5. Data flow diagram of the PPO algorithm.
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Algorithm 1 PPO, Actor–Critic Style [15]

for iteration 1,2, ... do
for actor=1,2, ... N do

Interact with the environment using the πθold policy
feed the states to the critic network to calculate states

base estimate
Compute advantage estimates

end for
Optimize surrogate L wrt θ, with K epochs
update the policy

end for

5. RL-Based Merging Strategy
5.1. States Observation and Action Space

In this simulation, there are fourteen autonomous vehicles. Four are in the merging
platoon, and the rest belong to the destination platoon. The states should describe all the
essential information about every vehicle so that the agent can have enough information
to take reasonable actions. The global x position of every vehicle is provided, and the
relative distance of each merging vehicle to the start of the road reduction is provided, as
shown in Figure 6. The state of whether every merging vehicle is merged or not is also
fed to the network. It can be observed that there are continuous and discrete attributes,
and each has its own maximum and minimum values, meaning that in order to achieve a
fast convergence, normalization is inevitable. The state vector can be formed as follows:

S =



pxi1
...

pxi10

pxj1
...

pxj4

Rj1
...

Rj4
sj1
...

sj4



, (11)

where i and j denote the destination and merging platoon vehicles, respectively, as shown in
Figure 6. px is the global x coordinate, R is the relative distance between the corresponding
vehicle and the starting point of the road reduction, and s is the status of the vehicle
as follows:

sv =

{
1, => if vehicle v is merged
0, => if vehicle v is not merged

(12)

Since we have four vehicles in the merging lane, the action space size is four, one for
each vehicle. The action should stimulate the corresponding merging platoon vehicle to
ask to merge with the other lane. There are two options for the action space: discrete or
continuous. The continuous option means that the agent will select a relative distance at the
start of the simulation to ask to merge and ultimately try to find the optimal distance. That
approach works only if perfect prediction of the future behavior of all vehicles is available.
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On the other hand, with the discrete action space, the agent will make real-time actions
based on the observations it is receiving. The action for the vehicle v is as follows:

av =

{
1, => Request to merge
0, => Stay in the same lane

(13)

Merging platoon vehicle

Start of the reduction

Rj1

Rj2

y 

xi10

xj4

Figure 6. Observation space measurements.

5.2. Rewards Functions

In this paper, different reward functions will be used to train the RL model to in-
vestigate their impact on the merging strategy. The vehicles’ time consumed, energy
consumption, mean jerk, maximum jerk, and relative position are characteristics used to
incentivize or discourage the agents’ decisions. The first important index is that all the
vehicles merge with the not-ending lane and do not crash. A penalty of negative rewards is
returned to the RL algorithm for every non-merged vehicle that gets close to the start of the
road reduction.

5.2.1. The Energy Consumption

The amount of energy consumed during the maneuver is essential in evaluating the
model behavior. In this work, an electric vehicle energy model is used to calculate the
energy consumed by all vehicles to finish the merge. Using Newton’s second law, the forces
on the wheel can be formed as follows in Equation (14).

∑ Fx = m a, (14)

where a is the vehicle acceleration, m is the mass of the vehicle, and Fx is the summation of
forces applied on the vehicle in the x direction. Substituting the forces shown in Figure 7 is
expressed in Equation (15).

Ft − Fa + Fg + Fr = m a, (15)

where Fa = 0.5 Cd(D) ρ A v2 is the aerodynamic resistance, Fr = m Cr g cos(θ(t)) is the
friction force, Fg = m g sin(θ(t)) is the gravity force, and Ft = m aw is the traction force.
Note that here aw is the wheel acceleration, A is the frontal area of the vehicle, ρ is the air
density, g is the acceleration of gravity, θ(t) is the gradient of the road, Cd is the air drag
coefficient, Cr is the rolling resistance coefficient, g is the gravity acceleration, a is vehicle
acceleration, and D is the relative distance between the vehicle and the vehicle in front of
it [57].

Reorganizing and substituting the force formulas in Equation (15) yields:

aw = a +
0.5 Cd(D) ρA v2

m
+ Cr g cos(θ(t)) + g sin(θ(t)) (16)



Sensors 2023, 23, 990 12 of 23

This work adopts a 2019 Nissan LeafSV EV from [12]. The energy consumption of the
vehicle during the simulation time ts is as follows:

Re =
∫ ts

0
(m aw v +

b (mrt)2

ξ2 a2
w) dt, (17)

where ξ is the gear ratio, rt is the radius of the tire, and b is the motor loss coefficient,
measured experimentally.

Θ

Fr

Fg FN

FN

Fa

Ft

Figure 7. Free body diagram of the vehicle.

5.2.2. The Vehicle Jerk

Passenger comfort has been studied thoroughly, especially for automated vehicles,
as it can affect the adoption of autonomous vehicles. Repetitive exposure to low-frequency
motions can develop motion sickness [58], and regular exposure to high-frequency motions
can lead to lower back pain [59,60]. The jerk can be used to sense these discomforts and
sudden acceleration changes and ultimately optimize the autonomous vehicle’s behavior
to ensure comfortable driving. This work uses the mean and the maximum jerk as reward
functions to train the RL agent. For the mean jerk, the absolute value of the jerk of every
vehicle is calculated, and the mean is sent as the reward. The reward function is expressed
as follows:

Rj =
−1
N

N

∑
n=1

(
an,k − an,k−1

dt
), (18)

where Rj is the step rewards, k is the time step, and N is the number of vehicles.
For the maximum jerk as a reward function, only the maximum jerk of all vehicles is

returned as the step reward. In this case, the reward function is expressed as:

Rmj = −||Jk||∞, (19)

where Jk is a vector of the absolute values of all the vehicles’ jerk at time step k.

5.2.3. Time

Another metric used to train the RL is time. Reducing the time it takes all the vehicles
to finish the merge reduces traffic congestion. For every time step, a negative reward will
be sent to the RL agent until all of the merging platoon vehicles have already merged to the
other lane. This will incentivize the agent to merge all the vehicles as soon as possible.

Rt =

{
−r, => if merging vehicles did not merge yet
0, => if all merging vehicles have merged

(20)
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5.2.4. Speed

Another reward function is proposed to encourage the model to get all the vehicles to
go through the merge faster. A relative position (longitudinal velocity) of the last vehicle in
the destination platoon is returned to the agent at each time step. The reward function can
be obtained as follows:

Rs = xvl ,k − xvl ,k−1, (21)

where xvl ,k is the global x position of last vehicle in the destination platoon at time step k.

5.3. Maskable PPO

Based on the nature of our simulation, the valid actions change based on the state of
the environment. Therefore, for example, a gap generation operation will start when one of
the vehicles asks to merge. The vehicle’s state will be changed accordingly to “merged”,
which means the agent should not be able to ask a vehicle to merge again after it is already
merged into the target lane. That means for the rest of the simulation, the only proper
action for a merged vehicle is “stay in the same lane”.

There are three methods to solve this problem.

• The first one is to build the simulation environment to ignore invalid actions. However,
this method is not sampling-efficient since sampling ignored actions that do not affect
the environment will waste a significant amount of time.

• In the second approach, a negative reward is set to penalize choosing an invalid
action so that the agent will eventually learn only to select valid actions. This method
will add an unnecessary complication for the policy to learn, increasing the required
convergence time.

• In the third approach, a mask is used to block invalid actions, allowing the policy
to only choose within the available valid actions at that state. In [61], the theoretical
justification for using masking in policy gradient methods is proved.

All three approaches have been implemented in this work, and it was determined
that the third approach, namely, Maskable PPO, performs the best. Figure 8 shows the
difference in convergence time between a regular PPO, where the environment ignores
invalid actions, and maskable PPO (MPPO). All numerical results presented in the rest of
this paper are collected using MPPO.
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Figure 8. Comparison of training progress of MPPO and PPO.
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6. Numerical Results and Discussion

A series of tests were performed to evaluate the performance of the proposed frame-
work using our recently developed object-oriented toolbox for Python. The system includes
a collection of tools and interfaces for simulating and displaying the movement of the
vehicles within an intelligent transportation system environment. It also calculates the
performance indices to evaluate the merging technique of the trained model. The tool-
box consists of two main components, the DRL model and the environment. The PPO
algorithm represents the DRL model. However, there are multiple implementations for
the PPO algorithm (DRL model) [62]. Therefore, the maskable PPO from [14] is adopted
in this work. The environment is created to be an OpenAI Gym class [63], with built-in
functions to perform the low-level controllers to manage the simulation of non-RL-related
actions. The toolbox operation consists of two stages, training and evaluation. After train-
ing, the model will be used to predict actions, and a test scenario will be simulated to
evaluate the performance indices of the model behavior. This section presents numerical
results. We start with single objective RL, followed by the multi-objective RL that combines
all important metrics. Table 2 lists all the parameters used in this simulation. Simulations
were performed with high-performance computing (HPC) nodes running Red Hat En-
terprise Linux release 8.6 (Ootpa) with 192 GB of RAM and 40 CPU Cores at 2.50 GHz.
The training time of a maskable PPO model with 2048 steps for each rollout and 64 batch
size is 6000 episodes, around 10 h. On the other hand, the time required to simulate an
entire scenario and evaluate the model actions is 400 ms.

Table 2. Simulation parameters.

Parameters Value Description

N 14 Total number of vehicles

r 1 Time model negative reward

q (m) 6 Distance between control points to obtain a smooth Bézier curve

θa 22 × 64 × 64 × 8 Actor Network Architecture

θc 22 × 64 × 64 × 1 Critic Network Architecture

vd (m/s) 10 Leaders desired speed

dre f (m) 11 Desired inter-vehicular distance

Batch Size 64 Number of tuples propagate the network

ε 0.2 Clipping hyperparameter

Number of Epochs 10 How many times experiences are used to train the network

RL discount factor γ 0.99 Defines the priority of immediate rewards

l (m) 4 Wheelbase length

m (kg) 1618.87 Mass of the vehicle

ρ (kg/m3) 1.28 Air density

A (m2) 2.5334 Frontal area of the vehicle

θ(t) (rad) 0 Gradient of the road

g (m/s2) 9.81 Acceleration of gravity

Cr 0.015 Rolling resistance coefficient

ξ 8.193 Gear ratio

r (m) 0.4318 Radius of the tire
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Table 2. Cont.

Parameters Value Description

b 1.0355 Motor loss coefficient

kp 0.2 Proportional gain

kd 0.7 Derivative gain

ki 0.00034 Integral gain

6.1. Single Objective RL

Evaluation results of each single objective RL model are summarized in Table 3,
where the “Simple Early Merge” model is a manually designed merging strategy for
benchmarking. Specifically, this simple merging behavior would make all vehicles ask to
merge at the start of the simulation, yielding a zipper-like configuration of the resultant
single platoon. Detailed discussions on the results are given as follows.

Table 3. Evaluation results of different single objective RL models.

RL Model Re Rj Rmj Rs Rt Simple Early Merge

Energy Consumed (MJ) 21.24 44.76 91.5 92.77 80.2 91.5

Average Jerk (m/s3) 0.4907 0.4478 0.6841 0.692 0.634 0.6841

Maximum Jerk (m/s3) 2.95 2.436 2.3019 3.09 2.565 2.3019

Last Vehicle’s Average Speed (m/s) 7.67 6.17 8.869 8.865 8.91 8.869

Time (s) 27.1 28.8 18.2 18.1 17.4 18.2

6.1.1. Results for Minimizing Energy Consumption Only

For the first case, the RL agent is trying to reduce the energy consumed by the vehicles.
The average of all the vehicles’ energy consumed is returned every time step. As shown in
Table 3, the RL agent reduced the energy to around 21.24 MJ, which is more than 76% better
than doing an early merge of all the vehicles at the start of the simulation. Furthermore,
the average jerk is also significantly reduced. The RL model performed a zipper merge,
starting with the first vehicle of the merging platoon asking to merge and the last vehicle
of the merging platoon being the last one to ask to merge. Figure 9 shows the training
progress of ten different seeds.

6.1.2. Results for Minimizing the Time Required to Finish the Merge

The RL agent is trying to reduce the time required to merge all the vehicles into one
platoon. The apparent attempt to minimize the time required to finish the merge is to start
merging as soon as possible to minimize the time required. However, the RL agent found
a better cooperative behavior that does not merge all vehicles at the start. Instead, some
vehicles surprisingly wait some time before asking to merge, which proves that the pattern
or behavior of merging significantly affects the merging performance. As a result, the agent
learns to perform an early zipper merge to finish in only 17.4 s, as shown in Table 3. The
training progress is shown in Figure 10. It can be observed that even with the untrained
model (random actions), the time rewards achieved are relatively good. The reason is that
at each time step, the agent has two options for each vehicle, merge or stay in the same
lane, which makes the starting probability of each action to be chosen by the agent 50%.
Given that the agent will be asked to choose an action ten times every second, it is very
likely that the agent will ask all the vehicles to merge in the first second.
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Figure 9. The training plot of the energy as a reward function.
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Figure 10. The training plot of the time as a reward function.

6.1.3. Results for Maximizing the Speed of the Last Vehicle in the Destination Platoon

In the third case, the change in the x position of the destination platoon’s last vehicle
is returned to the agent. The change in the x position represents the longitudinal velocity.
Increasing the longitudinal speed of the last vehicle increases the traffic flow. The agent’s
average speed of the last vehicle is 8.8 m/s, where the desired speed of the last vehicle is set
to 10 m/s. Figure 11 shows the training progress of ten different seeds. It is worth noting
that, in this case, the last vehicle’s speed is actual lower that the case of Rt. This is likely
due to the fact that rewarding based on one single vehicle can take a longer time for RL to
converge and there can be multiple local optima for the RL training algorithm. However,
as can be seen from Table 3, Rs did perform better than the cases of the benchmark Simple
Early Merge model and Rmj.
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Figure 11. The training plot of the speed as a reward function.

6.1.4. Results for Minimizing the Mean Jerk of All the Vehicles

In the fourth case, the RL agent reduces the changes in acceleration and/or deceleration
of the vehicles. The average jerk of all of the vehicles is returned to the agent. The RL
learned to merge in 28.8 s with only 0.4478 m/s3 average jerk. Reducing the average jerk
reduces the vehicle’s changes of acceleration and deceleration and, therefore, decreases
energy consumption by more than 51% less than a regular early merge. Figure 12 shows
the training progress of ten different seeds.
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Figure 12. The training plot of the average jerk as a reward function.

6.1.5. Results for Minimizing the Maximum Jerk

Reducing the average jerk does not necessarily mean that the jerk is satisfied for every
vehicle at each time step. In the fifth case, the RL is encouraged to reduce the maximum
jerk of all vehicles. The maximum value of all the vehicles’ jerks is returned to the agent
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at every time step. The RL agent successfully reduced the maximum jerk to 2.3019 m/s3,
5.5%, and decreased the time spent by 36.8%, which is better than the average-jerk RL. This
comes with the cost of increasing energy consumption by 51% and the average jerk by
52.7%. The training progress of ten different seeds is shown in Figure 13.
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Figure 13. The training plot of the maximum jerk as a reward function.

6.2. Multi-Objective RL

It can be observed that when the average jerk is minimized, the agent takes too long
to finish the merge, but when time is the main objective of the RL, the energy consumed
and the jerk increase. This means there should be a balance based on the type of drive
required. A weighted sum of all the individual rewards is returned to the agent every time
step, which can be formulated as follows:

Rmulti-objective = −δ1Rt + δ2Rs − δ3Rj − δ4Re, (22)

where δ1,2,3,4 ∈ [0, 1] are the weights. Re, Rj, Rt, and Rs are formulated in Equations (17),
(18), (20), (21), respectively. Figures 14 and 15 show the training progress of ten different
seeds with weights δ1 = 0.2, δ2 = 0.1, δ3 = 0.3, δ4 = 0.3 (Case 1) and δ1 = 0.1, δ2 = 0.1,
δ3 = 0.3, δ4 = 1 (Case 2), respectively. The agent will accommodate with regard to
time and energy for the first set of weights while maintaining a low amount of mean
jerk, while the agent for Case 2 will care more about energy, which increases the time
by a few seconds, as shown in Table 4, which lists an additional result for Case 3 with
δ1 = 0.2, δ2 = 0.1, δ3 = 0.4, δ4 = 0.4. As can be seen from Table 4, the merging strategy is
greatly influenced by the weights for (22). Usually, the balance of each metric is up to the
policymaker, and the proposed framework is flexible to accommodate a variety of merging
strategies by simply changing the weights of (22) and, hence, avoiding manual control
design for each scenario.
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Table 4. Evaluation results of the multi-objective RL with different weights.

Case 1 Case 2 Case 3

Max Jerk (m/s3) 3.01 2.6 3.35

Avg Jerk (m/s3) 0.52 0.54 0.57

Last Vehicle’s Average Speed (m/s) 7.75 8.9 7.97

Energy Consumed (MJ) 56.66 46.48 83.68

Time (s) 25.5 21.6 22.4
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Figure 14. The training plot of the multi-objective reward function (Case 1).
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Figure 15. The training plot of the multi-objective reward function (Case 2).
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7. Conclusions

This paper shows that deep reinforcement learning (DRL) is a promising approach
to control different aspects of the behavior of connected and automated vehicles (CAV)
approaching a lane reduction. This work investigates the cooperative merging of two
platoons of electrified CAV during a lane reduction. A DRL framework is proposed to
learn the optimal merging policy to best utilize road capacity while ensuring safety and
passenger comfort. To minimize the time, energy, and average jerk required for connected
vehicles, actor–critic style maskable proximal policy optimization is used to predict the
distance at which the merging vehicle should request to merge, and we employed a Bézier
curve and a PID controller to handle low-level control tasks and produce an optimized
driving behavior. Using PPO-based deep reinforcement learning, we were able to train a
model that can find the appropriate actions based on the current driving conditions and
the surrounding vehicles, resulting in a reduction of 76.7% in energy consumption and 50%
in average jerk. The results show that the time at which vehicles merge can significantly
affect the traffic flow, energy consumed, and the passengers’ comfort.

For future work, due to modern highways often having three lanes, this method could
be used as a foundation for exploring 3–2 or 3–1 road reduction scenarios. Furthermore,
a cooperative multi-agent reinforcement learning algorithm could be used instead of a
single centralized controller, which is vulnerable to communication failures or latency.
A transportation simulator, e.g., SUMO [64], will be used to investigate the effect of the
proposed RL-based cooperative merging strategy on large-scale traffic. In addition, it is
important to note that platoon merging requires cooperation from all vehicles in order
to function correctly. However, this may not always be feasible in real traffic situations,
as some vehicles may choose not to cooperate or may not have the ability to communicate.
Therefore, a more complicated scenario should be considered.
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