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ABSTRACT
Event-triggered control has been gaining popularity as a method to reduce the computational
burden of model predictive control (MPC). Existing literature reports its successful use in power
converter applications. In our survey, event-triggered model predictive control (ET-MPC) is used to
improve the computational performance of an enumeration-basedMPC controlled boost converter.
ET-MPC solves an optimal control problem (OCP) to generate an optimal actuating value only when
an event is triggered as opposed to solving the OCP at every time step, and hence reduce the com-
putational load. In addition, a Kalman Filter-based estimator is added to the control system to ensure
accurate voltage tracking even in the presence of model mismatch, which commonly occurs during
load transients. The novelty of thiswork lies in the selection of the actuating control signal, where the
control actions are selected from the optimal switching sequence as opposed to upholding the last
value of the optimal actuating value as reported in prior literature. Extensive simulation evaluations
are conducted to compare the performance of conventional time-triggered MPC and the proposed
event-triggered MPC, where the event-trigger threshold is used as a tuning parameter to balance
computation and control performance.
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1. Introduction

MPC has been gaining popularity as a control method
for power converters (Ahmed et al., 2020a, 2020b; Han
et al., 2021; Rodriguez & Cortes, 2012; Serri & Ahmad,
2016). MPC is an intuitive control method which utilizes a
systemmodel and a control objective to select an optimal
actuating control signal. This is achieved by solving a cost
function which generates an optimal control sequence
across a prediction horizon (Rawlings et al., 2017). Tradi-
tional MPC utilizes a receding horizon approach in which
the first control signal in the optimal control sequence is
selected at each time step the OCP is triggered. The rest
of the sequence is dismissed, and a new one is gener-
ated at the following time step. The predictive nature of
the controller enables a faster system response. Another
advantage of the MPC controller is that it can handle
multiple inputs andoutputs since it captures their interac-
tions through the system model. Additionally, the inclu-
sion of control objectives and protections within the
cost function allows the system designer to reduce the
number of sensors (Chen, Behal, et al., 2021; Chen, Li,
et al., 2021; Chen, Liang, et al., 2021; Liang et al., 2019;
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Umeno & Maruta, 2020; Xie et al., 2009). Recent advance-
ments in the processing speed of modern microcon-
trollers has allowed for a wider use of MPC in power
converter control.

The control objective of a DC-DC boost converter is
to have the output voltage track a reference voltage.
Regulation must be achieved despite disturbances on
the input voltage and load variations. Additional control
objectives canbe included such as current limiting to pro-
tect components from overheating and to protect mag-
netic devices from reaching saturation. Another control
objective is limiting the switching frequency to reduce
switching losses.

A brief explanation of a time-triggered enumeration-
based MPC controller for a boost converter is shown in
Figure 1. It starts with a math model of the converter.
The model receives a set of switching sequences that
span across the selected prediction horizon. The predic-
tion horizon duration is equal to the number of switching
states Nmultiplied by the time step Ts. The model solves
the OCP using the switching sequences along with the
inductor current and output voltage measurements to
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Figure 1. Enumeration-based model predictive control for boost converter.

decidewhich sequence achieves voltage regulationwhile
meeting other system objectives.

Model inaccuracies are introduced as the time step (Ts)
increases and due to parameter tolerances. These inaccu-
racies will not allow the controller to regulate the voltage
effectively. Another example is during a load transient
where the load resistance used in the model changes.
The regulation performance of the time-triggered MPC
boost converter during load transients can be improved
through the implementation of a Kalman Filter-based dis-
turbance observer (Beccuti et al., 2009; Hargrave, 1989;
Karamanakos et al., 2013; Pannocchia, 2015; Pannocchia
& Bemporad, 2007; Rigatos et al., 2018)which is described
in a later section.

The purpose of this work is to develop an event-
triggered MPC to reduce the computational burden of
enumeration-based direct MPC in the control of a boost
converter. It has been shown in Badawi and Chen (2022a,
2022b) that significant computational savings canbe real-
ized as the event-trigger threshold increases while com-
parable performance to an enumeration-based MPC can
be accomplished. However, a trade-off must be made
while selecting the trigger threshold to reduce the track-
ing error, voltage ripple and inductor peak current during
steady state operation. We show in this work that during
certain operating conditions, an 85% reduction in com-
putations can be achieved. Additionally, a Kalman filter-
based disturbance observer is introduced to address load
transients,which is used toestimate the state variable and
disturbances and compensate for the error introduced
into the model due to the change in load. The results
shared in Section 7 demonstrate that the event-triggered
MPC is effective in reducing the computational burden

during a load transient while reducing the settling time
up to 1ms during the transient.

The rest of this paper is organized as follows. A liter-
ature review of relevant work is presented in Section 2.
Section 3 gives an overview of the discrete-timemodel of
a DC-DC boost converter and the Kalman-based estima-
tor. Section 4 describes the implementation of the pro-
posed event-triggered MPC for a boost converter. Simu-
lation results highlighting the performance of the event-
triggered controller under different operating conditions
including reference voltage changes and load transients
using a Kalman-based disturbance estimator are pre-
sented in Section 5. We discuss the influence of the con-
trol parameters in Section 6 and the paper is concluded in
Section 7 with future work directions.

2. Literature review

Power converterswhichutilizeMPC in their control canbe
generally categorized asdirectMPCor indirectMPC (Kara-
manakos & Geyer, 2020). Direct MPC is when the output
of the controller directly actuates the switch and it has
been implemented in Kouro et al. (2008), Karamanakos
et al. (2013), Villarroel et al. (2021) and Snehal et al. (2021).
Indirect control MPC implements a modulator which
receives an optimal duty cycle from the controller andhas
been implemented in Jin et al. (2022), Geyer et al. (2008),
Beccuti et al. (2009), L. Chen et al. (2019) and Liang
et al. (2018). Direct control is particularly challenging due
to the processing of a large amount of computations
in a short sampling interval. Direct MPC with reference
tracking is also known as Finite Control Set (FCS) since
it utilizes a finite number of possible switch positions to
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define the switching sequences (Cortes et al., 2009; Di
Salvo et al., 2022; Ding et al., 2022; Gardezi & Hasan, 2018;
Karamanakos & Geyer, 2020). Onemajor drawback of FCS
MPC is its extensive need for computational resources as
a large number of computations are conducted within
a sampling period on the order of microseconds. Due
to this challenge, FSC MPC comes with a risk of being
computationally intractable (Karamanakos et al., 2020).
The computational burden is especially an issue for con-
verters with non-minimum phase behaviour such as
boost and buck-boost converters. Non-minimum phase
behaviour in a boost converter translates to an initial
delay in the response of the converter when the main
switch is set to the ON position. This results in a slight
dip in the output voltage, which then adjusts after sev-
eral switching cycles. In an enumeration based MPC con-
trol scheme, this response requires an extension of the
switching sequence prediction horizon NTs.

Implementing an event-triggered MPC (ET-MPC)
method saves on computational resources and has been
implemented in different applications and referenced
in Eqtami et al. (2011), J. Chen et al. (2022), Chen
and Yi (2021), Yoo and Johansson (2021), Li and Shi (2014)
and Hashimoto et al. (2016) and on a boost converter
in Badawi and Chen (2022a, 2022b). The results show
significant computational savings with comparable per-
formance to the time-triggered formulation. In Chen,
Wang, et al. (2021), event-trigger control applied to a
FCS MPC is used to regulate the voltage of a three-phase
inverter. When the voltage is within the set criteria, the
control action is held, but if the criteria are not met, the
MPC algorithm is run and a new action is calculated and
applied. Since the use of event-trigger reduced the con-
trol signal (switching) variation, it allowed for the removal
of the switching penalty from the cost function.

ET-MPC was utilized to control a buck converter
inWang et al. (2020) and Rathore and Fulwani (2016). The
work inWang et al. (2020) developed amethod to design
the event trigger condition and removed the switch-
ing criteria from the cost function. The results show a
reduction in overall computational burden and switching
losses. A similar techniquewas also implemented in Liang
et al. (2023) to control a current-source-mode single-
inductor multiple-output (CSM-SIMO) buck converter to
minimize cross-regulation across the different outputs
and reduce the overall computational burden of FCS-
MPC. In Lin et al. (2021), ET-MPC is applied to the power
control loop of a three-phase two-level grid-connected
power converter to control active and reactive power.
The work in Liu et al. (2022) furthers the ET-MPC mech-
anism by applying an extended state observer to address
math model uncertainties for a modular multilevel
converter.

Compared to these literature, the contribution of our
work is the introduction of the event-triggered mech-
anism to a time-triggered enumeration based MPC in
which the actuation signals are selected from the opti-
mal switching sequence. An event is triggered when the
measured (or estimated) output voltage deviates beyond
the value in the optimal state trajectory based on the set
trigger-threshold. An event can also be triggered if the
consecutive control steps exceed the secondary predic-
tion horizon which we later define as kmax. Once an event
is triggered, the MPC controller will run and generate a
new optimal switch sequence and state trajectory. The
actuation signals are initially predicted across the predic-
tion horizon using a move blocking scheme. The optimal
control sequence and state signals are cycled through
the controller and reused. What distinguishes our work
from previous work is the use of the actuation signals
from the optimal control sequence rather than holding
up the last value when an event is not triggered. The
measured (estimated) output voltage is then compared
to the corresponding projected state variable. If the devi-
ation exceeds the trigger threshold, then another event
is triggered and a new sequence is generated. We also
apply a limit to the allowable number of elements in
the optimal state sequence that can be applied. Previ-
ous work, Wang et al. (2020), Rathore and Fulwani (2016),
Liang et al. (2023), Lin et al. (2021) and Liu et al. (2022) only
upholds the last actuation value until the output voltage
deviates from the reference voltage beyond a trigger-
threshold. A more detailed explanation or our method
is presented in a later section along with an evaluation
of the impact of the trigger-threshold on the converter’s
performance. This work furthers our results which were
originally reported in Badawi and Chen (2022a, 2022b)
by adding a Kalman Filter-based state and disturbance
estimator. We also provide further enhancements to the
controller by utilizing the inductor current measurement
for current limiting. Additionally, we provide a more
detailed description of the implementation of an ET-MPC
for power converters.

3. Mathematical model

MPC requires an accurate model of the system to predict
theoptimal actuation signal every time step, Ts. Switched-
mode power converters are time-variant and non-linear
systems, and the modelling of such systems can be done
in multiple ways. One common approach in Pulse-Width
Modulation (PWM) converter control is to create an AC
equivalent circuit model by averaging the inductor volt-
age and capacitor current waveforms over a single switch
cycle. Small AC variations around a quiescent operating
point are then introduced into the model and the system
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Figure 2. Boost converter circuit diagram.

is then linearized by removing second order AC (nonlin-
ear) terms (Erickson & Maksimovic, 2007).

In PWM converter control, the output of the con-
troller (or compensator) is a control voltage that is sent
to a modulator. The modulator then translates the volt-
age to a duty cycle to actuate one or more switches
at a fixed frequency. The duty cycle regulates the out-
put voltage according to the system’s transfer function.
In Direct MPC, the output of the controller is directly
manipulating the main switch S of the boost converter
in Figure 2, where the switching frequency varies. With-
out imposing a restriction to the switching frequency or
amount of switching within the cost function, the fre-
quency of the converter can reach up to 1/(2Ts) (Kara-
manakos et al., 2013). Due to the discrete nature of the
boost converter (Cortes et al., 2009), which depends on
switch S position and inductor current, a hybrid model
similar to Karamanakos et al. (2013) can be constructed
and used to develop a math model.

3.1. Discrete-timemodel

The forward Euler approximation is used to derive a
discrete-time model from the continuous-time model
inKaramanakos et al. (2013) andBadawi andChen (2022a)
where the time increment is defined by Ts. The state vari-
able is defined in (1), where iL is the inductor current and
vo is the output voltage (capacitor voltage).

x[k] = [
iL[k] vo[k]

]T
(1)

The boost converter operates in four distinct modes
depending on the switch state and magnitude of the
inductor current. The first mode is when the switch S is
ON and inductor current is positive and increasing. In this
mode, the diode D is OFF, and the output is supported
by the capacitor. The second mode is when the switch is
OFF. In this case, the inductor will induce a voltage that
will force the current to continue flowing in the same
direction through the diode to the load. The third mode
occurs when the switch is OFF and the inductor current
is decreasing and reaches zero, in this case, the diode is
also OFF. The instance the inductor current reaches 0 is
defined by τ1. During the fourthmode the switch remains

in the OFF position and inductor current remains zero for
the entire time step Ts (Karamanakos et al., 2013).

The discrete-time state space matrices for all four
modes are included below (2a).

Mode 1 (2a):

x[k + 1] =
⎡
⎢⎣1− RLTs

L
0

0 1− Ts
RC

⎤
⎥⎦ x[k]+

⎡
⎣Ts

L
0

⎤
⎦ vs[k]

(2a)
Mode 2 (2b):

x[k + 1] =
⎡
⎢⎣1− RLTs

L
−Ts

L
Ts
C

1− Ts
RC

⎤
⎥⎦ x[k]+

⎡
⎣Ts

L
0

⎤
⎦ vs[k]

(2b)
Mode 3 (2c):

⎡
⎢⎣1− RLτ1

L
−τ1

L
τ1

C
1− Ts

RC

⎤
⎥⎦ x[k]+

[τ1

L
0

]
vs[k] (2c)

Mode 4 (2d):

[
1 0
0 1− Ts

RC

]
x[k] (2d)

3.2. Kalman filter implementation

An accurate measurement of the state variables is
required to achieve robust control using MPC. This can
be achieved through a state estimator. State estimators
can be divided into deterministic (such as the Luen-
berger Filter) and Stochastic (e.g. Kalman Filter) state esti-
mators. Nonlinear state estimators exist such as Particle
Filters, Extended Kalman Filters and Unscented Kalman
Filters. Moving Horizon Estimation is considered when
using nonlinear models or considering constraints on
the estimates. Kalman Filters have been cited as being
effective state estimators in cases of high model uncer-
tainty and substantial noise (Rawlings et al., 2017; Vinodh
et al., 2013). For the purposes of our work, a Kalman Fil-
ter is an appropriate choice due to the use of a linearized
model of the system. The Kalman filter is used to estimate
the state and disturbances from the converter’s induc-
tor current and output voltage measurements. This is to
enable tracking of the reference voltage despite the pres-
ence of model mismatch or unmeasured nonzero mean
disturbances (Pannocchia, 2015).

We start with an assumption that our system and
measurements contain disturbances. The system model
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becomes:

x[k + 1] = Ax[k]+ Bu+ w (3a)

y[k] = Cx[k]+ v (3b)

where x[k] is the state variable, u is the input and y is the
output (or measurement). x[k + 1] is the successor state.
w represents disturbances in the model, and hence, the
state, while v represents noise or inaccuracies in themea-
surement. w has a normal distribution with 0 mean and
variance Q, i.e. w ∼ N(0,Q). v also has a 0 mean and vari-
ance R, i.e. v ∼ N(0, R). The larger the variance, the more
uncertain we are about the parameter.

Kalman filters optimally estimate a system’s state by
fusing measurements with a state-space model of the
system. The Kalman algorithm starts with a prediction
step, in which the predicted state and predicted error
covariance are evaluated using the system model and
previously computed state estimate and error covariance
values. The second step is the estimation (or correction)
step in which the Kalman gain and error covariances are
computed. Additionally, the state estimate is computed
using themeasured value and Kalman gain. Kalman gains
are updated as newmeasurements are obtained.

The Kalman filter is added to the MPC controller to
address loadvariations and their effect on themodel. Dur-
ing load transients, the value of R, in the model changes.
The disturbance estimator augments the math model of
the boost converter with disturbances, i.e. we build a dis-
turbance model. The disturbances introduced, ie and ve
model the effect of the unmodelled load variations on the
inductor current and output voltage respectively (Geyer
et al., 2008; Karamanakos et al., 2013). The state vari-
able is augmentedwith the disturbances as shown below
in (4).

xaug(t) =
[
iL(t) vo(t) ie(t) ve(t)

]T
(4)

An augmented model of the system is generated in (5).
The model is used in the prediction step of the Kalman
Filter (Karamanakos et al., 2013).

Ama =
[
Am 0
0 I

]
Bma =

[
Bm
0

]
C = [

I I
]

(5)

The Kalman Filter then uses the model to estimate the
augmented state variable in (6):

x̂aug = x̂aug + Km(x − Cx̂aug) (6)

where m in (5) and (6) represents the different modes
in (2a) and can be selected from any value {1, 2, 3, 4}
depending on the switch position and amplitude of
inductor current. Am and Bm represent the state-space

matrices of the original model in (2a) and are used in
the augmented system model (5) to predict the state
(x̂aug) and error covariance beforemeasurement x. Km are
the Kalman gains calculated for the different operating
modes. x is the measured state variable, while x̂aug is the
estimated state variable. 0 and I in are zero and identity
matrices respectively.

The covariance value, R, is adjusted so that the Kalman
filter ignores measurement errors by assigning a low
value for R. This means that we have high confidence
in our measurements and do not require compensation.
However, a higher weight is assigned to the disturbance
states in Q in anticipation of process variability or model
mismatches. The Kalman filter will estimate the distur-
bances ie and ve, where ve will then be fed back to the
MPCcontroller to compensate for theerror by subtracting
it from the reference.

4. Model predictive control

In the following sections,wedescribe time-triggeredenu-
meration MPC followed by event-triggered MPC.

4.1. Time-triggered enumeration-basedMPC

The MPC algorithm illustrated in Figure 1 starts with
an evaluation of a set of switching sequences which
are assembled over the prediction horizon. The num-
ber of prediction steps is represented with an integer
number N. The duration of the prediction horizon is
NTs. The switching sequences are in the form U(k) =
[u(k), u(k + 1) . . . u(k + N− 1)]T . Since the state of the
switch is binary, the number of switching sequences
totals to 2N. Due to the non-minimum phase behaviour
of the boost converter, a longer prediction horizon is
required to anticipate for the initial delay in response to
the switch closing which requires an increase in N since
increasing Ts would lead to an inaccuracy of math model
which was developed using the Forward Euler Method.
In an enumeration-based MPC, all switching sequences
are evaluated by the controller, so every added switch
state doubles the number of sequences to be evaluated
which in turn increases the computational burden of the
controller. To address this, a move blocking scheme is
implemented (Karamanakos et al., 2013). Move blocking
assigns the first number of switch steps N1 with sample
time Ts. The remaining steps N2 are assigned a longer
time sample by multiplying Ts with a factor ns. With a
move blocking scheme, the total prediction horizon time
is covered with fewer prediction steps.

The MPC solves an optimal control problem (OCP)
(Boyd & Vandenberghe, 2004) for each switching
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sequence, formulated as follows.

min
Uo

k+N−1∑
�=k

(|vo,err(�+ 1|k)| + λu|�u(�|k)|)

+ λiL |iL,err(�|k)|) (7a)

s.t. System dynamics (2) (7b)

In otherwords, theMPCcontroller predicts the future out-
put voltage of the converter given a switch state within
a sequence, and the measured input voltage, induc-
tor current and output voltage at the time step. The
absolute voltage error for the calculated output voltage
(vo,err(k) = vref − vo(k)) and difference in switch state
(�u(k) = u(k)− u(k − 1)) are then calculated for each
switch statewithin the sequence. Theweighing factor,λu,
is applied to the difference between the two consecutive
switching states to adjust the amount of switching,where
increasing λu generally reduces the switching frequency.
λiL, is adjusted to control the influence of the inductor
current error. The inductor current error is defined by:
(iL,err(k) = iL,ref − iL(k)), where, iL,ref is derived using the
equation defined in (8):

vsiL,ref = RLi
2
L,ref +

v2ref
R

(8)

Equation (8) represents the general power equation Pin =
Pout , where the input power Pin, is equal to the inductor
current iL,ref multiplied by the input voltage, vs. As an esti-
mate, we equate Pin to the losses in the inductor series
resistance, RL, added to the power delivered to the load.

At each time step, the MPC controller evaluates
the cost function (7a) for each of predefined switch-
ing sequences U(k). In other words, for each of the 2N

sequences, the output voltage trajectory is predicted,
and the objective function is evaluated. The switching
sequence with minimum cost function value is then
selected as the optimal switching sequence Uo(k). The
first element of the sequence is applied to the switch, S.
This is referred to as a receding prediction horizon (Kara-
manakos et al., 2013). For time-triggeredMPC, this proce-
dure is repeated at the next time-step based on newmea-
surements acquired at the following sampling instance.
Feasibility is guaranteed since the MPC is solving an
unconstrained optimization problem.

4.2. Event-triggered enumeration-basedMPC

ET-MPC is introduced to reduce the computational bur-
den of the enumeration TT-MPC. In TT-MPC, all 2N switch-
ing sequences are evaluated at each time step Ts which
requires significant computational effort by the controller
especially as the prediction steps N increase. ET-MPC is

proposed to solve the optimization problem only when
an event is triggered, as opposed to solving at every time
step. The algorithm starts with an event trigger which
generates an optimal switching sequence Ut[k] and opti-
mal state trajectory Xt[k]. The first element in Ut[k] is used
to actuate the main switch S and is fed back to the con-
troller with a time delay. The controller also outputs the
optimal switch sequence and state trajectory with a time
delay along with counter t. Upon the next time step, the
counter is incrementedby Ts. The counter is used to incre-
ment index k to select the next optimal switch state, but
due to the move blocking scheme, index k may need to
be held for up to ns time samples. Index selection matrix
T is developed to address this. T allocates counter t to an
equivalent index k with consideration of the move block-
ing scheme. An example of T is defined in Table 1. In this
example N = 6, N1 = 4, ns = 4 and Ts = 5µs.

At the next time sample, given the optimal state
sequence Xt1 computed at the last event (at time t1), and
the current output voltage measurement, vo, an event-
trigger e is evaluated using the following criteria:

e =
{
1 if ||Xt1(2, k)− vo|| > δ or k > kmax

0 Otherwise
, (9)

where δ is defined as the trigger threshold and represents
how much the output voltage deviates from the optimal
state trajectory. An event is triggered when e = 1, which
triggers the controller to evaluate the OCP. An event can
also be triggered if kmax is reached which is the maxi-
mum allowable number of elements that can be used in
the switching sequence. This generates a new optimal
state trajectory and switching sequence which are fed
back to the controller. Otherwise, when e = 0, the con-
trol action is determinedusing thenext switch state in the
optimal sequence Ut1 computed at the last event, which
eliminates the need to run the optimization problem for
the 2N switching sequences (Chen & Yi, 2021). The event-
triggered control algorithm is described in Algorithm 1.
The cost function in Algorithm 1 is the argument of the
OCP in (7a) and is defined as J. Figure 3 shows a block
diagram of the proposed system.

5. Simulation results

The event-triggered Kalman-based MPC controller was
implemented in MATLAB/SIMULINK. The parameters
used in the simulation are listed in Table 2. The perfor-
manceof the system is evaluatedduring start-up and step
changes in the input voltage, reference voltage and load.
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Table 1. Event-triggered selection of optimal state trajectory and switch state index.

Counter t 5µs 10µs 15µs 20µs 25µs 30µs 35µs 40µs 45µs 50µs 55µs 60µs

Index k 1 2 3 4 5 6
T[k] 5µs 10µs 15µs 20µs 40µs 60µs
Ut[k] Ut[1] Ut[2] Ut[3] Ut[4] Ut[5] Ut[6]
X[k] X[1] X[2] X[3] X[4] X[5] X[6]

Figure 3. DC-DC boost converter with MPC control.

Table 2. Simulation parameters.

Converter and controller parameter Value

Input Voltage (vs) 15 V
Output Reference Voltage (vref ) 30 V
Inductor (L) 450µH
Inductor DC Resistance (RL) 0.8�
Output Capacitance (C) 220µF
Load Resistance (R) 73�→ 42�
Sampling Period (Ts) 5µs
Prediction Horizon (N) 14
N1 4
Move Blocking Coefficient (ns) 4
Allowable Optimal Switching Elements (kmax) 6
Switching – Weighing Factor (λu) 0.35
Inductor Current – Weighing Factor (λiL) 0.1

5.1. Converter startup

The startup time of the converter was evaluated at differ-
ent input voltages andoutput voltage references for both
the time-triggered and event-triggered controllers. The
results are listed in Table3. The startup time is comparable
for both implementations with no overshoot observed.
The simulated inductor current and output voltagewave-
forms for the test caseVin = 10 V, Vout = 15 V are plotted
in Figures 4 and 5. The event-trigger threshold of theMPC

Figure 4. Start-up (TT-MPC).

controller was set to δ = 0.025. The number of event trig-
gers are averaged using amoving averagewindowof 200
and plotted.

During startup, switch S remains in the open posi-
tion allowing the output capacitor to charge and sub-
sequently provide load current which causes an initial
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Algorithm 1 Event-Triggered MPC Algorithm
procedure ETMPC(u,Ut1, Xt1, t, iL, vo, vs)

J∗(k) = ∞;
t← t + Ts
k← select k from T using t see Table 1
e← compute (9);
if e = 1 then

t← 0
for all U over N do

J = 0
for � = k to k + N− 1 do

x(�+ 1)← compute from (2), (4) and (5)
vo,err(�+ 1) = vref − vo(�+ 1)
�u(�) = u(�)− u(�− 1)
vo,err(�+ 1) = vref − vo(�+ 1)
J = J + |vo,err(�+ 1)|

+λu|�u(�)| + λiL�i(�)
end for
if J < J∗(k) then

J∗(k) = J, u = U(1)
end if

end for
Ut ← U
Xt ← x

else
u← Ut1(k)
Ut ← Ut1

Xt ← Xt1
end if

return u, t,Ut , Xt
end procedure

Figure 5. Start-up (ET-MPC).

Table 3. Start-up time summary.

Operating conditions Time-triggered MPC Event-triggered MPC

vs = 10 V, vo = 15 V 1.4ms 1.4ms
vs = 10 V, vo = 20 V 3.5ms 3.25ms
vs = 10 V, vo = 25 V 7.3ms 7.5ms
vs = 10 V, vo = 30 V 14.5ms 14.5ms
vs = 15 V, vo = 20 V 1.5ms 1.5ms
vs = 15 V, vo = 25 V 2ms 2ms
vs = 15 V, vo = 30 V 3.75ms 3.75ms

inrush of current. The current is only limited by the induc-
tor resistance RL. Limiting this inrush current in this imple-
mentation cannot be done through the control of the
switch, but can be achieved through external means
such as employing a pre-charge resistor. After the output
capacitor voltage equals the input voltage (neglecting
the diode voltage drop), the voltage across the inductor
becomes zero. At that point, the inductor current begins
to drop and the voltage across the inductor reverses (vL =
L(di/dt)) which allows the diode D to remain forward
biased and the output voltage to rise above the input
voltage. However, the output voltage cannot be main-
tained in this manner due to the load demand and will
begin to slightly drop, at this point, the controller will
begin to actuate the switch S, and the converterwill boost
the output voltage to the voltage setpoint (vref ).

Note that during the converter’s initial operation, the
event frequency is at its highest value (50%) due to the
difference between output voltage and reference voltage
Figure 5. Once the output voltage reaches the reference
voltage in steady-state, the inductor current decreases.
Once the converter reached Discontinuous Conduction
Mode (DCM) operation, the event frequency significantly
decreased (15%). In Badawi and Chen (2022b), it was
found that the start-up time was mostly independent on
the selection of the event-trigger threshold δ value, but
was dependent on operating conditions.

The plots in Figure 6 show the gate signals, counter
and instances of event triggers during steady-state oper-
ation when vin = 10 V and vref = 15 V. Since kmax is set to
6, Ts = 5µs , N1 = 4 and ns = 4, the maximum counter
value is calculated to be 60µs (tmax = N1Ts + ns(kmax −
N1)Ts). In the actual implementation, we set the max-
imum counter value to 55µs . The optimal switching
sequences in the time duration 4 and 5ms are listed in
Table 4. Any switching values with an index above 6 are
discarded in the control. If we analyze the behaviour of
the controller at time instance immediately before 4.3ms.
An event is triggered at that instant and the optimal
switch sequence is found to be Ut[k] = [0, 0, 0, 0, 0, 0]. For
the duration of 55µs , the sequence Ut[k] is reused to
actuate the main switch before triggering the next event
due to reaching the maximum limit set for the counter t.
The next event is triggered at 4.39mswhich still finds that
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the same optimal switch state viable to maintain regula-
tion, however, at 4.435ms, the optimal switch sequence
is updated to Ut[k] = [1, 1, 1, 1, 1, 0].

5.2. Steady-state operation

The performance evaluation of the ET-MPC boost con-
verter in Badawi and Chen (2022a, 2022b) in addition to
our findings here, show that increasing the trigger thresh-
old δ significantly reduces the computational effort of
the controller during steady-state operation but that the
tracking error, calculated using (10), increased. Increasing
δ also increased theoutput voltage ripple andpeak induc-
tor current, and in some cases, the converter was not able
to reach regulation, thus, putting a limit to our threshold
selection.

T .E. =
√∑n

i=1(vo[i]− vref [i])2

n
. (10)

The converter and controller parameters in this work
slightly differ from what was reported in our previous
work, and the threshold value is selected differently to
achieve comparable results to a time-triggered controller.
A comparison between TT-MPC and ET-MPC event fre-
quency, tracking error and output ripple results are tab-
ulated in Table 5. The computational savings are inferred
from the event frequency.When events are not triggered,
we are able to skip the optimization problem at each time
step for up to (N1 + (kmax − N1)ns) time steps. Addition-
ally,whenanevent is not triggered, theMPCwill only shift
the index within the optimal control sequence and apply
the actuating signal to switch S without calculating the
OCP. In a TT-MPC formulation, the number of operations
per second (OPS) is calculated with equation (11):

OPSTT = 2N1+N2

Ts
(11)

Here, each number of operations represents all the com-
putations required to cycle through the optimization
problem. The number of OPS in an ET-MPC can reach
a minimum number given in (12). The assumption here
is the optimal sequence is cycled through in its entirety
and an event is only triggered when the counter reaches:
tmax = N1Ts + ns(kmax − N1)Ts:

OPSET = 2N1+N2

(N1 + (kmax − N1)ns)Ts
(12)

The minimum event frequency is found using (13):

fmin−ET = 1
(N1 + (kmax − N1)ns)

(13)

By substituting the values in Table 2 in equation (13),
we find that the minimum event frequency achievable is

Figure 6. Steady-state (ET-MPC) Vin = 10 V, Vref = 15 V.

Table 4. Optimal switching sequences in time duration between
4ms and 5ms in Figure 6.

Time Duration Ut[1] Ut[2] Ut[3] Ut[4] Ut[5] Ut[6]

4ms→ 4.165ms 0 0 0 0 0 0
4.165ms→ 4.205ms 0 1 1 1 1 0
4.205ms→ 4.245ms 1 1 1 1 0 0
4.245ms→ 4.435ms 0 0 0 0 0 0
4.435ms→ 4.475ms 1 1 1 1 1 0
4.475ms→ 4.57ms 0 0 0 0 0 0
4.57ms→ 4.61ms 0 1 1 1 1 0
4.61ms→ 4.65ms 1 1 1 1 0 0
4.65ms→ 4.8ms 0 0 0 0 0 0
4.8ms→ 4.84ms 0 1 1 1 1 0
4.84ms→ 5ms 0 0 0 0 0 0

1/12, or approximately 8.33%. The maximum computa-
tional savings per second can be found by substituting
the parameters from Table 2 and the values found above
in equation (14)

CSmax = (1− fmin−ET )× OPSTT (14)

As for our simulation results, the TT-MPC results are
reported under δ = 0. As the trigger threshold increases,
the performance of the converter begins to degrade.
Additionally, it was noted, that implementing an ET-MPC
strategy results in reduced switching frequency from
the TT-MPC formulation utilizing similar parameters. The
switching frequency also reduces as the trigger-threshold
is increased. Another observation is that the event fre-
quency increases as the difference between the input
and output voltage widens. A trade-off between the
performance criteria and computational burden needs
to be made when selecting the appropriate trigger-
threshold (Badawi & Chen, 2022b).
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Table 5. Event-trigger impact on steady-state operation – results
summary.

Steady-state conditions δ = 0.00 δ = 0.01 δ = 0.015 δ = 0.025

Event frequency:
vs = 10 V, vo = 15 V 100% 24.6% 17.37% 15%
vs = 10 V, vo = 20 V 100% 34.7% 25.6% 17.3%
vs = 10 V, vo = 30 V 100% 37.5% 36% 28.5%
vs = 15 V, vo = 30 V 100% 34.4% 32.8% 23.8%

Tracking error [V]:
vs = 10 V, vo = 15 V 0.024 0.025 0.059 0.058
vs = 10 V, vo = 20 V 0.03 0.03 0.035 0.06
vs = 10 V, vo = 30 V 0.082 0.124 0.175 0.153
vs = 15 V, vo = 30 V 0.081 0.113 0.113 0.146

Output ripple [Vp-p]:
vs = 10 V, vo = 15 V 0.082 0.0945 0.1785 0.1854
vs = 10 V, vo = 20 V 0.097 0.11 0.177 0.219
vs = 10 V, vo = 30 V 0.134 0.24 0.273 0.31
vs = 15 V, vo = 30 V 0.085 0.24 0.24 0.12

Figure 7. Reference voltage step-up from 15 to 30 V (Time-
triggered MPC).

5.3. Step changes in the output reference voltage

Results were recorded while stepping up the output ref-
erence voltage from 15 V to 30. The input voltage was set
to 10 V. The response time of the converter with different
trigger thresholds was evaluated and recorded in Table 6.
As observed from Figures 7 and 8, the output achieves a
regulated 30 Vwithin 13ms for both TT-MPC and ET-MPC.
During the transition, the event frequency, switching fre-
quency and inductor current increase. The inductor cur-
rent rms increases due to increase in load demand. Once
the converter reaches regulation, the inductor current
and event frequency are reduced. The transient time is
similar for both time-triggered and event-triggered, and
as noted above, utilizing the ET-MPC controller results
in a reduced switching frequency for similar operating
conditions experiencewhen using the TT-MPC controller.

Figures 9 and 10 show simulation results when the
voltage reference was stepped down from 25 to 15 V.
Switch S remains OFF as the inductor current reduces to
zero allowing the capacitor to discharge into the load to
reduce the output voltage. The converter’s regulation is

Figure 8. Reference voltage step-up from 15 to 30 V (Event-
Triggered MPC).

almost equivalent for the two techniques, with the aver-
age number of computations significantly reduced with
the latter method. The transient time was also similar for
the two control techniques. The results for two differ-
ent thresholds along with the TT-MPC implementation is
summarized in Table 6.

Table 6. Voltage reference converter response for different event
thresholds.

δ = 0.00 δ = 0.015 δ = 0.025

vref = 15 V→ 30 V, vs = 10 V
Transient time [ms] 13ms 13ms 13ms
Event Frequency 100% 40% 30%

vref = 25 V→ 15 V, vs = 10 V
Transient time [ms] 8ms 8ms 8ms
Event Frequency 100% 25% 13%

Figure 9. Reference voltage step-down from 25 to 15 V (Time-
triggered MPC).
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Figure 10. Reference voltage step-down from 25 to 15 V (Event-
Triggered MPC).

One issue we had not accounted for originally in our
work, prior to adding inductor current to the OCP (7a),
was inductor saturation. Figure 11 shows the test result
for when the reference voltage was stepped down from
20 to 15 V at 10ms and δ = 0.005. It was noted that with-
out adding inductor information into the cost function,
and in certain scenarios when the step down in reference
voltage occurred as the inductor current was increasing
(i.e. Switch SwasON), that theOCPwould keep the switch
ON, and only turn it to the OFF position to regulate the
voltage. This is because theOCP found that to be the opti-
mal solution. One quick remedy for the issue is to shift
the step-down in reference voltage so that it coincides
with a decrease in inductor current (i.e. switch S is in the
OFF position) as observed in Figure 12. While this fixes
the issue, it is not a practical solution. Figure 13 shows
the same operating conditions with the inductor current
added to the cost function which solved the issue with
inductor saturation.

5.4. Step change in the input voltage

The ability of a converter to reject disturbances at the
input source is a key requirement of any power con-
verter controller. In Figures 14 and 15, the input volt-
age is stepped up from 10 to 15 V at 20ms after steady
state operation with vref set to 30 V. The line transient
response of the converter in both time-triggered and
event-triggered formulations is similar showing that the
converter is able to maintain the output voltage. The
event frequency during the transient decreases by 6%
as the difference between the input and output voltage
decreases.

Figure 11. Inductor saturation (no current information in OCP).

Figure 12. Inductor saturation addressed: shifted voltage refer-
ence from 10 to 9.92ms.

5.5. Response to load transients

The load resistance R is reduced from 73 to 42� to simu-
late an increase in load demand. The change in load resis-
tance is not captured in the MPC controller which results
in inaccuracies of the control. Without compensating for
the change in load, the output voltage will begin to sag

Table 7. Load transient results.

δ = 0.00 δ = 0.01 δ = 0.025

R = 73�→ 42�
Undershoot (V) 0.3 V 0.3 V 0.3 V
Undershoot (%) 1% 1% 1%
Settling time (ms) 2ms 1.1ms 1ms
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Figure 13. Inductor saturation addressed: add inductor current
to OCP.

Figure 14. Input voltage step-up from10 to 15 V (Time-triggered
MPC).

and the controller will not able to regulate the converter
to the reference voltage. The Kalman Filter is used to
estimate the measured inductor current, output voltage
and disturbance variables ie and ve. The estimated volt-
age error is then subtracted from the voltage reference to
adjust for disturbances in the load.

The output reference voltage is set to 30 V and input
voltage set to 15 V. The covariance matrices for process
noise, Q, and measurement noise, R, are assigned the
values in (15) :

Figure 15. Input voltage step-up from 10 to 15 V
(Event-Triggered MCP).

Figure 16. Load transient for time-triggered MPC.

Q =

⎡
⎢⎢⎣
0.1 0 0 0
0 0.1 0 0
0 0 50 0
0 0 0 50

⎤
⎥⎥⎦ R =

[
1 0
0 1

]
(15)

The time-triggered simulated waveform is shown in
Figure 16. The undershootmeasured 0.3 Vwhich is equiv-
alent to 1% of the reference voltage. The settling time
for the transient was 2ms and the converter was able to
return to regulation.

The output voltage when a load transient was applied
to the converter using ET-MPC control with δ set to 0.01 is
shown in Figure 17. The undershoot was 1%; similar with
the TT-MPC result, but with a faster settling time 1.1ms.
When the threshold was set to δ = 0.025 the voltage
was able to return to regulation within 1ms; the under-
shoot was also 1% Figure 18. The aforementioned results
are tabulated in Table 7. The results show that ET-MPC
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Figure 17. Load transient for ET-MPC, δ = 0.01.

Figure 18. Load transient for ET-MPC, δ = 0.025.

can reduce the overall computational burden of TT-MPC,
but the trade-off being higher peak inductor current and
output voltage ripple.

6. Remarks

There are several parameters that impact the perfor-
mance of our boost converter ET-MPC controller. The
influence of the trigger threshold, δ, was briefly eval-
uated in this work while its selection criteria and per-
formance impact was extensively explored in Badawi
and Chen (2022b). Generally, increasing the trigger
threshold reduces the computational burden, but increa
ses tracking error, output ripple and peak inductor
current. Additional parameters include the switching

weighing factor λu which penalizes switching and can
be used to control the switching frequency. The inductor
current weighing factor λiL , described in Section 4, penal-
izes the error between the inductor reference and mea-
sured inductor current. Increasing this value increases the
tightness of current control and prevents inductor sat-
uration but excessively increasing this value can cause
the controller to lose voltage regulation. Another factor
is kmax in (9), which is the maximum allowable number
of elements that can be used in the switching sequence.
Reducing this number improves the performance of the
control but increases the computational burden as more
events are triggered.

The effect of changing these values was not evaluated
explicitly here. We leave the evaluation of these parame-
ters for later work.

7. Conclusion

This work introduces an effective method to reduce the
computational burden associated with a finite control
set enumeration-based model predictive control (MPC)
used for the direct control of a DC-DC converter. Simu-
lation results demonstrate that the performance of the
proposed event-triggered MPC is comparable with the
conventional time-triggered MPC while achieving reduc-
tion in the computational burden of the controller. A
similar approach can be implemented on different con-
verters such as buck converters, with minimum modifi-
cation. Future work includes an analytical study on the
optimality loss of the proposed event-triggered MPC and
the application to a buck converter. Implementation of
the proposed control algorithms in hardware to verify the
stability of real-time implementation will be considered
for future work.
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