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Abstract—This paper studies the online fault detection for
stochastic discrete-event systems (DESs) under partial observabil-
ity of events. Prior works have only studied the verification of
the stochastic diagnosability (S-Diagnosability) property. To the
best of our knowledge, this is a first paper that investigates the
online detection schemes and also introduces the notions of their
missed detections (MDs) and false alarms (FAs). Due to the prob-
abilistic nature of the problem, MDs and FAs are possible even
for S-Diagnosable systems, and we establish that S-Diagnosability
is a necessary and sufficient condition for achieving any desired
levels of MD and FA rates. We also provide a detection scheme,
that can achieve the specified MD and FA rates, based on com-
paring a suitable detection statistic, that we define, with a suitable
detection threshold, that we algorithmically compute. We also
algorithmically compute the corresponding detection delay bound.
The detection scheme also works for non-S-Diagnosable systems,
with the difference that in this case there exists a lower bound for
achievable MD rate, that increases as the FA rate requirement is
made more stringent by decreasing it.

Index Terms—Discrete-event systems (DESs), failure diagnosis,
online fault detection.

I. INTRODUCTION

D ETECTING system failures is essential prior to any fault
tolerance action and is an important and challenging

problem in many disciplines. In general a fault is a deviation
of a system from its required or nominal behavior, such as
reaching a fault state or executing a fault event, which can
be classified as a permanent fault (as studied in [1]–[5]) or
an intermittent fault (as studied in [6]–[8]), and needs to be
detected accurately within an adequate bounded delay to ensure
timely activation of any fault tolerance action. The problem
of fault detection has been widely researched [9]–[15], and
is recently studied in the setting of discrete-event systems
(DESs) [16]–[25], distributed/decentralized systems [26]–[29],
stochastic systems [30]–[32] and systems with temporal logic
specification [33]–[35]. In this paper we consider stochastic
DESs subjected to faults, modeled as execution of fault traces,
or equivalently reachability of fault states.

The notion of stochastic diagnosability, S-Diagnosability [1],
first proposed as AA-diagnosability in [5], requires that for any
tolerable ambiguity level ρ and error bound τ , there must exist
a delay bound n such that for any fault trace s, its extensions,
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longer than n and probability of ambiguity higher than ρ,
must occur with probability smaller than τ . Reference [5]
provided an observer based exponential complexity algorithm
for checking a sufficient condition for S-Diagnosability; the
condition was shown to be not necessary. The extension of fault
diagnosis of stochastic DESs to decentralized setting has been
examined in [28], [29], whereas the diagnosis problem under
the added requirement that fault be detected before the violation
of any safety property is studied in [3], [36]. These prior works
have only studied the verification of the S-Diagnosability
property; a technique for online fault detection hasn’t yet been
examined in literature. To the best of our knowledge, this is
a first paper that investigates the online detection schemes for
stochastic DESs and also introduces the notions of missed
detections (MDs) and false alarms (FAs), or equivalently, false
negatives and false positives, for the schemes. Due to the
probabilistic nature of the detection problem, MDs and FAs
are possible even for S-Diagnosable systems, and we establish
that S-Diagnosability is a necessary and sufficient condition
for achieving any desired levels of MD and FA rates.

Next we present a detection scheme, that can achieve the
specified MD and FA rates, based on comparing a suitable
detection statistic with a suitable detection threshold. The ap-
proach is that given any observation (of partially observed
events), the detector recursively computes the conditional prob-
ability of the nonoccurrence of a fault and issues a “fault” deci-
sion if the probability of the nonoccurrence of a fault falls below
an appropriately chosen threshold, and issues “no-decision”
otherwise. For systems that possesses S-Diagnosability prop-
erty, there always exists a detection threshold and a delay bound
so that this detector is able to achieve any desired level of
MD and FA rates. Conversely, the existence of a detector for
any desired performance requirement implies that the system
possesses the S-Diagnosability property. Algorithms for deter-
mining the detection scheme parameters of detection threshold
and detection delay bound for the specified MD and FA rates
requirement are also presented, based on the construction of
an extended observer. The extended observer computes, for
each observation sequence, the set of states reached in the
system model, along with their probabilities and the number of
post-fault transitions executed. The algorithms are guaranteed
to terminate and the required number of iterations, prior to
termination, are reported as part of the correctness proof of
the algorithms. Our detection strategy works for S-Diagnosable
system as well as non-S-Diagnosable systems in the same
manner. For S-Diagnosable systems it is possible to achieve
arbitrary performance requirement for FA and MD rates, while
for a non-S-Diagnosable system an arbitrary performance re-
quirement is achievable only for the FA rate, whereas a lower
bound exists for the achievable MD rate that is a function of
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the FA rate, and increases as FA rate is decreased. A variant of
the above mentioned algorithm is also presented to compute an
upper bound for the minimum achievable MD rate for a non-
S-Diagnosable system.

The rest of this paper is organized as follows. The notations
and some preliminaries are presented in Section II, followed
by the proposed online fault detector and its existence condi-
tion in Section III. The offline algorithms for computing the
detector parameters (detection threshold and detection delay)
are proposed in Section IV and implemented in Section V
using an illustrative example, where the simulation results are
also provided. Section VI concludes the paper. The Appendix
contains some review results and the proofs of the theorems.

II. NOTATIONS AND PRELIMINARIES

A. Stochastic DESs

For an event set Σ, let Σ := Σ ∪ {ε} denote the set of events
plus ε, the “no-event”. Let Σ∗ and Σ+ denote the set of all
finite length event sequences over Σ, including and excluding ε
respectively, i.e., Σ+ = Σ∗ − {ε}. A member of Σ∗ is called a
trace. Denote as s ≤ t if s ∈ Σ∗ is a prefix of t ∈ Σ∗, and use
|s| to denote the number of events in s or the length of s. A
subset of Σ∗ is called language. For L ⊆ Σ∗, its prefix-closure,
denoted as pr(L), is defined as pr(L) := {s ∈ Σ∗|∃t ∈ L : s ≤
t}. L is said to be prefix-closed (or simply closed) if pr(L) = L,
i.e., whenever L contains a trace, it also contains all the prefixes
of that trace. For s ∈ Σ∗ and L ⊆ Σ∗, L \ s denotes the set of
traces in L after s and is defined as L \ s := {t ∈ Σ∗|st ∈ L}.

A stochastic DES can be modeled as a stochastic automaton
G which is denoted by G = (X,Σ, α, x0), where X is
the set of states, Σ is the finite set of events, x0 ∈ X
is the initial state, and α : X × Σ×X → [0, 1] is the
(total) transition probability function [37], satisfying:
∀x ∈ X,

∑
σ∈Σ

∑
x′∈X α(x, σ, x′) = 1. G is said to be

non-stochastic if α : X × Σ×X → {0, 1}, and a non-
stochastic DES is said to be deterministic if ∀x ∈ X,σ ∈
Σ,

∑
x′∈X α(x, σ, x′) ≤ 1. The transition probability

function α can be extended from domain X × Σ×X
to X × Σ∗ ×X recursively as follows: ∀xi, xj ∈ X, s ∈
Σ∗, σ ∈ Σ, α(xi, sσ, xj) =

∑
xk∈X α(xi, s, xk)α(xk, σ, xj),

and α(xi, ε, xj) = 1 if xi = xj and 0 otherwise. Define a
transition in G as a triple (xi, σ, xj) ∈ X × Σ×X and
define the language generated by G as L(G) := {s ∈ Σ∗|∃x ∈
X,α(x0, s, x) > 0}. Note that the transition function of G
is a total function, and in a graphical representation of G, a
transition (x, σ, x′) ∈ X × Σ×X is omitted if and only if
α(x, σ, x′) = 0.

The observations of events are filtered through an observa-
tion mask, M : Σ → Δ, satisfying M(ε) = ε, where Δ is the
set of observed symbols. An event σ is said to be unobservable
if M(σ) = ε. The set of unobservable events is denoted as
Σuo and the set of observable events is then denoted by Σ−
Σuo. The observation mask can be extended from domain Σ
to Σ∗ inductively as following: M(ε) = ε and ∀s ∈ Σ∗, σ ∈
Σ,M(sσ) = M(s)M(σ).

Example 1: Fig. 1(a) is an example of a stochastic automaton
G. The set of states is X = {0, 1, 2, 3} with initial state x0 = 0,
event set Σ = {a, b, c, f}. A state is depicted as a node, whereas

Fig. 1. (a) Stochastic automaton G; (b) deterministic nonfault specification
R; (c) refined plant GR.

a transition is depicted as an edge between its origin and
termination states, with its event name and probability value
labeled on the edge. The observation mask M is such that
M(f) = ε and for any other event σ, M(σ) = σ. �

B. Fault/Nonfault Behaviors and Refined Plant

In order to define the fault/nonfault behaviors of a stochastic
automaton G = (X,Σ, α, x0), its event set Σ is partitioned
into fault events Σf ⊆ Σ versus nonfault events Σ− Σf ,
where events in Σf are assumed to be unobservable. Then
the overall behaviors of G is given by its generated language
L(G), whereas the set of nonfault behaviors of G is given by
K := L(G) ∩ (Σ− Σf )

∗. The remaining behaviors L−K are
called the fault behaviors. Another approach to describing the
fault/nonfault behaviors of a given stochastic automaton G is
to specify the nonfault behaviors K in form of a deterministic
automaton R = (Q,Σ, β, q) such that L(R) = K [26]. Note
that β here is a binary-valued total function that is defined to be
zero for fault events and so omitted in graphical representation
for convenience. Then the refinement of G with respect to
R, denoted as refined plant GR, can be used to capture the
traces violating the given specification in form of the reacha-
bility of a fault state and is given by GR := (Y,Σ, γ, (x0, q0)),
where Y = X ×Q and Q = Q ∪ {F}, and ∀(x, q), (x′, q′) ∈
X ×Q, σ ∈ Σ, γ((x, q), σ, (x′, q′)) =α(x, σ, x′) if the follow-
ing holds:

(q̄, q̄′ ∈ Q ∧ β(q̄, σ, q̄′) > 0)

∨(q̄ = q̄′ = F ) ∨

⎛
⎝q̄′ = F ∧

∑
q∈Q

β(q̄, σ, q) = 0

⎞
⎠

and otherwise γ((x, q), σ, (x′, q′)) = 0.



1544 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Then it can be seen that the refined plant GR has the follow-
ing properties: (1) the generated language of the refined plant
GR is the same as that generated by G, i.e., L(GR) = L(G);
(2) any trace (system behavior) in L(G) but not in L(R) transi-
tions the refined plant GR to a fault state (a state containing F as
its second coordinate); (3) the probability of occurrence of each
trace in GR is the same as that in G, i.e.,

∑
x∈X α(x0, s, x) =∑

y∈Y γ((x0, q0), s, y).
For yi, yj ∈ Y and δ ∈ Δ, define the set of traces origi-

nating at yi, terminating at yj and executing a sequence of
unobservable events followed by a single observable event with
observation δ as LGR(yi, δ, yj) := {s ∈ Σ∗|s = uσ,M(u) =
ε,M(σ) = δ, γ(yi, s, yj) > 0}. Define α(LGR(yi, δ, yj)) :=∑

s∈LGR (yi,δ,yj)
γ(yi, s, yj) and denote it as μi,δ,j for short,

i.e., it is the probability of all traces originating at yi, ter-
minating at yj and executing a sequence of unobservable
events followed by a single observable event with observation
δ. Also define λij =

∑
σ∈Σuo

γ(yi, σ, yj) as the probabil-
ity of transitioning from yi to yj while executing a sin-
gle unobservable event. Then it can be seen that μi,δ,j =∑

k λikμk,δ,j +
∑

σ∈Σ:M(σ)=δ γ(yi, σ, yj), where the first term
on the right hand side (RHS) corresponds to transitioning in
at least two steps (i to intermediate k unobservably, and k
to j with a single observation δ at the end), whereas the
second term on RHS corresponds to transitioning in exactly
one step. Thus for each δ ∈ Δ, given the values {λij |i, j ∈ Y }
and {

∑
σ∈Σ:M(σ)=δ γ(yi, σ, yj)|i, j ∈ Y }, all the probabilities

{μi,δ,j |i, j ∈ Y } can be found by solving the following matrix
equation (see for example [38] for a similar matrix equation):

μ(δ) = λμ(δ) + γ(δ) (1)

where μ(δ), λ and γ(δ) are all |Y | × |Y | square ma-
trices whose ijth elements are given by μi,δ,j , λij and∑

σ∈Σ:M(σ)=δ γ(yi, σ, yj), respectively.
Example 2: For system presented in Fig. 1(a), the de-

terministic nonfault specification R is given in Fig. 1(b).
Then the refined plant GR is shown in Fig. 1(c). Let the
state space of GR be Y = {y1 = (0, 0), y2 = (1, 1), y3 =
(2, 2), y4 = (3, F )}. By solving matrix (1), we get

μ(a) =

⎡
⎢⎣
0 1 0 0
0 0 0 .05
0 0.1 0 0
0 0 0 .5

⎤
⎥⎦

μ(b) =

⎡
⎢⎣
0 0 0 0
0 0 .9 .05
0 0 0 0
0 0 0 .5

⎤
⎥⎦

μ(c) =

⎡
⎢⎣
0 0 0 0
0 0 0 0
0 0 .9 0
0 0 0 0

⎤
⎥⎦ .

�

III. STOCHASTIC DIAGNOSABILITY

AND ONLINE DETECTION

A. Stochastic Diagnosability of DESs

Let us recall the definition of S-Diagnosability [1] (referred
as AA-diagnosability in [5]).

Definition 1: Given a stochastic DES with generated lan-
guage L and a closed sublanguage K as a nonfault specifica-
tion, (L,K) is said to be Stochastically Diagnosable, or simply
S-Diagnosable, if

(∀τ > 0 ∧ ∀ρ > 0)(∃n ∈ N)(∀s ∈ L−K)

Pr(t : t ∈ L \ s, |t| ≥ n, PN (st) > ρ) < τ

where PN : L−K → [0, 1] is a map that assigns to each
fault trace s ∈ L−K, the probability of s being ambiguous,
which is the probability of all indistinguishable nonfault traces,
conditioned by the fact that ambiguity can only arise from
indistinguishable system traces, and is given by

PN (s) :=Pr (u ∈ K|M(u) = M(s))

=
Pr (u ∈ K : M(u) = M(s))

Pr (u ∈ L : M(u) = M(s))
.

Note in the definition of PN (s), “|” denotes the conditioning
operation. Algorithm for checking S-Diagnosability was also
given in [1], which is recalled in Appendix A for reference
below.

Example 3: It can be checked that system in Fig. 1(c) is
S-Diagnosable. As can be seen that after the occurrence of fault
if one continues to observe the system for enough number of
transitions, then with high probability two consecutive a or two
consecutive b will be observed, resolving the ambiguity that a
fault occurred. �

Here we present a new characterization of S-Diagnosability
which states that the S-Diagnosability is lost if and only if
there exists an indistinguishable pair of fault and nonfault traces
such that all future observations have identical probability of
being fault versus nonfault. The correctness proof is given in
the Appendix.

Theorem 1: (L,K) is not S-Diagnosable if and only if

(∃s ∈ L−K, s′ ∈ K s.t. M(s) = M(s′)) (∀o ∈ Δ∗)

Pr
(
t : t ∈ (L−K) \M−1M(s),M(t) = o

)

= Pr
(
t : t ∈ K \M−1M(s′),M(t) = o

)
. (2)

Remark 1: While the definition of S-Diagnosability applies
to the set of fault traces L−K, Theorem 1 is symmetric
with respect to fault and nonfault traces, and thus suggests
that notion of diagnosability can also be defined for nonfault
traces: s ∈ K is not diagnosable if and only if there exists
s′ ∈ (L−K) ∩M−1M(s) such that for all future observa-
tions o ∈ Δ∗, Pr(M−1(o) ∩K \M−1M(s)) =Pr(M−1(o) ∩
(L−K) \M−1M(s′)). We denote the set of all non-
diagnosable nonfault traces as Knd ⊆ K. Clearly, for a
S-Diagnosable system, Knd = ∅.

B. Computation of Likelihood of No-Fault

When the system executes a trace s ∈ L, an observation
o = M(s) is received by a fault detector. In order to issue
a fault-decision versus no-decision for the observation o =
M(s), we propose the detector to compute the likelihood of no-
fault, and issue a fault-decision if this likelihood of no-fault is
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small (i.e., below a suitable threshold), and otherwise issue no-
decision. In this subsection, we present how this likelihood can
be recursively computed. With a slight abuse of notation, we
denote the no-fault likelihood function as, PN : M(L) → [0, 1]
and define it to be the conditional probability of nonoccurrence
of a fault following any observation o ∈ M(L):

PN (o) :=Pr (u ∈ K|M(u) = o)

=
Pr (u ∈ K : M(u) = o)

Pr (u ∈ L : M(u) = o)
.

Note that PN (o) is the probability of nonfault traces con-
ditioned by the fact that ambiguity can only arise from the
system traces that produce the observation o. In order to re-
cursively compute PN we proceed as follows. For a given
refined plant GR whose state space is partitioned into non-
fault states versus fault states, we define a nonfault indication
binary column vector Inf ∈ {0, 1}|Y |×1, where an entry of 1
indicates a nonfault state. Also define state distribution vector
π : M(L) → [0, 1]1×|Y |, i.e., for each o ∈ M(L), π(o) is the
state distribution of GR following the observation o. Then π(·)
is recursively computed as follows: π(ε) = [1, 0, . . . , 0], and
for any o ∈ M(L), δ ∈ Δ:

π(oδ) =
π(o)μ(δ)

‖π(o)μ(δ)‖

where μ(δ) is computed by solving matrix (1), and ‖ · ‖ is
simply the sum of all vector elements. Then for an observation
o, PN (o) is simply given by adding the probabilities of the
nonfault states

PN (o) = π(o)Inf

where note that π(o) and hence also PN (o) are recursively
computed.

Example 4: In the system of Fig. 1(c), the indication vec-
tor is given as Inf = [1, 1, 1, 0]T , and the state distribution
vector is initialized as π(ε) = [1, 0, 0, 0]. If o = aba, then
PN (o) = 0.783; if o = ababc, then PN (o) = 1; if o = abaa,
then PN (o) = 0. �

C. Online Detection Scheme

For issuing online detection decision, we propose a detector,
D : M(L) → {F, ε} that for each observation in M(L) issues
either a “fault (F )” decision or “no-decision (ε)” by comparing
the likelihood of no-fault to a suitable threshold, as follows:

∀o ∈ M(L), [D(o) = F ] ⇔ [∃ō ≤ o : PN (ō) ≤ ρD] (3)

where ρD is the detection threshold, appropriately chosen to
meet the desired FA rate requirement. Note by definition, if
a detection decision is F , then it remains F for all future
observations, i.e., the detector “does not change its mind,”
which is expected for the case of permanent faults.

Remark 2: For given detector parameters, the detection
scheme (3) requires solving (1) offline for each δ ∈ Δ, and
computing online the likelihood of no-fault upon the ar-
rival of a new observation. The former has the complex-

ity of O(|Δ| × |X|3 × |Q|3 + |Σ| × |X|2 × |Q|2) ≤ O(|Σ| ×
|X|3 × |Q|3), whereas the latter requires an O(|X|2 × |Q|2)
complexity. Since (1) can be solved offline before the initial-
ization of the online monitoring, the online monitoring and
detection has a quadratic complexity.

Note a false alarm occurs if the detector D issues F while the
refined plant is in a nonfault state; and dually a missed detection
occurs if the detector D fails to issue a F decision within an
appropriate delay bound nD after the occurrence of a fault. So
letting Pmd

D and P fa
D denote the MD and FA rates, respectively,

of a detector D, we have

Pmd
D :=Pr (st ∈ L−K : s ∈ L−K,

|t| ≥ nD, PN (M(st)) > ρD) (4)

P fa
D :=Pr (s ∈ K : PN (M(s)) ≤ ρD) . (5)

Example 5: For the refined plant of Fig. 1(c) which
is S-Diagnosable, suppose we set the threshold ρD = 0.8.
Then any nonfault trace in a(bc+a)∗ba ⊂ K will produce
false alarm (PN (aba) = 0.783 < ρD), and thus P fa

D |ρD=0.8 =
Pr(u ∈ a(bc+a)∗ba) = 47.37%. On the other hand if we set
ρD = 0.5, then any nonfault trace in a(bc+a)∗baba ⊂ K will
produce false alarm (PN (ababa) = 0.488 < ρD), and thus
P fa
D |ρD=0.5 = Pr(u ∈ a(bc+a)∗baba) = 4.26%.
Now supposing that 4.26% FA rate is acceptable, so we fix

the detection threshold ρD to 0.5. If the detection delay bound
is set to be nD = 3, then any fault trace s ∈ a(bc+a)∗fbab ∈
L−K will miss detection and thus the MD rate is given by
Pmd
D |ρD=0.5,nD=3 = 6.58%. On the other hand if the detection

delay bound is set to be nD = 4, then any fault trace s ∈ L−K
can be detected, i.e., Pmd

D |ρD=0.5,nD=4 = 0. �
The following theorem provides insight into the significance

of the S-Diagnosability property for the purpose of online
fault detection, by showing its necessity and sufficiency for the
existence of an online detector that can achieve any desired
levels of MD and FA rates. The correctness proof of Theorem 2
is given in Appendix.

Theorem 2: (L,K) is S-Diagnosable if and only if for any
FA rate requirement φ > 0 and MD rate requirement τ > 0,
there exist a detection threshold ρD > 0 and a delay bound nD

such that P fa
D ≤ φ and Pmd

D ≤ τ .
The reason any FA rate can be achieved is because fewer and

fewer nonfault traces produce false alarm when the detection
threshold is made smaller and smaller (and so by choosing a low
enough threshold, it is always possible to ensure that any given
FA rate requirement can be met). The achievement of an arbi-
trary MD rate is ensured by the definition of S-Diagnosability,
which requires that the detection statistics, namely the likeli-
hood of no-fault, always falls below any detection threshold,
no matter how small, within some bounded delay, and with
arbitrarily high probability.

IV. COMPUTATION OF DETECTION

THRESHOLD AND DELAY

In the this section we provide algorithms for computing the
parameters ρD and nD so as to achieve the desired level of MD
and FA rates.
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A. Algorithms for ρD and nD

Here we provide a brief outline of the algorithm that com-
putes ρD: In order to compute detection threshold ρD for
a given FA rate requirement φ, Algorithm 1 constructs an
“extended observer tree,” that for each observation sequence,
estimates the states (as any observer does), and organizes it
in a tree form where nodes are observations tagged with the
estimated states and the edges are transitions on a next new
observation, with the extension that each state in the estimate
is labeled by the probability of reaching it. The construction
of Algorithm 1 makes the “extended observation tree” formal.
These probability labels are then used to compute the probabil-
ity PN for each observation, or equivalently, each node of the
extended observer tree. The tree extends to a depth so that if no
detection decision are made for any of the nodes (equivalently,
corresponding observations) in the tree, then the FA rate caused
by the detection decisions at the future successors is upper
bounded by the desired rate φ. The existence of such a depth is
guaranteed by Theorem 3, and to ensure no detection decision
for any of the nodes in T , we simply choose the detection
threshold to be smaller than the minimum PN value among all
nodes of T (recall by (3) that a detection decision is only issued
when the PN value falls below the threshold).

Algorithm 1: For a given refined plant GR and a FA rate
requirement φ, do the following:

1) This step is just a preparatory step to identify certain
classes of states before beginning to construct an ex-
tended observer tree. Identify all the states in X ×Q from
which a fault state in GR is reachable, and denote this set
of states as Y1 (these are nonfault states from where fault
states are reachable, and correspond to states reached by
traces in K1 defined in the proof of Theorem 2). Identify
Y2,3 = X ×Q− Y1 (these are nonfault states reached by
traces in K2 ∪K3 defined in the proof of Theorem 2).

2) Iteratively construct an extended observer tree T with set
of nodes, Z = Z ×M(L), where Z = 2((X×Q)×(0,1]),
and the depth of tree grows by 1 in each iteration
until the stopping criterion is satisfied—see below.
Then each node of T is of the form z = (z, o(z)),
where o(z) ∈ M(L) is a unique observation associated
with the node z and z = {((xi, qi), pi)} ⊆ (X ×Q)×
(0, 1] is set of state estimates, with the ith one de-
notes (xi, qi), tagged with its occurrence probability pi.
The tree T is rooted at z0 = {((0, 0), 1), ε}. z2 ∈ Z
is a δ-child (δ ∈ Δ = M(Σ)− {ε}) of z1 ∈ Z if and
only if o(z2) = o(z1)δ and for every ((x2, q2), p2) ∈ z2,
it holds that p2 =

∑
((x1,q1),p1)∈z1

∑
s∈Σ∗:M(s)=δ p1 ×

γ((x1, q1), s, (x2, q2)). It can be seen that ((x2, q2), p2)
is included in z2 if and only if (x2, q2) can be reached
from a state included in z1 following extra observation δ
and p2 is the probability of reaching (x2, q2) from initial
state following the observation o(z2).

Using the probability values of states in any node z of
T , we can compute the likelihood of no-fault following
the observation o(z), by way of adding the probabilities
of the non-fault states of the node, and next normalizing
over all states of the node as follows:

∀z = (z, o(z)) : PN (z) :=

∑
((x,q),p)∈z,q �=F p∑

((x,q),p)∈z p
.

ThenPN (z) equalsPN (o(z)), and corresponds to the con-
ditional probability of no-fault given the observation o(z).

Terminate the tree at a uniform depth so the set of leaf
nodes Zm ⊆ Z satisfy:

• (z, z′ ∈ Zm) ⇒ (|o(z)| = |o(z′)| =: d1) (each ter-
minal node is reached after the same number of
observations, which guarantees the uniformity of the
depth of T , which we denote as d1), and

•
∑

z∈Zm

∑
((x,q),p)∈z:(x,q)∈Y1

p+
∑

z∈Zm:PN (z)≤ρmin∑
((x,q),p)∈z:(x,q)∈Y2,3

p < φ, where ρmin :=

minz∈Z:PN (z) �=0 PN (z) (for states in Y1 contained
in terminal nodes, their added probabilities of the
first term equals Pr(K1 ∩M−1(Δ>d1)), which
upper bounds the FA rate of their successors (see
proof of Theorem 2); for the states in Y2,3 contained
in the terminal nodes having PN ≤ρmin, their added
probabilities of the second term equals Pr(s∈ [K2∪
K3]∩M−1(Δ>d1) : PN(M(s))≤ρmin), which upper
bounds the FA rate of their successors (see proof
of Theorem 2); we require the combined upper
bounds to be less that φ, which ensures that even
if all successors produce false alarm, the FA rate
requirement is still met).

3) Return any ρD < ρmin. (Note that with this choice of ρD,
all nonfault traces whose observations are included in T
will have no detection decisions (and so no false alarms
either), and only their extensions can have detection
decisions (some of which may be false alarms). But by
construction, the probability of those extensions is upper
bounded by φ, as desired.)

The following theorem guarantees the correctness of
Algorithm 1. Correctness proof is given in the Appendix.

Theorem 3: There exists d1 ∈ N such that Algorithm 1 ter-
minates with tree depth d1 and returns a threshold ρD under
which the overall FA rate is upper bounded by φ.

Note as the tree depth is increased, the set of traces contained
in the tree, and hence their probability, also grows. Since no
detection decision is issued for traces in the tree, they don’t
produce any false alarms, and hence the false alarm rate is upper
bounded by the probability of traces not included in the tree. By
increasing the tree depth, we can essentially guarantee that this
upper bound is as small as desired.

Example 6: For the system GR shown in Fig. 1(c), Y1 =
{(0, 0), (1, 1), (2, 2)} and Y2,3 = ∅. We construct the extended
observer tree for the computation of detection threshold; the
first 4 steps of which are as shown in Fig. 2, where PN (z0) =
PN (z1)=1, PN (z2)=0.9474, PN (z3)=0, PN (z4)=0.7826,
PN (z5) = 1, PN (z6) = PN (z7) = PN (z8) = 0. Selecting any
ρD < minz∈Z:PN (z) �=0 PN (z) = 0.7826, the FA rate is upper
bounded by

∑
z∈Zm

∑
((x,q),p)∈z:(x,q)∈Y1

p = 0.09 + 0.81 =
0.9. Algorithm 1 would proceed to a next step unless this FA
rate is found to be acceptable. �

Having provided an algorithm to compute the detection
threshold ρD that meets the FA rate requirement φ, we next
present an algorithm to compute the delay bound nD to satisfy
the given MD rate requirement τ . Here we provide a brief
outline of the algorithm: In order to compute delay bound
nD, Algorithm 2 constructs a refined version of the extended
observer tree that for each observation sequence estimates the
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Fig. 2. Part of an extended observer tree for Example 6.

states and their probabilities, with the refinement that keeps
track of the number of post fault transitions executed for each
state in the estimated state set. The tree extends to a depth so
that if no missed detections occur for any of the nodes in the
tree, then the MD rate caused by the future successors is upper
bounded by the desired rate τ . For S-Diagnosable systems, the
existence of such a depth is guaranteed by Theorem 4, and to
ensure no missed detection for any of the nodes in T , we simply
choose nD to be greater than the maximum number of post fault
transitions among all nodes of T .

Algorithm 2: For a given refined plant GR, a detection
threshold ρD and a MD rate requirement τ , do the following:

1) Iteratively construct a refined extended observer tree T

with set of nodes, Z=Z×M(L), where Z=2((X×Q)×(0,1])

(N = {0, 1, 2, . . .}), and the depth of T grows by 1 in
each iteration until the stopping criterion is satisfied—
see below. Similar to Algorithm 1, each node of T is of
the form z = (z, o(z)), where z = {((xi, qi), pi, ni)} ⊆
(X ×Q)× (0, 1]× N, o(z) ∈ M(L) and the additional
term ni counts the number of post-fault transitions in
reaching (xi, qi). The tree T is rooted at z0 = {((0, 0), 1,
0), ε}. z2 ∈ Z is a δ-child (δ ∈ Δ = M(Σ)− {ε}) of
z1 ∈ Z if and only if o(z2) = o(z1)δ, and for every ((x2,
q2), p2, n2) ∈ z2, it holds that p2 =

∑
((x1,q1),p1,n1)∈z1∑

s∈Σ∗:M(s)=δ,#post−fault(s,(x1,q1))+n1=n2
p1 × γ((x1,

q1), s, (x2, q2)). Here “#post-fault” counts the number
of events in s beyond a fault as follows: if q1 = F , it
returns the value |s|, and otherwise it returns the number
of transitions executed in s after a fault state is reached. It
can be seen that ((x2, q2), p2, n2) is included in z2 if and
only if (x2, q2) can be reached from a state included in
z1 following extra observation δ, p2 is the probability of
reaching (x2, q2) from initial state following observation
o(z2) and n2 is the number the post fault transitions
executed.

For each node z = (z, o(z)), define the likelihood of
no-fault given the observation o(z) as in Algorithm 1:

PN (z) :=

∑
((x,q),p,n)∈z,q �=F p∑

((x,q),p,n)∈z p
.

Terminate a branch of the tree if a detection decision has
been made (PN value smaller than ρD), and terminate the
rest of the tree at a uniform depth so the set of leaf nodes
Zm ⊆ Z satisfy:

• PN (z) ≤ ρD (for these nodes detection decision can
be issued, implying these nodes will have no missed
detections), or

•
∑

z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1∨q=F p <

τ (for these nodes, no detection decision will be
issued since PN (z) > ρD, and by the choice of nD

in step 2 below there is no missed detection yet; so
their added probabilities upper bounds the MD rate
of their future successors, and the stopping criterion
requires this to be below the desired value τ ).

2) Return any nD > max((x,q),p,n)∈z,z∈Z n, and let d2 de-
note the depth of tree T . Note that with this choice of
nD all fault traces, whose observations are included in T ,
will not miss detection. So clearly that the MD rate Pmd

D

is upper bounded by Pmd
D given by:

Pmd
D :=

∑

z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1∨q=F

p. (6)

The following theorem guarantees the correctness of
Algorithm 2. Correctness proof is given in the Appendix.

Theorem 4: For S-Diagnosable systems, there exists d2 ∈ N

such that Algorithm 2 terminates with tree depth d2 and returns
a delay bound nD under which the overall MD rate is upper
bounded by τ .

Note as before, as the tree depth is increased, the set of traces
contained in the tree, and hence their probability, also grows.
For all traces included in the tree, S-Diagnosability guarantees
that a correct detection decision is issued within a bounded
delay bound, and so any missed detection can only occur for
those traces not included in the tree. So the MD rate is upper
bounded by the probability of traces not included in the tree. By
increasing the tree depth, we can essentially guarantee that this
upper bound is as small as desired, and then read the detection
delay of the traces included in the tree for which detection
decision is made (i.e., whose PN values are smaller than the
detection threshold).

Example 7: For the system GR in Fig. 1(c), and assuming
detection threshold of ρD=0.7825 as determined in Example 6,
we construct the refined extended observer tree for the compu-
tation of delay bound; the first 5 steps of which are as shown in
Fig. 3. HerePN (z0)=PN (z1)=1,PN (z2)=0.9474,PN (z3)=
0, PN (z4) = 0.7826, PN (z5) = 0, PN (z6) = 1, PN (z7) = 0,
PN (z8)=0.8265, and PN (z9)=PN (z10)=1. The branches of
z3 and z5 terminate since the likelihood of no-fault is smaller
than ρD = 0.7826, whereas the depth of the rest of the tree is 5.
With nD=1+max((x,q),p,n)∈z,z∈Z n=4, the MD rate is upper

bounded by Pmd
D =

∑
z∈{z8,z9,z10}

∑
((x,q),p,n)∈z:(x,q)∈Y1

p =

0.081+ 0.0045+ 0.0125+ 0.081+ 0.729=0.908. Algorithm 2
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Fig. 3. Part of a refined extended observer tree for Example 7.

would proceed to a next step unless this MD rate is found to be
acceptable. �

Remark 3: Both Algorithm 1 and Algorithm 2 require the
construction of an extended observer (with depths d1 and d2
and branching degree at most |Δ|) that can have O(|Δ|d1)
and O(|Δ|d2) nodes, respectively, and each node can have up
to |X| × |Q| elements. Therefore the complexity for offline
computation for detection parameters ρD and nD is O(|X| ×
|Q| × |Δ|d), where d = max{d1, d2}. Note that d can depend
on the system and specification models, the observation mask,
and the desired bounds on MD and FA rates, and is bounded.
On the other hand, as mentioned in Remark 2, the complexity
of online monitoring is quadratic, O(|X|2 × |Q|2).

B. Non-S-Diagnosable Systems

In the absence of S-Diagnosability, the termination of
Algorithm 2 is not guaranteed, but a slight modification yields
a terminating algorithm that finds an upper bound for the
minimum achievable MD rate. In the case when the system is
not S-Diagnosable, then (7) in the proof for Theorem 2 (see
Appendix) may not hold for some s∈L−K. For given φ and
τ , let ρD be chosen so that P fa

D ≤φ, and let Snd
D ⊆L−K be

the set of non-diagnosable fault traces for which there exists a
MD rate τ ′>0 such that the condition Prmd

D (Snd
D ) =Pr(st :

s∈Snd
D , t∈L\s, |t|≥nD, PN (st)>ρD)<τ ′ is not satisfied by

any nD∈N. Then for the traces in (L−K)−Snd
D there exists a

detection delay bound nD so that ∀s∈(L−K)−Snd
D

Pr(t : t ∈ L \ s, |t| ≥ nD, PN (st) > ρD) < τ ′

and so the overall MD rate is upper bounded by:

Pmd
D =

∑
s∈L−K

Prmd
D (s)Pr(s)

<τ ′Pr
(
L−K − Snd

D

)
+ Prmd

D

(
Snd
D

)
≤ τ ′ + Prmd

D

(
Snd
D

)
.

Thus for non-S-Diagnosable systems, while any desired FA
rate φ > 0 can be always achieved by an appropriate choice
of ρD > 0, a MD rate τ > 0 can only be achieved if τ ′ +
Prmd

D (Snd
D ) ≤ τ . Since nD can be chosen to make τ ′ arbi-

trarily small, a MD rate τ > 0 can be achieved if and only if
Prmd

D (Snd
D ) < τ . This is captured in the following theorem,

which generalizes Theorem 2 to the case of non-S-Diagnosable
systems.

Theorem 5: Given a stochastic, nonfault specification-
refined plant GR with generated language L and nonfault
behavior K, FA rate requirement φ > 0 and MD rate require-
ment τ > 0, there exists a detection threshold ρD > 0 such
that P fa

D ≤ φ, and for this detection threshold there exists a
detection delay bound nD such that Pmd

D ≤ τ if and only
if Prmd

D (Snd
D ) ≤ τ , where Snd

D ⊆ L−K is the set of non-
diagnosable fault traces for which there exists τ ′ > 0 such that
the condition Pr(st : s ∈ Snd

D , t ∈ L \ s, |t| ≥ nD, PN (st) >
ρD) < τ ′ is not satisfied by any nD ∈ N.

Remark 4: For a fixed FA rate, Prmd
D (Snd

D ) is also fixed and
serves as a lower bound for MD rate that the detection scheme
can achieve. Note that Prmd

D (Snd
D ) is a function of the FA rate

requirement φ. When φ is made tighter by decreasing it, a
smaller ρD is needed, and the resulting non-diagnosable fault
traces subsume those corresponding to larger ρD. Therefore
the minimum achievable MD rate increases as FA rate is made
stringent by decreasing it.

Next we present a variant of Algorithm 2 that for a fixed
threshold ρD computes an upper bound for Prmd

D (Snd
D ).

Algorithm 3 iteratively builds a refined extended observer tree
T , and at each step computes an upper bound for the MD rate
that either decreases or remains constant from one iteration
to the next. When the latter happens, a future iteration may
eventually decrease the bound, but since the optimal (least)
upper bound is unknown, it is also not known how long one
should continue iterating. So, to ensure termination, we adopt
the heuristics of terminating the algorithm when the upper
bound remains constant while nD gets doubled.

Algorithm 3: For a given refined plant GR and a threshold
ρD, do the following:

1) Iteratively construct a refined extended observer tree T as
in the step 1 of Algorithm 2;

2) For each depth of the tree T , set nD = 1 +
max((x,q),p,n)∈z,z∈Z n and compute an upper bound

Pmd
D for MD rate Pmd

D according to (6);

3) If the upper bound Pmd
D doesn’t decrease while nD com-

puted in step 2 gets doubled over any two iteration steps
(not necessarily consecutive), stop and return this upper
bound.

V. ILLUSTRATIVE EXAMPLE

We consider the problem of leakage detection in a two-tank
system as shown in Fig. 4, which is adopted from [39]. The tanks



CHEN AND KUMAR: FAILURE DETECTION FRAMEWORK FOR STOCHASTIC DESS WITH GUARANTEED ERROR BOUNDS 1549

Fig. 4. Two-tank system. The fault to be detected is the leakage in the left tank
with an occurrence probability of 0.05.

Fig. 5. (a) Stochastic automaton G for the two-tank system shown in Fig. 4;
(b) interpretation of states.

are connected with a valve. The water is pumped into the sys-
tem in the left tank at a constant rate and outflows from the
right tank. The only observation produced by this system is the
symbolic sensor output (Low, Medium, High) which measures
the outflow rate of the right tank at discrete times. There is a
0.05 probability that a leakage occurs in the left tank, which is
to be detected. The aforementioned system is described by the
stochastic automaton shown in Fig. 5(a), where the event set is
Σ={L,M,H, leak}, corresponding to the sensor outputs and
the occurrence of leakage. All events except “leak” are fully
observable, whereas “leak” is fully unobservable, i.e., Σuo=
{leak}. The water levels in the tanks are quantized into “LOW,”
“MEDIUM” and “HIGH” for the left tank, and just “LOW”
and “HIGH” for the right tank, and each state in the stochastic
automaton denotes a combination of these water levels along
with a record whether a leak occurred in past, summarized in
Fig. 5(b). The system is initialized at state 2, i.e., medium level
of water in the left tank and low level of water in the right tank.
The states {1, . . . , 6} are pre-fault states and states {i+6, i=
1, . . . , 6} are post-fault states, and so the nonfault specification
is simply a subautomaton of the plant automaton restricted
to the pre-fault states, and without the probability labels. The

TABLE I
COMPUTATIONAL RESULTS OF ALGORITHM 1

TABLE II
COMPUTATIONAL RESULTS OF ALGORITHM 2 WITH ρD = 0.044

possibility of occurrence of leakage at each pre-fault state i, i=
1, . . . , 6, is captured by the transition from state i to state i+6
labeled with the event “leak” and occurrence probability 0.05.
The transitions are obtained by way of abstraction, and for fur-
ther details readers are referred to [39]–[41]. It can be checked
that the system is S-Diagnosable, so Theorem 2–4 apply.

We implement the proposed Algorithms 1 and 2 to compute
the detection threshold ρD and delay bound nD to ensure any
given FA and MD rate requirements. The results are shown in
Tables I and II and Fig. 6. Table I lists for various FA rates the
detection threshold ρD returned by Algorithm 1, as well as the
tree depth d1, the number of tree nodes and the running time of
the implementation of Algorithm 1 on a standard desktop PC;
and the first two columns is plotted in Fig. 6(a). For example,
when the FA rate is required to be under 5%, the detection
threshold returned by Algorithm 1 is ρD=0.044. When we
fix ρD=0.044, i.e., fix φ=5%, the delay bound nD returned
by Algorithm 2 for various MD rates is shown in Table II and
Fig. 6(b); the table additionally lists for each MD rate the tree
depth d2, the number of tree nodes and the running time of the



1550 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Fig. 6. Smulation results for leakage detection in two-tank system: (a) the detection threshold ρD as a function of φ; (b) the delay bound nD as a function of τ ,
when ρD = 0.044 (φ = 5%); (c) nD as a function of both φ and τ .

implementation of Algorithm 2 on a standard desktop PC. As
can be seen, when the MD rate is required to be under 5%, the
detection delay bound returned by Algorithm 2 is nD=60. If
we wish to decrease the detection delay bound, then the upper
bound for the MD rate will increase and possibly violate the
MD rate requirement of 5%. For example if we choose nD=55,
then it could only be assured that the MD rate is upper bounded
by 36.24%. Recall by previous discussion, the delay bound can
depend on both FA rate φ and MD rate τ , and this dependency is
shown in Fig. 6(c). This figure along with Fig. 6(a) can be used
to determine the parameters ρD and nD for the specified FA and
MD rates for the two-tank example. It so happens that for nD=
59, the upper bound given by (6) is higher than 35%, whereas
it suddenly becomes lower than 5% for nD=60. This sudden
drop in upper bound explains the reason why the tree depth
saturates at 60 when MD rate is decreased from 35% to 5%.

VI. CONCLUSION

We studied the problem of online fault detection for stochas-
tic DESs. An online detector based on a recursive likelihood
computation was proposed, whose existence for achieving any
arbitrary performance requirement was shown to be equivalent
to the S-Diagnosability property. Algorithms for computing the
detector parameters of detection threshold and delay bound so
as to achieve a given performance requirement of false alarm
and missed detection rates were presented, using a proposed
procedure for constructing an extended observer. The extended
observer computes, for each observation sequence, the set of
states reached in the system model, along with their proba-
bilities and the number of post fault transitions executed. The
algorithms are guaranteed to terminate and upper bounds on
the number of iterations prior to termination were provided.

The detector has a quadratic complexity for the online mon-
itoring, likelihood computation and issuing decision upon the
arrival of a new observation. On the other hand, the offline com-
putation of the detector parameters, namely, detection threshold
and delay bound, requires constructing an extended observer
whose size is exponential in the depth of the observer tree
constructed, while the depth of the tree is a complex bounded
function of the system and specification models, the observation
mask, and the desired bounds on MD and FA rates. As can
be inferred by Section V, the detector parameters of detection

threshold and delay bound for various levels of MD and FA
rates can be computed offline and stored in a database, and
during online monitoring and detection the required set of
parameters can be simply looked up each time a new level of
MD and FA rates are specified.

It was also shown that our detection strategy works for S-
Diagnosable as well as non-S-Diagnosable systems in the same
manner. For S-Diagnosable systems it is possible to achieve
arbitrary performance for FA and MD rates, while for a non-
S-Diagnosable system an arbitrary performance is achievable
only for the FA rate, whereas a lower bound exists for the
achievable MD rate that is a function of the FA rate, and
increases as FA rate is decreased. A variant of the algorithm for
the S-Diagnosable case was used to compute an upper bound
for the minimum achievable missed detection rate for a non-
S-Diagnosable system.

APPENDIX

The following theorem is reproduced from [1, Theorem 3],
and is used in the proofs included in this appendix. Note that s1
(resp. s2) denotes a trace generated in A1 (resp. A2).

Theorem 6 ([1]): Given two irreducible finite-state automata
A1 and A2, where their initial state distributions are the same
as their stationary state distributions, if A1 and A2 are not
p-equivalent, then

(∀τ > 0 ∧ ∀ρ > 0)(∃n ∈ N)
Pr (s1 : |s1| > n,Pr (s2|M(s1) = M(s2)) > ρ) < τ.

Next we provide complete proofs for the Theorems 1–4.
Proof of Theorem 1: (Sufficiency) If (2) is true, denote

s and s′ be such that (2) holds. Then for any extension t of s,
it holds that, Pr((L−K) ∩M−1M(st)) = Pr(M−1M(s)∩
(L−K))Pr(M−1M(t)∩(L−K) \M−1M(s)) and Pr(K∩
M−1 M (st))) =Pr (M−1 M(s) ∩K)Pr (M−1M (t) ∩K \
M−1 M (s)). Therefore

PN (st)=
Pr

(
K ∩M−1M(st)

)
Pr ((L−K)∩M−1M(st))+Pr (K∩M−1M(st))

=
Pr

(
K ∩M−1M(s)

)
Pr ((L−K)∩M−1M(s)) + Pr (K ∩M−1M(s))

=
Pr

(
K ∩M−1M(s)

)
Pr (M−1M(s))
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i.e., PN (st) = PN (s) > 0. Note that the above equality utilizes
the fact that s and s′ satisfy (2) and so Pr(M−1M(t) ∩ (L−
K)\M−1M(s)) =Pr(M−1M(t) ∩K\M−1M(s)). Now let
0 < ρ < PN (s) and 0 < τ < 1. Then we have:

(∀n ∈ N)Pr(t : t ∈ L \ s, |t| ≥ n, PN (st) > ρ) = 1 > τ.

It follows that the system is not S-Diagnosable.
(Necessity) If (2) is not true, then for all indistinguishable

pairs of fault and nonfault traces (s, s′), there exists a future
observation that has different probability of being fault versus
nonfault, i.e.,

(∀s ∈ L−K, s′ ∈ K s.t. M(s) = M(s′)) (∃o ∈ Δ∗)
Pr (t : t ∈ L \ s,M(t) = o) �= Pr (t : t ∈ K \ s′,M(t)=o) .

Then according to the likelihood ratio test presented in
Theorem 6 (originally [1, Theorem 3]), after the occurrence of
any fault trace, by comparing the number of occurrences of the
minimal segment of observations that has different probability
of being fault versus nonfault, the ambiguity of the occurrence
of a fault decreases as the length of extension increases, i.e.,
there exists n ∈ N such that for all ρ > 0, τ > 0 and s ∈ L−
K, the extensions of s longer than n and having PN larger than
ρ occur with probability smaller than τ , i.e.,

(∀τ > 0 ∧ ∀ρ > 0)(∃n ∈ N)(∀s ∈ L−K)
Pr (t : t ∈ L \ s, |t| ≥ n, PN (st) > ρ) < τ.

Thus we can conclude that the system is S-Diagnosable. �
Proof for Theorem 2: (Sufficiency) For a S-Diagnosable

system (L,K), we need to show the existence of ρD and nD

for achieving given φ and τ .
For finding ρD, first we partition the set of nonfault traces

into three sub-languages, i.e., K = K1 ∪K2 ∪K3, where K1

is the set possessing a fault extension (K1 = K ∩ pr(L−K)),
K2 is the set with no fault extension and is non-diagnosable
(K2 = Knd −K1), and K3 = K −K1 −K2 is the set with
no fault extension and is diagnosable. Note that if a nonfault
trace has a fault extension, then it can not satisfy condition in
(2) and hence is diagnosable. In other words, Knd ∩K1 = ∅.
Therefore K2 = Knd −K1 = Knd. Also note if (L,K) is
diagnosable, then K2 = Knd = ∅.

For the nonfault traces in K1=K∩pr(L−K) that possess
a fault extension, nonfault-ness is a transient property, and so
for any φ1>0 there exists m1 ∈ N such that the traces in K1

that are longer than m1 occur with probability smaller than φ1.
Denote ρ1=mins∈K1,|s|≤m1

PN (M(s)). Since for a nonfault
trace s, PN (M(s))>0, and since the traces of length smaller
than m1 are finite, ρ1>0. By choosing ρD<ρ1 we can ensure
that the detector issues a decision for only the traces in K1 that
are longer than m1. (For shorter traces, PN value will be larger
than ρ1>ρD, and so no decision.) Since the probability of such
traces is smaller than φ1, their FA rate is also smaller than φ1.

For the nonfault traces in K2 that possess no fault extensions
and are non-diagnosable, there exists m2∈N such that for every
trace in K2 that is longer than m2, further extensions will not
change the PN value (i.e., PN will converge to a value smaller
than 1; otherwise the traces would be diagnosable). Denote ρ2=
mins∈K2,|s|≤m2

PN (M(s)). Similar to ρ1, we have ρ2>0. By

choosing ρD<ρ2 we can ensure the detector issues no decision
for traces in K2 and hence no false alarm in K2.

For the nonfault traces in K3 that possess no fault extensions
and are diagnosable, according to Theorem 6 (originally [1,
Theorem 3]), for any φ3 > 0 and ρ′3 ∈ (0, 1) there exists m3 ∈
N such that the traces longer than m3 and having PN value
smaller than ρ′3 occur with probability smaller than φ3. Denote
ρ′′3 = mins∈K3,|s|≤m3

PN (M(s)). Similar to ρ1 and ρ2, we have
ρ′′3 > 0. By choosing ρD < ρ3 = min(ρ′3, ρ

′′
3) we can ensure

that the detector issues a decision only for those traces in
K3 that are longer than m3 and have PN value smaller than
ρD < ρ′3. Since the probability of such traces is smaller than
φ3, their FA rate is smaller than φ3.

Therefore for any system (regardless whether or not it is
S-Diagnosable), if we choose φ1 and φ3 in such a way that
φ1 + φ3 ≤ φ and accordingly set ρD = mini={1,2,3} ρi, then

the overall FA rate will be given by: P fa
D ≤ φ1 + φ3 ≤ φ. Thus

using our detection scheme, any FA rate can be achieved for
any system (regardless of whether or not it is S-Diagnosable),
while as will be seen later, this is not the case for the MD rate.

Next we need to establish the existence of nD to meet the
MD rate requirement. Since the system is S-Diagnosable, for
any τ > 0 and ρD > 0 that guarantees FA rate, there always
exists nD ∈ N such that ∀s ∈ L−K

Pr (t : t ∈ L \ s, |t| ≥ nD, PN (st) > ρD) < τ. (7)

With such a choice of nD we have, Prmd
D (s) < τ , and so

the overall MD rate is bounded by: Pmd
D =

∑
s∈L−K Prmd

D (s)
Pr(s) < τPr(L−K) ≤ τ . Thus the sufficiency of Theorem 2
holds.

(Necessity) Suppose for a system (L,K), given any φ>0 and
τ >0, there exist ρD and nD such that P fa

D ≤φ and Pmd
D ≤τ .

Letting Smd
D = {st : s ∈ L−K, t ∈ L \ s, |t|≥nD, PN (st) >

ρD}⊆L−K denote the set of fault traces that miss detection,
according to (4), we have Pr(Smd

D )=Pmd
D ≤τ . Then for given

s ∈ Smd
D ⊆L−K, we have

Pr (st : t ∈ L \ s, |t| ≥ nD, PN (st) > ρD) ≤ τ.

Since the LHS is the same as Pr(s)Pr(t : t ∈ L \ s, |t| ≥ nD,
PN (st) > ρD), for any s ∈ Smd

D , we have:

Pr (t : t ∈ L \ s, |t| ≥ nD, PN (st) > ρD) ≤ τ

Pr(s)
.

Let p = mins∈Smd
D

Pr(s) and τ ′ = 2τ/p, then for any s ∈
Smd
D , we have Pr(t : t ∈ L \ s, |t| ≥ nD, PN (st) > ρD) < τ ′.

Note τ can be chosen to be arbitrarily small to make τ ′

arbitrarily small. Furthermore for any s ∈ (L−K)− Smd
D ,

we have Pr(t : t ∈ L \ s, |t| ≥ nD, PN (st) > ρD) = 0 < τ ′.
Then ∀s ∈ L−K

Pr (t : t ∈ L \ s, |t| ≥ nD, PN (st) > ρD) < τ ′. (8)

Since for any φ > 0 (and hence any ρD) and τ > 0 (and
hence any τ ′ > 0), such nD always exists to make the above
analysis true, then for any ρD > 0 and τ ′ > 0, there exists
nD ∈ N such that (8) holds, which indicates the condition for
S-Diagnosability is held. Thus the necessity of Theorem 2
holds. �
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Proof for Theorem 3: According to the proof of Theorem 2,
for i ∈ {1, 2, 3}, there exists mi such that ρi obtained by
examining traces in Ki shorter than mi ensures the FA rate
of Ki be smaller than φi. Since φ2 = 0 (none of the traces
in K2 produce false alarm because no decision is issued for
those traces), by choosing φ1 and φ3 such that φ1 + φ3 ≤ φ,
the requirement of the specified FA rate is met. It follows
that Algorithm 1 is guaranteed to terminate with tree depth
d1 ≤ maxi mi, returning a threshold ρD ≤ mini ρi such that
the overall FA rate is upper bounded by φ. �

Proof for Theorem 4: In the tree of Algorithm 2, a
node is deemed a leaf if the “F ” decision is made upon
reaching it, and otherwise the tree itself is terminated at
a uniform depth so that the upper bound for the MD
rate has dropped below the requirement τ . Expand (6) and
we have Pmd

D =
∑

z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1

p+∑
z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:q=F p. Similar to the proof of

Theorem 2, the nonfault-ness in K1 is a transient property,
and so for any τ1 > 0, there exists m′ ∈ N such that Pr(s ∈
K ∩ pr(L−K) : |s| ≥ m′) < τ1, and hence the first term on
the RHS is less than τ1. For S-Diagnosable systems, according
to Theorem 2, for any τ2 > 0 there exists n′

D such that with
this choice of delay bound, the second term on the RHS is less
than τ2. Therefore by choosing τ1 and τ2 such that τ1 + τ2 ≤ τ ,
Algorithm 2 is guaranteed to terminate with tree depth d2≤m′+
n′
D, returning a delay bound nD = 1 +max((x,q),p,n)∈z,z∈Z n

such that the overall MD rate is upper bounded by τ . �
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