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Stochastic Failure Prognosability of Discrete
Event Systems

Jun Chen, Member, IEEE, and Ratnesh Kumar, Fellow, IEEE

Abstract—We study the prognosis of fault, i.e., its prediction
prior to its occurrence, in stochastic discrete event systems. We
introduce the notion of m-steps Stochastic-Prognosability, called
Sm-Prognosability, which allows the prediction of a fault at least
m-steps in advance. We formalize the notion of a prognoser and
also show that Sm-Prognosability is necessary and sufficient for
the existence of a prognoser that can predict a fault at least
m-steps prior to occurrence, while achieving any arbitrary false
alarm and missed detection rates. We also provide a polyno-
mial algorithm for the verification of Sm-Prognosability. Finally,
we compare the notion of stochastic prognosability with that of
stochastic diagnosability, and show that the former is a stronger
notion, as can be expected.

Index Terms—Discrete event systems (DESs), failure prognosis,
likelihood, stochastic prognosability.

I. INTRODUCTION

THE problem of predicting a fault prior to its occurrence is
a well researched area (see for example [1]–[4]). In [2],

the notion of uniformly bounded prognosability of fault was
formulated for logical discrete event systems (DESs), where
each fault-trace must possess a nonfault-prefix such that for
all indistinguishable traces, a future fault is inevitable within
a bounded delay that is uniform across all fault-traces. Such
a nonfault-prefix from which a future fault is inevitable is
termed an indicator. The notion was later extended to the
decentralized setting in [3] and the requirement of the existence
of a uniform bound was also removed. Reference [3] also
established that the notion of prognosability is equivalent to
the existence of a prognoser with no false alarm (FA) and
no missed detection (MD). The issue of prognosability un-
der a general decentralized inferencing mechanism was pro-
posed in [5], where a prognostic decision involved inferencing
among a group of local prognosers over their local deci-
sions and their ambiguity levels, and the notion of inference-
prognosability and its verification was introduced to capture
the necessity and sufficiency of inferencing based decentralized
prognosis. The problem of distributed prognosability under
bounded-delay communications among the local prognosers
was studied in [6], where the notion of joint-prognosability
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and its verification was proposed. Readers are referred to
the above literature for more details on prognosability of
logical DESs.

In order to generalize the notion of prognosability to stochas-
tic DESs, in this paper, we introduce m-steps Stochastic-
Prognosability, or simply Sm-Prognosability, which requires
for any tolerance level ρ and error bound τ , there exists a re-
action bound k ≥ m, such that the set of fault-traces for which
a fault cannot be predicted k steps in advance with tolerance
level ρ, occurs with probability smaller than τ . We formalize
the notion of a prognoser that maps observations to decisions
by comparing a suitable statistic with a threshold, and show that
Sm-Prognosability is a necessary and sufficient condition for
the existence of a prognoser with reaction bound at least m (i.e.,
prediction at least m-steps prior to the occurrence of a fault)
that can achieve any specified FA and MD rate requirement. In
this sense, Sm-Prognosability can be viewed as a generalization
of the logical prognosability, since it provides a basis for the
existence and synthesis of a prognoser that can achieve a user-
specified level of FA and MD. In contrast, the logical version
is rather rigid, offering no further options for systems that
fail to be logically prognosable, even when there may exist a
prognoser that can achieve a satisfying performance as mea-
sured in terms of FA and MD rates. The introduction of false
alarm and missed detection rates has provided reliability indices
for prognostic systems, paving the way for their risk analysis.
Also, in the logical setting, an indicator cannot visit a cycle of
nonfault-states, which can be restrictive; in contrast in stochas-
tic setting, an indicator can visit a cycle of nonfault-states as
long as the cycle is not absorbing. Further, we also provide
a polynomial algorithm for verifying Sm-Prognosability. We
show that even the weakest form of stochastic-prognosability
where the reaction bound is zero, namely, S0-Prognosability, is
stronger than stochastic-diagnosability (see [7]–[9]), meaning
that whenever it is possible to predict faults (even with zero
reaction bound), it is also possible to diagnose those, as can be
expected.

The rest of this paper is organized as follows. The no-
tations and some preliminaries are presented in Section II,
followed by the definition of Sm-Prognosability and stochastic
prognoser in Sections III and IV, respectively. Section IV
also shows necessity and sufficiency of Sm-Prognosability for
the existence of a m-prognoser that can fulfill any desired
level of error bounds over FA and MD. Section V gives
an algorithm for verifying Sm-Prognosability; Section VI in-
cludes two practical examples and the comparison with related
works is provided in Section VII. The paper is concluded
in Section VIII.
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II. NOTATIONS AND PRELIMINARIES

For an event set Σ, define Σ := Σ ∪ {ε}, where ε denotes
“no-event.” The set of all finite length event sequences over Σ,
including ε, is denoted as Σ∗. A trace is a member of Σ∗ and a
language is a subset of Σ∗. We use s ≤ t to denote that s ∈ Σ∗

is a prefix of t ∈ Σ∗, pr(s) to denote the set of all prefixes of s,
and |s| to denote the length of s or the number of events in s.
For ∼∈ {<,≤, >,≥,=} and n ∈ N, where N denotes the set of
all nonnegative integers, define Σ∼n := {s ∈ Σ∗ : |s| ∼ n} and
denote Σ=n as Σn for simplicity. For L ⊆ Σ∗, its prefix-closure
is defined as pr(L) :=

⋃
s∈L pr(s), and L is said to be prefix-

closed (or simply closed) if pr(L) = L. Given two languages
L1 and L2, their concatenation is defined as L1L2 := {st :
s ∈ L1, t ∈ L2}, the set of traces in L1 after L2 is defined as
L1 \ L2 := {t ∈ Σ∗ : ∃s ∈ L2, st ∈ L1}, and the set of traces
in L1 quotient L2 is defined as L1/L2 := {s ∈ pr(L1) : ∃t ∈
L2, st ∈ L1}.

A stochastic DES can be modeled by a stochastic automaton
G = (X,Σ, α, x0), where X is the set of states, Σ is the set of
events, x0 ∈ X is the initial state, and α : X × Σ×X → [0, 1]
is the transition probability function [10] satisfying ∀x ∈ X ,∑

σ∈Σ
∑

x′∈X α(x, σ, x′) = 1, i.e., there is no “termination”
at any of the states. (Note there is no loss of generality in
assuming no termination, since otherwise, one can augment
the model with a newly introduced “termination-state,” and
transitions from each state to the termination state on a newly
introduced “termination-event” that is unobservable and whose
occurrence probability equals the probability of termination of
the said state.) G is nonstochastic if α : X × Σ×X → {0, 1},
and a nonstochastic DES is deterministic if ∀x ∈ X , σ ∈ Σ,∑

x′∈X α(x, σ, x′) ∈ {0, 1}, i.e., each state has at most one
transition on each event. The transition probability function
α can be generalized to α : X × Σ∗ ×X in a natural way
by multiplying the probabilities of the individual transitions.
Define the language generated by G as L(G) := {s ∈ Σ∗ :
∃x ∈ X,α(x0, s, x) > 0}. A component C = (XC , αC) of G
is a “subgraph” of G, i.e., XC ⊆ X and ∀x, x′ ∈ XC and σ ∈
Σ, αC(x, σ, x

′) := α(x, σ, x′), whenever the latter is defined.
C is said to be a strongly connected component (SCC) or
irreducible if ∀x, x′ ∈ XC , ∃s ∈ Σ∗ such that αC(x, s, x

′) >
0. A SCC C is said to be closed if for each x ∈ XC ,∑

σ∈Σ
∑

x′∈XC
αC(x, σ, x

′) = 1.
To represent the limited sensing capabilities of a prognoser,

we introduce an event observation mask, M : Σ → Δ, where
Δ is the set of observed symbols and M(ε) = ε. An event σ
is unobservable if M(σ) = ε. The set of unobservable events
is denoted as Σuo, and so the set of observable events is
given by Σ− Σuo. The observation mask can be generalized
to M : 2Σ

∗ → 2Δ
∗

in a natural way: ∀s ∈ Σ∗, σ ∈ Σ, L ⊆
Σ∗, M(ε) = ε, M(sσ) = M(s)M(σ) and M(L) = {M(s) :
s ∈ L}.

For a stochastic automaton G = (X,Σ, α, x0) with gener-
ated language L(G) = L, let K ⊆ L be a nonempty closed
sublanguage representing a nonfault-specification for G, i.e.,
L−K consists of behaviors that execute some fault. Then the
task of prognosis is to predict the execution of any trace in
L−K prior to its execution, and at least m steps in advance,

Fig. 1. (a) Stochastic automaton G. (b) Nonfault specification R. (c) Refine-
ment GR.

and with sufficient confidence. Let K ⊆ L be generated by a
deterministic automaton R = (Q,Σ, β, q) such that L(R) = K
(from now on we interchangably use K and R to refer to the
“nonfault-specification”). Then the refinement of the plant with
respect to the specification, denoted as GR, can be used to
capture the fault-traces in the form of the reachability of a fault-
state carrying the label F in GR, which is given by GR :=
(X ×Q,Σ, γ, (x0, q0)), where Q = Q ∪ {F}, and ∀(x, q),
(x′, q′) ∈ X ×Q, σ ∈ Σ, γ((x, q), σ, (x′, q′)) = α(x, σ, x′) if
the following holds:

(q, q′ ∈ Q ∧ β(q, σ, q′) > 0)

∨(q = q′ = F ) ∨

⎛
⎝q′ = F ∧

∑
q∈Q

β(q, σ, q) = 0

⎞
⎠

and otherwise γ((x, q), σ, (x′, q′)) = 0. Then it can be seen
that the refined plant GR has the following properties: 1)
L(GR) = L(G) = L, 2) any fault-trace s ∈ L−K transitions
the refinement GR to a fault-state (a state containing F as its
second coordinate); and 3) the occurrence probability of each
trace in GR is the same as that in G, i.e.,

∑
x∈X α(x0, s, x) =∑

(x,q)∈X×Q γ((x0, q0), s, (x, q)).
Example 1: Fig. 1(a) is an example of a stochastic automaton

G. The set of states is X = {0, 1, 2, 3, 4} with initial state x0 =
0, and event set Σ = {a, b, c, d, f}. A state is depicted as a node,
whereas a transition is depicted as an edge between its origin
and termination states, with its event name and probability
value labeled on the edge. The observation mask M is such
that M({d, f}) = {ε} and M(σ) = σ for σ ∈ Σ− {d, f}. The
nonfault-specification is given in Fig. 1(b). Therefore, L−
K = {ab∗cac∗f}Σ∗ ∩ L and the refinement GR is shown in
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Fig. 1(c). As can be seen, all traces in L−K transitions GR

to the only fault-state (4, F ). In GR there are two closed
SCCs, one is formed by the nonfault-state (1,1) and its selfloop
transitions whereas the other is formed by the fault-state (4, F )
and its selfloop transitions. �

For xi, xj ∈ X and σ ∈ Σ− Σuo, define the set of traces
originating at xi, terminating at xj and executing a sequence of
unobservable events followed by a single observable event σ as
LG(xi, σ, xj) := {s ∈ Σ∗ : s = uσ,M(u) = ε, α(xi, s, xj) >
0}. Define α(LG(xi, σ, xj)) :=

∑
s∈LG(xi,σ,xj)

α(xi, s, xj) as
the occurrence probability of traces in LG(xi, σ, xj) and denote
it as μi,σ,j for short. Also define λij =

∑
σ∈Σuo

α(xi, σ, xj)
as the probability of transitioning from xi to xj while exe-
cuting a single unobservable event. Then it can be seen that
μi,σ,j =

∑
m λimμm,σ,j + α(xi, σ, xj), where the first term on

the right-hand side (RHS) involves transitioning in at least
two steps via some intermediate state, whereas the second
RHS term involves transitioning directly in exactly one step.
Thus, for each σ ∈ Σ− Σuo, given the values {λij |i, j ∈ X}
and {α(xi, σ, xj)|i, j ∈ X}, all the probabilities {μi,σ,j |i, j ∈
X,σ ∈ Σ− Σuo} can be found by solving the following matrix
equation (see for example [11] for a similar matrix equation):

μ(σ) = λμ(σ) +α(σ) (1)

where μ(σ), λ, and α(σ) are all |X| × |X| square matrices
whose ijth elements are given by μi,σ,j , λij , and α(xi, σ, xj),
respectively. In the presence of partial observability, we define
LG(xi,M(σ), xj) := ∪σ′∈Σ:M(σ′)=M(σ)LG(xi, σ

′, xj), i.e., it
is the set of all traces originating at xi, terminating at
xj and executing a sequence of unobservable events fol-
lowed by a single observable event that has the same mask
value M(σ). Then their occurrence probability is given by
α(LG(xi,M(σ), xj)) :=

∑
σ′∈Σ:M(σ′)=M(σ) μi,σ′,j .

III. PROGNOSABILITY OF STOCHASTIC DESS

In this section, we formalize the notion of prognosabil-
ity, called m-steps Stochastic-Prognosability, or simply Sm-
Prognosability, for stochastic DESs, and provide necessary and
sufficient conditions for the verification of Sm-Prognosability.
In the next section, we show that for finite-state systems, Sm-
Prognosability is necessary and sufficient for the existence of
a prognoser that can predict a fault at least m-steps prior
to occurrence, while achieving any arbitrary false alarm and
missed detection rates.

Let L be a nonempty closed language and K ⊆ L
be a nonempty closed language representing a nonfault-
specification. In order to be able to make a prognostic decision,
we define the n-step prognostic probability of no-fault follow-
ing an observation o ∈ M(L) as (where N in the subscript
denotes “no-fault”):

Pn
N (o) :=

Pr
({

M−1(o)
}
Σn ∩K

)
Pr ({M−1(o)}Σn ∩ L)

=
Pr

({
M−1(o) ∩K

}
Σn ∩K

)
Pr (M−1(o) ∩ L)

(2)

and the least prognostic probability of no-fault following o ∈
M(L) as

P ∗
N (o) := min

n∈N
Pn
N (o)

=
minn∈N Pr

({
M−1(o)

}
Σn ∩K

)
Pr ({M−1(o)} ∩ L)

. (3)

Note Pn
N (o) is the probability, following the observation o, that

the system does not execute a fault in the next n steps; and
P ∗
N (o) is the least probability, following the observation o, that

the system does not execute a fault over all finite-step futures.
Note in the denominator of (2), we used the fact that probability
of all extensions of length n, beyond the traces in M−1(o), is
the same as the probability of traces in M−1(o), for there is no
termination at any of the states. As a result, the denominator is
constant with respect to n, and the minimum only applies to the
numerator in (3).

To help formalize the prognosability for stochastic DESs, we
introduce the notions of boundary fault-traces whose all strict
prefixes are nonfault, m-steps interior nonfault-traces for which
a fault can occur in the next (m+ 1)th step while no fault
can occur within the next m steps, persistent nonfault-traces
whose all extensions are nonfault, indicator nonfault-traces for
which a future fault is guaranteed with arbitrary confidence and
nonindicator nonfault-traces that are not the indicator traces.

Definition 1: Given a pair (L,K) of closed languages with
K ⊆ L, we define the set of

• boundary fault-traces as, ∂ := {s ∈ L−K : pr(s)−
{s} ⊆ K};

• m-steps interior nonfault-traces of K with respect to
L (where m ≥ 0) as, ∂−

m := {s ∈ K : {s}Σ≤m ∩ (L−
K) = ∅, {s}Σm+1 ∩ ∂ �= ∅};

• persistent nonfault-traces of K with respect to L as,
ℵ := {s ∈ K : ∀n ∈ N, {s}Σn ∩ (L−K) = ∅} = {s ∈
K : ∀n ∈ N, P r({s}Σn ∩K) = Pr(s)};

• indicator nonfault-traces of K with respect to L as, J :=
{s ∈ K : ∀ρ > 0, ∃n ∈ N, P r({s}Σn ∩K) ≤ ρ};

• nonindicator nonfault-traces of K with respect to L as,
Υ := K − J.

Note that Υ = {s ∈ K : ∃ρ > 0, ∀n ∈ N, P r({s}Σn ∩K) >
ρ}, and since ℵ is obtained by replacing ρ with Pr(s) in the
right-hand side of this equality, it follows that ℵ ⊆ Υ. Also
note that ℵ is “extension-closed” in the sense that if it possesses
s ∈ K, then it also possesses all extensions t ∈ L with s ≤ t.

Example 2: For system in Fig. 1, L−K = ab∗cac∗f(c+
f)∗, and the set of boundary fault-traces is ∂ = ab∗cac∗f ,
and so ∂−

2 = ab∗, ∂−
1 = ab∗c. The set of persistent nonfault-

traces is given by ℵ = d(a+ b)∗ as all its extensions are
nonfault. The set of indicator traces is J = {a}Σ∗ ∩K, and
the set of nonindicator traces is Υ = {ε} ∪ {d}Σ∗ ∩ L =
{ε} ∪ d(a+ b)∗. �

Next we introduce the definition of Sm-Prognosability which
requires that, for any threshold value ρ > 0 and error bound
τ > 0, there exists a reaction bound k ≥ m, such that the set of
boundary fault-traces, that are either shorter than k in length
or for which a prognostic decision cannot be made k steps
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in advance with confidence level ρ, occurs with probability
smaller than τ .

Definition 2: A pair (L,K) of closed languages with K ⊆
L is said to be m-steps Stochastically-Prognosable, or simply
Sm-Prognosable, if

(∀τ, ρ > 0)(∃k ≥ m)

Pr (s ∈ ∂ : [|s| ≤ k]

∨
[
∀u ∈ s/Σ>k, P ∗

N (M(u)) > ρ
])

< τ (4)

where P ∗
N is as defined by (2) and (3).

The next lemma states that we can always choose the reaction
bound k in Definition 2 to equal m, thereby simplifying the
definition a bit.

Lemma 1: A pair (L,K) of closed languages with K ⊆ L is
Sm-Prognosable if and only if

(∀τ, ρ > 0)

Pr (s ∈ ∂ : [|s| ≤ m]

∨
[
∀u ∈ s/Σ>m, P ∗

N (M(u)) > ρ
])

< τ. (5)

Proof: The sufficiency is obvious by choosing k = m.
Now to see the converse, assume (5) is not true, i.e., ∃τ >
0, ρ > 0, s.t. Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗

N (M(u)) > ρ]∨
[|s| ≤ m]) ≥ τ . Since we have for all k ≥ m, {s ∈ ∂ :
[∀u ∈ s/Σ>k, P ∗

N (M(u)) > ρ] ∨ [|s| ≤ k]} ⊇ {s ∈ ∂ :
[∀u ∈ s/Σ>m, P ∗

N (M(u)) > ρ] ∨ [|s| ≤ m]}, and hence
Pr(s ∈ ∂ : [∀u ∈ s/Σ>k, P ∗

N (M(u)) > ρ] ∨ [|s| ≤ k]) ≥
Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗

N (M(u)) > ρ]∨ [|s| ≤ m]) ≥
τ . Therefore, according to Definition 2, (L,K) is not Sm-
Prognosable. Hence, the necessity also holds. �

Denote �(∂) = min{|s|, s ∈ ∂} as the length of the shortest
fault-trace in L−K. Then the following theorem provides a
necessary and sufficient condition for Sm-Prognosability re-
quiring the reaction bound m to be smaller than the length of the
shortest fault-trace, �(∂), and every boundary fault-trace in ∂ to
possess a nonfault-prefix which is more than m-steps shorter
and is unambiguously an indicator.

Theorem 1: A pair (L,K) of closed languages with K ⊆ L
is Sm-Prognosable if and only if m < �(∂) and

(∀s ∈ ∂)
(
∃u ∈ s/Σ>m

) (
M−1M(u) ∩K ⊆ J

)
. (6)

Proof: (Sufficiency) For any s ∈ ∂, let u ∈ s/Σ>m be
such that M−1M(u) ∩K ⊆ J. Then

Pn
N (M(u)) =

Pr
({

M−1M(u) ∩K
}
Σn ∩K

)
Pr (M−1M(u) ∩ L)

=

∑
u′∈M−1M(u)∩K Pr ({u′}Σn ∩K)

Pr (M−1M(u) ∩ L)
.

For any ρ > 0, define ρu′ := ρPr(u′) > 0 for each
u′ ∈ M−1M(u) ∩K. Then since M−1M(u) ∩K ⊆ J,
for each u′ ∈ M−1M(u) ∩K, exists nu′ ∈ N such that
Pr({u′}Σnu′ ∩K) ≤ ρu′ . Let d := maxu′∈M−1M(u)∩K nu′ .
Note that d here is a finite integer even if M−1M(u) is an
infinite set (resulted by unobservable loops). To see this, let
u1 = u11u12 and u2 = u11σ1 . . . σku12 such that σ1 . . . σk is

an unobservable loop. Then we have Pr({u2}Σnu1 ∩K) =
Pr(σ1 . . . σk)Pr({u1}Σnu1 ∩K)< ρPr(σ1 . . . σk)Pr(u1) =
ρPr(u2) = ρu2

, and thus nu2
≤ nu1

. Therefore, to find d, we
only need to consider u′ ∈ M−1M(u) ∩K such that u′ doesn’t
contain any unobservable loop, making d finite. Therefore,

P d
N (M(u)) =

∑
u′∈M−1M(u)∩K Pr

(
{u′}Σd ∩K

)
Pr (M−1M(u) ∩ L)

≤
∑

u′∈M−1M(u)∩K ρu′

Pr (M−1M(u) ∩ L)

=

∑
u′∈M−1M(u)∩K ρPr(u′)

Pr (M−1M(u) ∩ L)

=
Pr

(
M−1M(u) ∩K

)
Pr (M−1M(u) ∩ L)

ρ ≤ ρ. Hence,

P ∗
N (M(u)) ≤P d

N (M(u)) ≤ ρ.

Also since m < �(∂) implies {s ∈ ∂ : |s| ≤ m} = ∅, we
have for all ρ > 0 and τ > 0, Pr(s ∈ ∂ : [∀u ∈ s/Σ>m,
P ∗
N (M(u)) > ρ]∨ [|s| ≤ m]) = 0 < τ . According to Lemma

1, (L,K) is Sm-Prognosable.
(Necessity) When m ≥ �(∂), let s ∈ ∂ be such that

|s| = �(∂) ≤ m. Obviously for any τ ≤ Pr(s), Pr(s ∈
∂ : [∀u ∈ s/Σ>m, P ∗

N (M(u)) > ρ]∨ [|s| ≤ m]) ≥ Pr(s ∈ ∂ :
|s| ≤ m) ≥ Pr(s) ≥ τ for all ρ > 0. Therefore, (L,K) is not
Sm-Prognosable. When m < �(∂), but (6) is not true, let s ∈ ∂
be such that (∀u ∈ s/Σ>m)(M−1M(u) ∩K ∩Υ �= ∅). Then
for any u ∈ s/Σ>m and u′ ∈ M−1M(u) ∩K ∩Υ

Pn
N (M(u)) =

Pr
({

M−1M(u) ∩K
}
Σn ∩K

)
Pr (M−1M(u) ∩ L)

≥ Pr ({u′}Σn ∩K)

Pr (M−1M(u) ∩ L)
.

Since u′ ∈ Υ, there exists ρu′ > 0 such that ∀n ∈ N,
Pr({u′}Σn ∩K) > ρu′ . Therefore, for any n ∈ N

Pn
N (M(u)) ≥ Pr ({u′}Σn ∩K)

Pr (M−1M(u) ∩ L)

>
ρu′

Pr (M−1M(u) ∩ L)
=: ρu

and hence

P ∗
N (M(u)) = min

n∈N
Pn
N (M(u)) > ρu.

Thus, for any u ∈ s/Σ>m, there exists ρu > 0 such that
P ∗
N (M(u)) > ρu. Therefore, for any 0 < ρ < minu∈s/Σ>m ρu

and 0 < τ < Pr(s), Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗
N (M(u)) >

ρ]∨ [|s| ≤ m]) ≥ Pr(s) > τ . Hence, (L,K) is not Sm-
Prognosable, according to Lemma 1. �

Example 3: For system in Fig. 1, �(∂) = 4, so by Theorem 1,
the system cannot be Sm-Prognosable with m ≥ 4. According
to Example 2, the set of indicator traces is J = {a}Σ∗ ∩K, and
the set of nonindicator traces is Υ = {ε} ∪ d(a+ b)∗, while the
set of boundary fault-traces is ∂ = ab∗cac∗f . One can check
that for any s ∈ ∂, there exists u ∈ s/Σ>1 ⊆ {ab∗c}Σ∗ ∩K
such that M−1M(u) ∩K ⊆ J. Therefore, by Theorem 1,
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(L,K) is S1-Prognosable. On the other hand, for s = acaf ∈
∂, u = a ∈ s/Σ>2 is such that M−1M(u) ∩K ∩Υ = {da} �=
∅. Therefore, by Theorem 1, (L,K) is not S2-Prognosable. �

The following corollary is directly obtained from Theorem 1,
and captures the expected property that prognosability contin-
ues to hold even with smaller reaction bound.

Corollary 1: Given a pair (L,K) of closed languages with
K ⊆ L, if (L,K) is Sm-Prognosable, then (L,K) is Sm′-
Prognosable for all nonnegative m′ ≤ m, whereas if (L,K) is
not Sm-Prognosable, then (L,K) is not Sm′-Prognosable for
all m′ ≥ m.

For a Sm-Prognosable system, Theorem 1 requires that
each boundary fault trace possess a more than m-steps shorter
prefix that is unambiguously an indicator. We can strengthen
this theorem by requiring that exactly the (m+ 1)-shorter
prefix possess the said property. This requires the result of
the next lemma stating that indicators are “extension-closed”
(nonfault-extensions of indicators are also indicators), while
nonindicators are prefix-closed (prefixes of nonindicators are
also nonindicators).

Lemma 2: For a pair (L,K) of closed languages with K ⊆
L, it holds that JΣ∗ ∩K ⊆ J, and pr(Υ) ⊆ Υ.

Proof: Let s ∈ J be arbitrary, i.e., ∀ρ > 0, ∃n ∈ N s.t.
Pr({s}Σn ∩K) ≤ ρ. Since for any t ∈ K \ s, Pr({st}Σl ∩
K) ≤ Pr({s}Σl+|t| ∩K), we have ∀ρ > 0, ∃l = n− |t| ∈
N s.t. Pr({st}Σl ∩K) ≤ Pr({s}Σl+|t| ∩K) = Pr({s}Σn ∩
K) ≤ ρ. According to Definition 1, st ∈ J, i.e., ∀s ∈ J, t ∈
K \ s, st ∈ J. Therefore, JΣ∗ ∩K ⊆ J.

Similarly, let s ∈ Υ be arbitrary, i.e., ∃ρ > 0 s.t. ∀n ∈ N,
Pr({s}Σn ∩K) > ρ. Then for any u ∈ pr(s), Pr({u}Σl ∩
K) ≥ Pr({s}Σl−|s|+|u| ∩K) > ρ for any l − |s|+ |u| ∈ N

and hence for any l ∈ N. According to Definition 1, u ∈ Υ, i.e.,
∀s ∈ Υ, u ∈ pr(s), u ∈ Υ. Therefore, pr(Υ) ⊆ Υ. �

Using Lemma 2, we can strengthen Theorem 1 to obtain
a new result that we employ in Section V for verifying Sm-
Prognosability. The new theorem states that Sm-Prognosability
holds if and only if the reaction bound m < �(∂), and all m-
steps interior traces are distinguishable from any nonindicator
trace.

Theorem 2: A pair (L,K) of closed languages with K ⊆ L
is Sm-Prognosable if and only if m < �(∂) and

M−1M
(
∂−
m

)
∩Υ = ∅. (7)

Proof: If m < �(∂) and (7) is true, then it follows from the
fact that every fault-trace s ∈ ∂ possesses a nonfault-prefix u ∈
∂−
m satisfying u ∈ s/Σ>m and Theorem 1 that (L,K) is Sm-

Prognosable, and the sufficiency follows. On the other hand, if
m ≥ �(∂), then by Theorem 1, (L,K) is not Sm-Prognosable.
Meanwhile if m < �(∂) but (7) is not true, then we can select
s ∈ ∂−

m and s′ ∈ Υ such that M(s) = M(s′). Then for any u ∈
pr(s), there exists u′ ∈ pr(s′) such that M(u) = M(u′) and
u′ ∈ Υ (Lemma 2), i.e., ∀u ∈ pr(s), M−1M(u) ∩K ∩Υ �= ∅.
It follows from the definition of ∂−

m that there exists st ∈ ∂
such that st/Σ>m = pr(s), and hence ∀u ∈ st/Σ>m = pr(s),
M−1M(u) ∩K ∩Υ �= ∅. According to Theorem 1, (L,K) is
not Sm-Prognosable. Thus the necessity also holds. �

Example 4: For system shown in Fig. 1, J = {a}Σ∗ ∩K,
Υ = {ε} ∪ d(a+ b)∗, ∂−

2 = ab∗, and ∂−
1 = ab∗c. Since

M−1M(∂−
2 ) ∩Υ = {dab∗, ab∗} ∩ [{ε} ∪ d(a+ b)∗] =

dab∗ �= ∅ and M−1M(∂−
1 ) = ab∗c ⊆ J. Therefore, (L,K)

is S1-Prognosable but not S2-Prognosable, as discussed in
Example 3. �

IV. PROGNOSER AND ITS EXISTENCE CONDITION

In this section, we formally define a prognoser with reaction
bound at least m, called a m-prognoser, along with its FA
and MD rates, and show that the notion of Sm-Prognosability
introduced in the previous section acts as a necessary and
sufficient condition for the existence of a m-prognoser capable
of achieveing any FA and MD rates.

In order to predict a fault in advance, the prognoser com-
putes for each o ∈ M(L), the prognostic probability of no-
fault P ∗

N (o) as defined by (2), (3), and compares it with an
appropriately chosen threshold ρ. Whenever P ∗

N (o) is below
this threshold, implying that there is only a small likelihood
of no-fault in future, the prognoser issues a fault warning F ,
predicting/prognosing a future fault, and otherwise it remains
silent (issues ε). In other words, a prognoser is formally a map,
D : M(L) → {F, ε} defined as

∀o ∈ M(L), [D(o) = F ] ⇔ [∃o ≤ o : P ∗
N (o) ≤ ρ] (8)

where P ∗
N is as defined by (2) and (3). Note that according

to (8), once a warning is issued, it remains unchanged for the
subsequent extensions.

Example 5: Consider the system GR shown in Fig. 1.
Upon receiving observation o = abbb, the prognoser computes
P ∗
N (o) = 0.5872 according to (2), (3), and compare it with ρ.

A prognostic decision F can be issued if ρ ≤ 0.5872. If instead
the prognoser receives o = abc, and computes P ∗

N (o) = 0, then
for any threshold ρ, a prognostic decision F can be issued. �

For a prognoser that aims to predict a fault at least m steps
before its occurrence, a miss detection (MD) occurs when a
fault happens while the prognoser fails to issue a warning m
steps in advance, i.e., a boundary fault-trace s occurs while
either |s| ≤ m or the prognoser is silent for its prefix s/Σm+1.
On the other hand, a false alarm (FA) occurs when a warning
is issued for a trace whose all extensions are nonfault, i.e., a
trace s in ℵ occurs while the prognoser issues F . Therefore,
the MD rate Pmd and the FA rate P fa for a m-prognoser can
be defined as

Pmd =Pr(s ∈ ∂ : [|s|≤m]∨
[
D

(
M

(
s/Σm+1

))
=ε

]
(9)

P fa =Pr (s ∈ ℵ : D (M(s)) = F ) . (10)

Considering the fact that once the prognoser issues F , it issues
F for any subsequent observations, the above equations can
also be equivalently presented as

Pmd =Pr
(
s∈∂ : [|s|≤m]∨

[
∀u ∈ s/Σ>m, P ∗

N (M(u))>ρ
])

P fa =Pr (s ∈ ℵ : ∃u ∈ pr(s), P ∗
N (M(u)) ≤ ρ) .
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Example 6: For the system GR shown in Fig. 1. Suppose
GR executes dabbb and produces observation o = abbb, then
P ∗
N (o) = 0.5872. Hence, for any m-prognoser with threshold

ρ ≥ 0.5872, traces in {dabbb}Σ∗ ∩ L will be false alarmed.
When GR executes a trace in ab∗cac∗f ⊆ ∂ and produces an
observation o ∈ ab∗cac∗, then P ∗

N (o) approaches 0 for any
o ∈ ab∗c. Therefore, for a 1-prognoser with any threshold ρ, all
fault-traces can be prognosed, and hence no missed detection.
However, for a 2-prognoser with ρ = 0.3, when GR executes
the fault-trace abcaf , a prognostic decision can be made only
upon observing abc (since for all its prefixes, the threshold
remains lower than the prognostic probability of no fault:
P ∗
N (ε) = 0.5, P ∗

N (a) = 0.375, P ∗
N (ab) = 0.444, P ∗

N (abc) =
0), which violates the least reaction bound m = 2, and hence
abcaf gets missed detected. �

In order to establish a condition for the existence of a
m-prognoser in terms of the property of Sm-Prognosability,
we first establish the following corollary of Theorem 1 and
Lemma 2.

Corollary 2: If a pair (L,K) of closed languages with K ⊆
L is Sm-Prognosable, then M−1M(Υ) ∩ (L−K) = ∅.

Proof: Suppose for contradiction that (L,K) is Sm-
Prognosable and there exists s ∈ Υ such that M−1M(s) ∩
(L−K) �= ∅. Let s′ ∈ M−1M(s) ∩ (L−K). Then for all
u′ ∈ pr(s′), there exists u ∈ pr(s) such that M(u) = M(u′).
According to Lemma 2, u ∈ Υ. Therefore, ∀u′ ∈ pr(s′) ∩K,
M−1M(u′) ∩K ∩Υ �= ∅. By Theorem 1, (L,K) is not Sm-
Prognosable for any m ∈ N, which contradicts the assumption
that (L,K) is Sm-Prognosable. �

The next lemma states that under the assumption of regularity
of languages L and K, equivalently the finiteness of the state-
space of GR, no extension of an indicator can be persistently
nonfault, whereas some extension of a nonindicator must be
persistently nonfault. The lemma requires the finiteness of
the state-space that guarantees the probability of staying in a
transient state approaches 0 while the system evolves.

Lemma 3: For a pair (L,K) of closed regular languages with
K ⊆ L, we have JΣ∗ ∩ ℵ = ∅ and ΥΣ∗ ∩ ℵ �= ∅.

Proof: Assume for contradiction that there exists s ∈ J

such that {s}Σ∗ ∩ ℵ �= ∅. Let u = σ1 . . . σn ∈ K \ s be such
that su ∈ ℵ. Then for any l ∈ {1, . . . , n}, Pr({s}Σl ∩
K) ≥ Pr(sσ1 . . . σl) = Pr(su), and for l > n, Pr({s}Σl ∩
K) ≥ Pr({su}Σl−n ∩K) = Pr(su), i.e., there exists 0 <
ρ < Pr(su) such that for any l ∈ N, Pr({s}Σl ∩K) > ρ.
Therefore, s �∈ J, a contradiction.

Similarly assume for contradiction that there exists s ∈ Υ
such that {s}Σ∗ ∩ ℵ = ∅. Then for any u ∈ L \ s, it possesses
a fault-extension t ∈ (L−K) \ su, i.e., the “nonfaulty-ness
of s” is a transient property. Since the language L and K are
regular and have finite state representations, for any ρ > 0,
there exists n ∈ N such that Pr(t ∈ K \ s, |t| ≥ n) ≤ ρ, i.e.,
Pr({s}Σn ∩K) = Pr(s)Pr(t ∈ K\s, |t| = n)≤ ρPr(s) :=
ρ′ holds for any ρ′ > 0. Hence, s ∈ J, which contradicts the
assumption that s ∈ Υ. �

Remark 1: Note by Lemma 3, no extension of an indicator
trace can persistently be a nonfault-trace. This requirement is
weaker than the corresponding requirement for an indicator
trace in the logical setting: All extensions of an indicator trace

must be a fault-trace within a bounded steps [3]. A consequence
of this is that, in the logical setting, an indicator trace cannot
visit a cycle of nonfault-states [3], which can be restrictive. In
contrast, in stochastic setting, an indicator is allowed to visit a
cycle of nonfault-states as long as the cycle is non-absorbing
(i.e., it has a positive exit probability, which ensures the non-
persistence of remaining nonfault).

The next lemma will be used in the proof of Theorem 3. For
the sake of space, its proof is provided in the Appendix.

Lemma 4: For a pair (L,K) of Sm-Prognosable closed
regular languages with K ⊆ L, we have

(∀ρ′, φ > 0)(∃d ∈ N)(∀s ∈ ℵ)
Pr (t : t ∈ ℵ \ s, |t| ≥ d, P ∗

N (M(st)) < ρ′) < φ (11)

where the persistent nonfault-traces ℵ is defined in Definition 1
and P ∗

N is as defined by (2) and (3).
Now we are ready to present the main result of the sec-

tion, which shows that for regular languages L and K, Sm-
Prognosability is necessary and sufficient for the existence of a
m-prognoser to satisfy any level of FA and MD rates.

Theorem 3: Consider a pair (L,K) of closed regular lan-
guages with K ⊆ L. Then for any FA rate φ > 0 and MD rate
τ > 0, there exists a m-prognoser (and its associated prognostic
decision threshold) defined by (8) such that the MD and FA
rates defined by (9), (10) satisfy Pmd ≤ τ and P fa ≤ φ if and
only if (L,K) is Sm-Prognosable.

Proof: (Sufficiency) Suppose (L,K) is Sm-Prognosable.
Then for a nonfault-trace s ∈ K − ℵ, its extensions contin-
uing to remain in K − ℵ is a transient property. Since the
language L and K are regular and have finite state represen-
tations, we have for any φ1 > 0, ∃d1 ∈ N such that Pr(s ∈
(K − ℵ) ∩ Σ>d1) < φ1. For any s ∈ ℵ ∩ Σd1 , if we pick ρ′s :=
minu∈pr(s) P

∗
N (M(u)) > 0, we can ensure that s is not false

alarmed. For any s ∈ ℵ ∩ Σd1 , according to Lemma 4 (pre-
sented in the Appendix), for any φ2 > 0 and ρ′2 > 0, there
exists d2 ∈ N, such that the set of extensions of s that are longer
than d2 and have P ∗

N values of their observations smaller than
ρ′2, occur with probability smaller than φ2, i.e., P fa(s) < φ2.

Let d = d1 + d2. If we pick ρ′ = minu∈pr(s),s∈ℵ∩Σd

P ∗
N (M(u)) > 0, ρ < min(ρ′2, ρ

′) and φ1 + φ2 < φ, then P fa

is upper bounded by

P fa =Pr (s ∈ ℵ : ∃u ∈ pr(s), P ∗
N (M(u)) ≤ ρ)

=Pr
(
s ∈ ℵ : pr(s) ∩ Σd ∩ ℵ = ∅,
∃u ∈ pr(s), P ∗

N (M(u)) ≤ ρ)

+ Pr
(
s ∈ ℵ : pr(s) ∩ Σd ∩ ℵ �= ∅,
∃u ∈ pr(s), P ∗

N (M(u)) ≤ ρ)

≤Pr
(
s ∈ (K − ℵ) ∩ Σ>d1

)
+

∑
s∈ℵ∩Σd1

Pr(s)φ2 < φ1 + φ2 < φ.

Therefore, with the above choice of ρ, an arbitrary FA rate
φ could be achieved. Next since (L,K) is Sm-Prognosable,
according to Lemma 1, with this choice of ρ, for any τ > 0,
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we have Pmd ≤ Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗
N (M(u)) > ρ]∨

[|s| ≤ m]) < τ . Therefore, the sufficiency holds.
(Necessity) To show the necessity, consider the contraposi-

tive where (L,K) is not Sm-Prognosable. Then by Theorem 1,
there are two possibilities. First, if m ≥ �(∂), then let s ∈ ∂ be
such that |s| = �(∂), and in which case

Pmd ≥Pr
(
s∈∂ : [|s|≤m]∨

[
∀u∈s/Σ>m, P ∗

N (M(u))>ρ
])

≥Pr (s ∈ ∂ : |s| ≤ m)

≥Pr(s).

Therefore, a MD rate τ < Pr(s) cannot be achieved.
On the other hand, if m < �(∂) but (6) is not true, then

exists s ∈ ∂, such that for all u ∈ s/Σ>m, there exists u′ ∈
Υ with M(u) = M(u′). Since u′ ∈ Υ, according to Lemma
3, there exists t′ ∈ K \ u′ such that u′t′ ∈ ℵ. If we choose
ρ < minu∈s/Σ>m P ∗

N (u), then s will be missed detected, and
a MD rate τ < Pr(s) cannot be achieved. On the other hand,
if we choose ρ ≥ minu∈s/Σ>m P ∗

N (u), then u′t′ will be false
alarmed, and a FA rate φ < Pr(u′t′) cannot be met. Therefore,
in this case, at most one of arbitrarily small FA or MD rates can
be achieved, completing the contraposition argument. �

V. VERIFICATION OF Sm-PROGNOSABILITY

Having established Sm-Prognosability as a central property,
needed for the existence of a m-prognoser, we next provide a
polynomial algorithm for the verification of Sm-Prognosability
utilizing Theorem 2. We need the following definitions that
identify m-steps interior nonfault-states from where no fault
can occur within m steps but will occur at (m+ 1)th step, indi-
cator nonfault-states from where a future fault is inevitable with
arbitrary confidence, and nonindicator nonfault-states which
are not indicator states.

Definition 3: Given a stochastic DES G = (X,Σ, α, x0), de-
terministic nonfault-specification R = (Q,Σ, β, q0), with their
refinement GR = (X ×Q,Σ, γ, (x0, q0)), the set of

• m-steps interior nonfault-states ∂−
m(X ×Q) ⊆ X ×Q

(where m ≥ 0) are states (x, q) such that q �= F , and
there exists (x′, q′) with q′ = F and s ∈ Σm+1 s.t.
γ((x, q), s, (x′, q′)) > 0 and for all (x′, q′), s ∈ Σ≤m,
[γ((x, q), s, (x′, q′)) > 0] ⇒ [q′ �= F ];

• indicator nonfault-states J(X ×Q) are states (x, q) such
that q �= F and from which the system cannot reach a
closed SCC in GR that contains a nonfault-state;

• nonindicator nonfault-states Υ(X ×Q) are states from
which the system can reach a closed SCC in GR that
contains a nonfault-state.

The following lemma is immediate from Definition 1, Defi-
nition 3 and Lemma 3.

Lemma 5: Given a pair (L = L(G), K = L(R)) of closed
regular languages with K ⊆ L, then for any s ∈ K,

• [s∈∂−
m] ⇔ [∃(x, q)∈∂−

m(X×Q), γ((x0, q0), s, (x, q))
>0];

• [s∈J] ⇔ [∃(x, q)∈J(X×Q), γ((x0, q0), s, (x, q))>0];
• [s∈Υ] ⇔ [∃(x, q)∈Υ(X×Q), γ((x0, q0), s, (x, q))>0].

The following algorithm verifies the condition of Theorem 2.
Algorithm 1: For a given stochastic automaton G =

(X,Σ, α, x0) and a deterministic nonfault-specification R =
(Q,Σ, β, x0), perform the following steps:

1) Check if the length of the shortest trace to a state X × {F}
in GR is smaller than m, if the answer is yes, proceed to step 2),
otherwise (L,K) is not Sm-Prognosable;

2) Construct a testing automaton T = GR ×GR such that
at each step the first copy of GR takes lead in executing
transitions, whereas the second copy responds by executing an
indistinguishable nonfault-trace. This automaton is denoted as
T = (Z,Σ× Σ, δ, z0), where

• Z = X ×Q×X ×Q;
• z0 = ((x0, q0), (x0, q0)) is the initial state;
• δ : Z × Σ× Σ× Z → [0, 1] is defined as:
∀((x1, q1), (x2, q2)), ((x

′
1, q

′
1), (x

′
2, q

′
2)) ∈ Z, (σ, σ′) ∈

Σ× Σ,

δ (((x1, q1), (x2, q2)) , (σ, σ
′), ((x′

1, q
′
1) , (x

′
2, q

′
2)))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ((x1, q1), σ, (x
′
1, q

′
1)) ,

if (σ ∈ Σuo) ∧ (σ′ = ε)
∧ ((x2, q2) = (x′

2, q
′
2)) ∧ (q′2 �= F ) ;

γ((x1,q1),σ,(x′
1,q

′
1))α(LGR((x2,q2),σ

′,(x′
2,q

′
2)))

α(LGR ((x2,q2),M(σ)))
,

if (σ ∈ Σ− Σuo) ∧ (M(σ) = M(σ′))
∧ (LGR ((x2, q2), σ

′, (x′
2, q

′
2))) �= ∅)

∧ (q′2 �= F ) ;
0 otherwise.

According to the definition of δ, when the first copy of
GR executes an unobservable event, the second copy responds
by ε (since it observes nothing); if the first copy executes an
observable event σ, then the second copy responds by executing
a nonfault-trace consisting of sequence of unobservable events
followed by an observable event that has the same mask value
as M(σ). Note a conditioning is applied to limit the executions
of the second copy to indistinguishable nonfault-traces.

3) Check if every state ((x1, q1), (x2, q2)) with (x1, q1) ∈
∂−
m(X ×Q) satisfies (x2, q2) �∈ Υ(X ×Q), (L,K) is Sm-

Prognosable if and only if the answer is yes.

The following theorem guarantees the correctness of
Algorithm 1.

Theorem 4: A pair (L = L(G),K = L(R)) of closed reg-
ular languages with K ⊆ L is Sm-Prognosable if and only if
any fault-state can only be reached in more than m-steps in
GR and every reachable state ((x1, q1), (x2, q2)) of T with
(x1, q1) ∈ ∂−

m(X ×Q) satisfies (x2, q2) �∈ Υ(X ×Q).
Proof: Obviously, we have: any fault-state can only

be reached in more than m-steps if and only if m < �(∂).
Next, by the construction of T , for any s ∈ L and s′ ∈ K,
M(s) = M(s′) if and only if there exists ((x1, q1), (x2, q2))
such that δ(((x0, q0), (x0, q0)), (s, s

′), ((x1, q1), (x2, q2))) >
0. So if every reachable state ((x1, q1), (x2, q2)) with
(x1, q1) ∈ ∂−

m(X ×Q) satisfies (x2, q2) �∈ Υ(X ×Q), then by
Lemma 5, every s ∈ ∂−

m is not ambiguous with any
nonindicator trace, i.e., M−1M(∂−

m) ∩Υ = ∅. Therefore,
(L,K) is Sm-Prognosable according to Theorem 2, and
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Fig. 2. Testing automaton for the system GR shown in Fig. 1.

the sufficiency follows. On the other hand, if the theorem’s
condition is not satisfied, then either m ≥ �(∂) or there
exists (s, s′) with M(s) = M(s′) and ((x1, q1), (x2, q2))
such that (x1, q1) ∈ ∂−

m(X ×Q), (x2, q2) ∈ Υ(X ×Q) and
δ(((x0, q0), (x0, q0)), (s, s

′), ((x1, q1), (x2, q2))) > 0. i.e.,
s ∈ ∂−

m and s′ ∈ Υ. Therefore, M−1M(∂−
m) ∩Υ �= ∅. By

Theorem 2, (L,K) is not Sm-Prognosable, which proves the
necessity. �

Example 7: Let us revisit the system shown in Fig. 1.
According to Definition 3, J(X ×Q) = {(2, 2), (3, 3), (4, 4)},
Υ(X ×Q) = {(0, 0), (1, 1)}, ∂−

1 (X ×Q) = {(3, 3)} and
∂−
2 (X ×Q) = {(2, 2)}. It is easy to check that 1 < 2 < �(∂) =

4. The testing automaton is shown in Fig. 2. The only state
((x1, q1), (x2, q2)) such that (x1, q1) ∈ ∂−

1 (X ×Q) is labeled
in italic and satisfies (x2, q2) �∈ Υ(X ×Q) and therefore
(L,K) is S1-Prognosable. All the states ((x1, q1), (x2, q2))
such that (x1, q1) ∈ ∂−

2 (X ×Q) are labeled in bold, and
there exists ((2,2),(1,1)) such that (2, 2) ∈ ∂−

2 (X ×Q) and
(1, 1) ∈ Υ(X ×Q). Therefore, (L,K) is not S2-Prognosable.
These are as expected from the discussion in Examples 3
and 4. �

Remark 2: In Algorithm 1. GR has O(|X| × |Q|) states
and O(|X|2 × |Q| × |Σ|) transitions, and the testing automa-
ton T = GR ×GR has O(|X|2 × |Q|2) states and O(|X|4 ×
|Q|2 × |Σ|2) transitions. The computation of transition proba-
bilities in T requires solving the matrix equation (1) for each
σ ∈ Σ− Σuo with complexity that is cubic in the number of
states in GR and linear in the number of events in GR, namely,
O(|X|3 × |Q|3 × |Σ|). Thus, the complexity of constructing
T is O(|X|4 × |Q|2 × |Σ|2 + |X|3 × |Q|3 × |Σ|). The shortest
path to a fault state in GR can be computed in O(

√
|X| × |Q| ×

|X|2 × |Q| × |Σ|) [12]. Identifying the set of m-steps interior
nonfault-states in GR can be done linearly in the size of GR,
i.e., O(|X|2 × |Q| × |Σ|), and identifying the set of indicator
nonfault-states can be achieved by determining all the nonfault
closed SCC in GR using the algorithm in [13], which can be
done in O(|X|3 × |Q|3). Therefore, the overall complexity of
Algorithm 1 is O(|X|4 × |Q|2 × |Σ|2 + |X|3 × |Q|3 × |Σ|),
which is polynomial in the number of states and events. Further
if G is also deterministic (besides R) so that GR has a smaller

Fig. 3. Crowd with size 7 and 2 initiators.

number of transitions, namely, O(|X| × |Q| × |Σ|), then the
verification complexity reduces to O(|X|2 × |Q|2 × |Σ|2 +
|X|3 × |Q|3 × |Σ|). Furthermore, if the mask is “projection-
type,” the complexity further reduces due to a reduction in the
number of transitions in GR, where each state can now only
have at most |Σ| outgoing transitions, and thus the |Σ|2 term
will get replaced by |Σ| in the complexity expression.

VI. ILLUSTRATIVE EXAMPLES

In this section, two simple practical examples are given to
illustrate our results.

Example 8: We consider the application of our results to the
“Crowd” system, an anonymity protocol introduced in [14] that
is used to protect the identity on the World Wide Web, which
is recently studied in the stochastic DESs setting [15], [16].
When an user (called initiator) decides to send a message to
a web server without revealing itself as the originator of the
message, the user routes the message through a crowd of users
(possibly itself). When a user in the crowd receives a message,
it either sends the message to the web server or forwards the
message to a user in the crowd (possibly itself). The above
Crowd protocol is considered to be secure in hiding the identity
of the originator. However, there can be a number of corrupted
users in the crowd which can leak the information of the origin
of the message, and so forwarding the message to a corrupted
user is considered a fault. Further, as is customary with the
analysis of Crowd ([17]), we also assume that a corrupted user
does not forward a message to others. The process is depicted
in Fig. 3, where the size of the crowd is taken to be 7, the
possible initiators are {1,2} and the corrupted user is {7}. Now
we consider the case that when a user tries to send a message
to the web server and initiates a route, it also monitors the
routing of that message to avoid the message being received
by a corrupted user. The corresponding automaton model is
given as Fig. 4, where a new initial state “0” is added from
where the two initiator nodes “1” and “2” can be reached with
equal probability. It is assumed that each user chooses one
among its forwarding successors with a uniform probability
distribution. Suppose three of the forwarding actions can be
observed with the observation labels as shown, whereas the re-
maining forwarding actions are unobservable and so unlabeled.
A fault is defined as the forwarding of a message to the
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Fig. 4. Automaton for the Crowd system in Fig. 3.

corrupted user “7,” i.e., the nonfault-specification can be ob-
tained by removing the corrupted user “7” and all associate
transitions. It can be checked that under this observation mask,
the system is not Sm-Prognosable for any m ≥ 0, since for
any fault-trace reaching “7,” all its prefixes are ambiguous with
a certain nonindicator trace. To make the monitoring process
meaningful, a control policy can be applied so that the self-loop
of state “4” is forbidden, i.e., after receiving a message, the user
“4” can only forward it to the user “5,” “6” and web server.
Then one can verify that the system is now S1-Prognosable.
Note in this example, neither the monitor nor the control has any
affect on the corrupted user, leaving the corrupted user unaware
of the existence of the monitoring or control. �

Example 9: Consider the heating, ventilation and air condi-
tioning (HVAC) system as examined in [2], [7], [9], which is
modeled as a stochastic DES consisting of four components:
a pump, a valve, a controller and a flow sensor. The model
is shown in Fig. 5, which has 24 states, 11 events and 36
transitions, and is initialized at state 1. Each event in the
stochastic DES has two parts, the first of which describes
the motion of the controller and the second of which indi-
cates the output of the flow sensor (“F” denotes “there is
flow” and “NF” denotes “there is no flow,” while no output
by the flow sensor is described as ε, which for simplicity
is omitted in Fig. 5). The unobservable events are given by
Σuo = {stuck_closed, stuck_open}, which are also the fault-
events Σf experienced by the controller; all other events are
observed fully. The plant model shows the probability labels
for each transitions. The deterministic nonfault-specification is
obtained by excluding all the states resulted by the fault-events
“stuck_closed” and “stuck_open,” and is a subautomaton of
the plant automaton, and without the probability labels (the
definition of what constitutes a fault is independent of its
occurrence probability). As can be seen, the shortest fault-trace
is “stuck_closed” itself which has a length of 1. Therefore,
the system cannot be Sm-Prognosable with m ≥ 1. One can
check that in this example every nonfault-trace has an extension
reaching the absorbing nonfault-state “24” and hence is a
nonindicator. Therefore, the system is not S0-Prognosable. To
achieve the S0-Prognosability, one can exercise a control policy
so that the system dynamics does not allow permanent idling by
removing state “24” and adding a self-loop on state “10” with
the same probability as transitioning to 24. Then one can verify
by Algorithm 1 that the system is S0-Prognosable. �

VII. COMPARISON WITH RELATED CONCEPTS

In this section, we will compare S0-Prognosability with the
notion of Prognosability in the logical setting [2], [3] and the
notion of S-Diagnosability that are required for fault detection
(as opposed to fault prediction) [7], [9], [18], [19]. To compare
with the logical version of progonosability, we reproduce the
definition from [3], specialized to centralized setting as follows:

Definition 4 ([3]): A pair (L,K) of closed languages with
K ⊆ L is said to be logically Prognosable if

(∀s ∈ ∂)(∃u ∈ s/Σ>0)
(
M−1M(u) ∩K ⊆ J̃

)
(12)

where J̃ denotes the set of logical indicators and is given by
J̃ := {s ∈ K : ∃n ∈ N, L \ s ∩ Σ≥n ⊆ [L−K] \ s}.

Remark 3: It is trivial to show that, for any u ∈ K,
(M−1M(u) ∩K ⊆ J̃) ⇔ (P ∗

N (M(u)) = 0). Therefore, (12)
can be equivalently written as

Pr
(
s ∈ ∂ : ∀u ∈ s/Σ>0, P ∗

N (M(u)) > 0
)
= 0.

Comparing then with the definition of Sm-Prognosability under
m = 0, so (5) can be written as

(∀τ, ρ > 0)Pr
(
s ∈ ∂ : ∀u ∈ s/Σ>0, P ∗

N (M(u)) > ρ
)
< τ.

It is obvious that if a system is logically Prognosable, then it is
also S0-Prognosable by definition. However, the converse is not
true. For example, the system shown in Fig. 1 is S1-Prognosable
and hence is S0-Prognosable by Corollary 1. However, it is
not Prognosable since ∀s ∈ ∂, u ∈ s/Σ>0, P ∗

N (M(u)) > 0.
The stochastic version provides the flexibility of designing
prognosers that can predict faults with arbitrary level of accu-
racy, which may be acceptable for certain applications even if
100% accuracy cannot be achieved (owing to lack of logical
prognosability). Another artifact of this difference between
the two notions is that, in logical setting, an indicator cannot
visit a cycle of nonfault-states, which can be restrictive, but
in stochastic setting, an indicator can visit a cycle of nonfault-
states as long as the cycle does not form a closed SCC. In the
example of Fig. 1, the prefix aca of the fault-trace acaf is an
indicator that ends in a non-closed cycle of nonfault-state (4,4)
in GR. While this does not violate stochastic prognosability, it
ends up violating logical prognosability.

We established that stochastic-prognosability is weaker and
more flexible than the logical counterpart. We next show that
it is stronger than stochastic-diagnosability. The notion of S-
Diagnosability, which supports fault detection after its occur-
rence, was introduced in [9] by the name of AA-Diagnosability
and later renamed as S-Diagnosability in [7]. It requires a fault
to be detected within a bounded delay of its occurrence with
arbitrary level of confidence. We reproduce the definition from
[7] as follows:

Definition 5 ([7]): A pair (L = L(G),K = L(R)) of closed
regular languages with K ⊆ L is said to be Stochastically-
Diagnosable, or simply S-Diagnosable, if

(∀τ, ρ > 0)(∃n ∈ N)(∀s ∈ L−K)

Pr (t : t ∈ L \ s, |t| ≥ n, Pramb(st) > ρ) < τ (13)
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Fig. 5. Stochastic automaton G for the HVAC system under diagnosis, where each event has two parts, the first of which describes the motion of the controller
and the second indicates the output of the flow sensor (“F” denotes “there is flow” and “NF” denotes “there is no flow,” while no output by the flow sensor is
described as ε which is simply omitted).

where Pramb : L−K → [0, 1] is a map that assigns to each
fault-trace s ∈ L−K, the probability of s being ambiguous,
which is the conditional probability of all nonfault indistin-
guishable traces conditioned by the fact that ambiguity can only
arise from the system traces that produce the same observation
as s, and is given by

Pramb(s) :=Pr (u ∈ K|M(u) = M(s)) (14)

=
Pr (u ∈ K : M(u) = M(s))

Pr (u ∈ L : M(u) = M(s))
. (15)

Note in the definition of Pramb(s), “|” denotes the conditioning
operation.

The next theorem establishes a necessary and sufficient con-
dition for S-Diagnosability, which is reproduced from [8] and
[18].

Theorem 5 ([8, Th. 1]): A pair (L = L(G), K = L(R)) of
closed regular languages with K ⊆ L is not S-Diagnosable if
and only if

(∃s ∈ L−K, s′ ∈ K s.t. M(s) = M(s′)) (∀o ∈ Δ∗)

Pr
(
t : t ∈ (L−K) \M−1M(s),M(t) = o

)
= Pr

(
t : t ∈ K \M−1M(s′),M(t) = o

)
.

The next result shows that S0-Prognosability is stronger
than S-Diagnosability, meaning that whenever it is possible to
predict faults, it is also possible to diagnose those, as can be
expected.

Theorem 6: Given a pair (L = L(G), K = L(R)) of closed
regular languages with K ⊆ L, if (L,K) is S0-Prognosable,
then it is S-Diagnosable. However, the converse need not hold.

Proof: We argue by contradiction. Assume (L,K) is S0-
Prognosable but not S-Diagnosable. Then there exist s ∈ L−
K and s′ ∈ K with M(s) = M(s′) satisfying the condition

Fig. 6. Refined system GR.

in Theorem 5, and all extensions of s′ are nonfault-traces
(otherwise the condition in Theorem 5 will not be satisfied).
Then for any n ∈ N, Pr(t : t ∈ K \ s′ ∩ Σn) = 1. Therefore,
it follows from the definition of Υ that s′ ∈ Υ (we can choose
ρ < 1 to satisfy the definition of Υ). Considering s ∈ L−K
and M(s) = M(s′), we have s ∈ M−1M(Υ) ∩ L−K, which
is contradictory to Corollary 2 since (L,K) is S0-Prognosable.

To see that the converse need not hold, we consider the
system shown in Fig. 6, where Σ = {a, b, c, f}, Σuo = {b, f}
and for σ ∈ Σ− Σuo, M(σ) = σ. After the occurrence of
fault-trace af , the only observations that can be produced
are the traces in c+, which are distinguishable from any
nonfault-trace, and so (L,K) is S-Diagnosable. However,
since M−1M(∂−

0 ) ∩Υ = M−1M(a) ∩ {ε, ba∗} = {ba} �= ∅,
by Theorem 2, (L,K) is not S0-Prognosable. �

VIII. CONCLUSION

In this paper, we studied the prognosis of fault, i.e., its
prediction prior to its occurrence, for stochastic discrete event
systems. We formulated the notion of Sm-Prognosability for
stochastic DESs, generalizing the corresponding notion from
the logical setting [2], [3], and showed that it is a necessary
and sufficient condition for the existence of a prognoser that
can predict a fault at least m-steps prior to its occurrence,
while achieving any arbitrary false alarm and missed detection
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rates. (Higher accuracy of prognostic decision can be obtained
by allowing shorter reaction bound.) A polynomial complexity
algorithm for the verification of Sm-Prognosability was also
provided, which checks on a pair of indistinguishable traces
for the reachability of a pair of states, one of which is a m-
steps interior nonfault-state and the other is a nonindicator
state (such a pair is reachable if and only if Sm-Prognosability
does not hold). The contribution of the work was further
emphasized by comparing with previous related work on fault
diagnosability, which was shown to be a weaker requirement
than fault prognosability, as can be expected. There are several
directions for future research: 1) An online recursive prognosis
algorithm to compute the state distribution π(o) resulted by an
observation o so as to be able to predict a fault by checking
whether P ∗

N (o) ≤ ρ, which in turn implies if π(o) itself falls
within a suitable range, and 2) algorithms for computing the
decision threshold ρ and the largest possible reaction bound m
for given performance requirements φ, τ > 0 for FA and MD
rates. Also, an extension to the decentralized setting would be
another direction for future work.

APPENDIX

Proof of Lemma 4: Since P ∗
N (M(st)) < ρ′ if and only

if 1− P ∗
N (M(st)) > 1− ρ′, letting ρ := 1− ρ′, (11) is true if

and only if

(∀ρ, φ > 0)(∃d ∈ N)(∀s ∈ ℵ)
Pr (t : t ∈ ℵ \ s, |t| ≥ d, 1− P ∗

N (M(st)) > ρ) < φ. (16)

Thus, showing (11) is equivalent to showing that (16) holds.
Next we show that (16) is equivalent to showing that the pair
(K,K − ℵ) is S-Diagnosable. First note that for any st ∈ ℵ ⊆
Υ, it holds that

P ∗
N (M(st)) =

minn∈N Pr
({

M−1M(st) ∩K
}
Σn ∩K

)
Pr (M−1M(st) ∩ L)

=
Pr

(
M−1M(st) ∩ ℵ

)
Pr (M−1M(st) ∩ L)

=
Pr

(
M−1M(st) ∩ ℵ

)
Pr (M−1M(st) ∩K)

where we have used the fact that (L,K) is Sm-Prognosable and
so for st ∈ Υ, M−1M(st) ∩ L = M−1M(st) ∩ [K ∪ (L−
K)] = M−1M(st) ∩K (follows from Corollary 2). Then,

1− P ∗
N (M(st)) = 1−

Pr
(
M−1M(st) ∩ ℵ

)
Pr (M−1M(st) ∩K)

=
Pr

(
M−1M(st) ∩ (K − ℵ)

)
Pr (M−1M(st) ∩K)

(17)

which is the probability of ambiguity of st as in (15) when the
pair of languages (L,K) is replaced with (K,K − ℵ). Thus,
we can replace 1− P ∗

N (M(st)) in (16) with the right-hand
side of (17), and in which case (16) becomes equivalent to S-
Diagnosability of (K,K − ℵ) as in (13).

Next we show that the pair (K,K − ℵ) is indeed S-
Diagnosable. Assume for contradiction that (K,K − ℵ) is not
S-Diagnosable. Then there exists s ∈ ℵ and s′ ∈ K − ℵ sat-
isfying the condition of Theorem 5. Then we have ∀n ∈ N,
Pr(t : t ∈ [K − ℵ] \ s′ ∩ Σn) =

∑
o∈Δ∗ Pr(t : t ∈

[K − ℵ] \ s′ ∩ Σn,M(t) = o) =
∑

o∈Δ∗ Pr(t : t ∈
K \ s ∩ Σn,M(t) = o) = Pr(t : t ∈ K \ s ∩ Σn) = 1, where
the second equality follows from Theorem 5 and the last
equality follows from the fact that s ∈ ℵ (so all its extensions
are in K). Thus, ∀n ∈ N, Pr(t : t ∈ [K − ℵ] \ s′ ∩ Σn) = 1,
i.e., ∀n ∈ N, Pr({s′}Σn ∩ (K − ℵ)) = 1, implying that ∀n ∈
N, Pr({s′}Σn ∩K) = 1 (since K − ℵ ⊆ K), which further
implies that s′ ∈ ℵ. This contradicts the fact that s′ ∈ K − ℵ.
So the S-Diagnosability of (K,K − ℵ) follows, which proves
(16) and equivalently (11). �
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