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Abstract—We investigate the problem of robust fault diagnosis
of stochastic discrete-event systems against model uncertainty. In
this problem, we assume that the actual behavior of the system is
unknown a priori and the true model of the system belongs to a set
of possible models described by probabilistic automata. The goal
of this problem is to almost successfully detect the occurrence
of fault in the sense that, first, no false alarm can be made, and
second, the misdetection rate is smaller than a given threshold ε
after some delay K even without knowing the true model a priori.
A condition termed as robust (ε,K)-diagnosability is proposed to
capture the existence of such a robust diagnoser that satisfies the
above-mentioned requirements. We also propose the notions of
robust ε-diagnosability and robust A-diagnosability, which require
that a given misdetection rate ε can be achieved with some delay
and any arbitrarily small misdetection rate can be achieved, respec-
tively. For each condition, an effective verification algorithm is also
proposed. Our results generalize previous works on fault diagnosis
of stochastic discrete-event systems by taking model uncertainty
and specific misdetection rate into account.

Index Terms—Discrete-event systems, fault diagnosis, model un-
certainty, robustness, stochastic systems.

I. INTRODUCTION

In large-scale complex automated systems, one important task is to
detect and isolate faults in the systems. This leads to the fault diagnosis
problem, which has drawn considerable attention in the general systems
literature. In this technical note, we are concerned with the problem of
fault diagnosis of discrete-event systems (DES).

In [29], a language-based approach for fault diagnosis was devel-
oped by using DES models. Specifically, the condition of diagnosability
was proposed to capture a priori whether or not a fault can always be
detected within a finite delay. One significant advantage of the DES
approach to fault diagnosis is that it is a model-based approach. There-
fore, we can formally analyze and infer the system’s behavior based
on limited observations. Since the seminal work of [29], online fault
diagnosis as well as diagnosability analysis have drawn considerable
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attention in the DES literature; see, e.g., [6], [11], [16], [21], [27], [30],
[39], and a recent survey [42] for extensive references.

In many real-world DES, the dynamics of the systems are inherently
stochastic, i.e., each event occurrence has its associated probability.
Therefore, stochastic DES provides a more realistic way for the analysis
of system’s behavior. Consequently, state estimation and fault diagnosis
of stochastic DES have been widely studied in recent literature (see,
e.g., [1]–[4], [12], [13], [18], [23]–[25], [34], [38], [40]). Particularly,
in [34], the condition of A-diagnosability was proposed to capture
the existence of a stochastic diagnoser that produces no false alarm
and arbitrarily small misdetection. This condition is very useful in
practice since diagnosability may be too strong in many applications;
A-diagnosability does not require a bounded delay but guarantees that
the probability of detecting the fault for sure converges to one as the
length of observation increases. The condition of A-diagnosability is
also termed as SS-diagnosability in [13] and it has been shown in [4]
and [12] that verifying A-diagnosability is PSPACE complete. Since the
work of [34], several variations of A-diagnosability have also proposed.
For example, in [23], the authors generalize it to the case of safe
diagnosis and in [24], the condition A-co-diagnosability was proposed
to study the decentralized diagnosis problem.

On the other hand, since uncertainties are generally unavoidable
in real-world systems, robustness is also an important aspect in the
analysis of DES. In the context of fault diagnosis, the problem of robust
fault diagnosis has been studied by many works in the literature (see,
e.g., [7]–[9], [17], [31], [33], [35]). For example, in [7], [9], [17], [33],
and [35], the authors have studied the robust fault diagnosis problem
under permanent or intermittent sensor failures. In [8], [19], [20], and
[31], the authors investigate the robust fault diagnosis problem with
model uncertainties. The effect of model uncertainties has also been
considered in fault prognosis problem [32] and supervisory control
problem [5], [22], [28], [37].

However, all of the above-mentioned works are still based on the
logical DES. In this paper, we study the robust fault diagnosis problem
of stochastic discrete-event systems. Specifically, we assume that we
do not know the system’s model a priori and the true model belongs to
a set of possible models described by probabilistic automata. The con-
tributions of this paper are as follows. First, we propose the condition
of robust (ε, K)-diagnosability as a necessary and sufficient condition
under which, first, a fault can always be detected with a misdetection
rate smaller than ε within K steps, and second, no false alarm can be
made, even we do not know the true model a priori. This condition
also generalizes the well known K-diagnosability condition [42] to
the stochastic and robust setting by considering the misdetection rate
after K steps. Then, we define the condition of robust ε-diagnosability
by requiring that the system is robust (ε, K)-diagnosability for some
K . Finally, we say that the system is robustly A-diagnosable if it is
robustly ε-diagnosable for an arbitrarily small misdetection rate ε. Ro-
bust A-diagnosability essentially requires that the misdetection rate will
converge to zero as more events are executed after the occurrence of
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fault. This condition is stronger than A-diagnosability [34] since we
consider also model uncertainty, but it is weaker than robust diagnos-
ability [33] as we allow an arbitrarily small misdetection rate. We pro-
vide effective approaches for verifying these conditions. In particular,
the complexity of the verification algorithm for robust A-diagnosability
is exponential in the number of states but polynomial in the number of
possible models. To the best of our knowledge, this is the first work
that investigates robustness in the context of stochastic DES.

The rest of the paper is organized as follows. In Section II, we present
necessary preliminaries. In Section III, the problem of robust fault
diagnosis of stochastic DES is formulated and three different conditions
for robust diagnosability in the stochastic setting are proposed. For
each notion of robust diagnosability, an effective verification algorithm
is presented in Section IV. Finally, we conclude the paper in Section V.

II. PRELIMINARY

Let Σ be a finite set of events. A string is a finite sequence of events.
We denote by Σ∗ the set of strings over Σ with empty string ε. For
any string s ∈ Σ∗, we denote by |s| its length with |ε| = 0. A language
L ⊆ Σ∗ is a set of strings; we denote by L the prefix closure of L.

A DES is modeled by a finite-state automaton (FSA)

G = (X, Σ, δ, x0 ) (1)

where X is the finite set of states, Σ is the finite set of events, δ :
X × Σ → X is the partial transition function and x0 is the initial
state. Function δ is also extended to X × Σ∗ in the usual manner [10].
Then, δ(x, s) is the state reached via string s from state x; we write
δ(x, s) by δ(s) if x = x0 . We define L(G, x) = {s ∈ Σ∗ : δ(x, s)!}
as the language generated by G from state x ∈ X , where “!” means “is
defined”. We write L(G, x) by L(G) if x = x0 . Given an FSA G, a
strongly connected component (SCC) is a maximal set of states C ⊆ X
such that ∀x1 , x2 ∈ C, ∃s ∈ Σ∗ : δ(x1 , s) = x2 . An SCC C ⊆ X is
said to be terminal if ∀x ∈ C, ∀s ∈ L(G, x) : δ(x, s) ∈ C .

We assume that Σo ⊆ Σ is the set of observable events. Then, P :
Σ∗ → Σ∗

o is the natural projection defined by

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ �∈ Σo

i.e., for any string s ∈ Σ∗, P (s) ∈ Σ∗
o only keeps the observable

events of s. Projection P is also extended to 2Σ ∗
by: for any L ⊆ Σ∗,

P (L) = {α ∈ Σ∗
o : ∃s ∈ L s.t. P (s) = α}. We denote by P −1 the in-

verse projection.
The observer automaton for G is a new FSA Obs(G) =

(Q, Σo , f, q0 ), where Q ⊆ 2X and f : Q × Σo → Q is the transition
function such that: for any q ∈ Q, σ ∈ Σo

f (q, σ) = {x ∈ X : ∃x′ ∈ q, ∃w ∈ Σ∗
u o s.t. δ(x′, σw) = x}. (2)

The initial state is defined by q0 = {x ∈ X : ∃w ∈ Σ∗
u o s.t. δ(w) =

x}. Note that, here we also consider ∅ as a state in the observer.
Therefore, f is a total function over Q × Σo . Then, f (q, σ) = ∅ implies
that the observation is not consistent with the system model.

A stochastic discrete event system is then a pair (G, p), where G
is an FSA and p : X × Σ → [0, 1] is the transition probability func-
tion. For any x ∈ X, σ ∈ Σ, we write p(σ | x) as the probability that
event σ occurs from state x. We assume that p satisfies the following
requirements:
1) ∀x ∈ X, σ ∈ Σ : δ(x, σ)! ⇔ p(σ | x) > 0;
2) ∀x ∈ X :

∑
σ∈Σ p(σ | x) = 1.

The above-mentioned two conditions also imply that the system
is live, i.e., ∀x ∈ X, ∃σ ∈ Σ : δ(x, σ)!. The transition probability

Fig. 1. Two possible models of a simple job processing plant, where
Σo = {a, o1 , o2}. The number associated with each transition denotes
its transition probability. (a) (G1 , p1 ). (b) (G2 , p2 ).

function is also extended to p : X × Σ∗ → [0, 1] recursively by: for
any x ∈ X, s ∈ Σ∗, σ ∈ Σ, we have

p(sσ | x) = p(σ | δ(x, s))p(s | x).

We write p(s | x) as p(s) when x = x0 .
Let x ∈ X be a state and L ⊆ L(G, x) be a set of strings defined from

x. Then, we define Prob(L | x) =
∑

s∈L p(s | x). Let Ln (G, x) :=
{s ∈ L(G, x) : |s| = n} be the set of all strings in L(G, x) with length
n. It can be shown easily by induction that, for any x ∈ X, n ≥ 1, we
have Prob(Ln (G, x) | x) = 1.

In the fault diagnosis problem, the system (G, p) is subject to fault.
We assume that the normal behavior is modeled by a (nonstochastic)
FSA GN = (XN , Σ, δN , xN

0 ) such thatL(GN ) ⊆ L(G). Without loss
of generality, we assume that GN is a subautomaton of G such that∀s ∈
L(G) \ L(GN ) : δ(s) ∈ X \ XN , where “\” denotes “set difference”.
Therefore, XN is the set of nonfaulty states and XF := X \ XN is
the set of faulty state. A string is fault if and only if it goes to a faulty
state. We define

Ψ(G) := {s ∈ L(G) \ L(GN ) : ∀t ∈ {s} \ {s}, δ(t) ∈ XN }
i.e., the set of strings in which fault occurs for the first time.

III. ROBUST DIAGNOSABILITY OF STOCHASTIC DES

In the fault diagnosis problem, the goal is to infer the occurrence of
a fault based on the observation. However, in many applications, we
may not precisely know the model of the system. Instead, we may only
know that the actual model belongs to a set of possible models. As a
motivating example, let us consider a simple plant processing a job,
which is adopted from [41] with some modifications. In this system,
event a denotes “arrival of a job”, event d denotes “departure of a job”,
and o1 and o2 denote two kinds of plant operations. We assume that
the plant has two possible operation modes modeled by (G1 , p1 ) and
(G2 , p2 ) in Fig. 1, respectively. We require that event d should not
occur before the occurrence of event o2 ; otherwise, we consider it as a
fault. Therefore, state 3 is a faulty state in G1 and states 3, 6, and 7 are
faulty states in G2 . Since we do not know the precise operating mode
of the system, the question then arises of how to detect the fault with
model uncertainty.

To formalize this problem, we assume that the actual system belongs
to a set of possible models

{(G1 , p1 ), (G2 , p2 ), . . . , (Gn , pn )} (3)

where Gi = (Xi , Σ, δi , x0 , i ). We denote by I = {1, 2, . . . , n} the
index set. Each (Gi , pi ) is associated with a normal model GN

i =
(XN

i , Σ, δN
i , xN

0 , i ). Let I ⊆ I be a set of indices. We define

UI = {s ∈ ∪i∈IL(Gi ) : ∃i ∈ I, ∃t ∈ L(GN
i ) s.t. P (s) = P (t)}

(4)
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as the set of strings that can be confused with some nonfaulty strings
in a model that belongs to set I ⊆ I. Note that we assume that all
possible models have the same event set Σ. This setting is without loss
of generality since we can always extend the domain of the event set
without changing the transition function.

A (robust) diagnoser is a function

D : ∪i∈IP (L(Gi )) → {0, 1} (5)

that assigns each possible observation a diagnostic decision, where
“0” means that “no fault is detected” while “1” means that “a fault
is detected”. In the stochastic setting, the diagnoser may not detect
the occurrence of fault within a finite number of steps. Instead, it may
guarantee that the probability of misdetection is smaller than a threshold
within a given number of steps. Formally, let ε > 0 be a misdetection
rate and K ∈ N be a detection delay. We require that a robust diagnoser
should satisfy the following conditions:
C1) (∀i ∈ I)(∀s ∈ Ψ(Gi )) s.t.

Prob ({t ∈ LK (Gi , δi (s)) : D(P (st)) = 0} | δi (s)) < ε
C2) (∀i ∈ I)(∀s ∈ L(GN

i ))[D(P (s)) = 0].
Intuitively, the first condition requires that, no matter what the true

model is, for any faulty string, the misdetection rate is smaller than ε in
K steps after the occurrence of fault. The second condition requires that
a false alarm should never be generated when the system is operating
normally.

Next, we investigate under what condition there exists a robust diag-
noser satisfying (C1) and (C2). First, we propose the notion of robust
(ε, K)-diagnosability.

Definition 3.1: Given a misdetection rate ε > 0 and a delay K ∈
N, the set of possible models {(Gi , pi ) : i ∈ I} is said to be ro-
bustly (ε, K)-diagnosable if for any i ∈ I, s ∈ Ψ(Gi ), we have
Prob ({t ∈ LK (Gi , δi (s)) : st ∈ UI} | δi (s)) < ε.

Intuitively, robust (ε, K)-diagnosability says that, no matter what
the true model is, we can make sure that, for any faulty string, the prob-
ability that the observation can be confused with a nonfaulty string in a
possible model is smaller than ε in K steps after the occurrence of fault.
Recall that, for any K ∈ N, Prob ({t ∈ LK (Gi , δi (s))} | δi (s)) = 1.
Therefore, robust (ε, K)-diagnosability essentially evaluates the prob-
ability of detection in a step-based fashion.

In some cases, one is interested in achieving a given misdetection
rate ε with some delay K . This leads to the definition of robust ε-
diagnosability, which characterizes whether or not there exists a delay
K such that the system is robustly (ε, K)-diagnosabale.

Definition 3.2: Given a misdetection rate ε > 0, the set of possible
models {(Gi , pi ) : i ∈ I} is said to be robustly ε-diagnosable if there
exists a delay K ∈ N such that {(Gi , pi ) : i ∈ I} is robustly (ε, K)-
diagnosable.

Remark 3.1: The proposed notions of robustly (ε, K)-
diagnosability and robustly ε-diagnosability are closely related
to the concept of diagnosability degree studied in [2], where the
average detection time of faults is investigated. However, our notions
focus on how fast the probability of detection converges to a given
threshold and we provide matrix-based approaches for verifying these
conditions.

Finally, in some applications, we may want the diagnoser to achieve
an arbitrarily small misdetection rate ε. This leads to the definition of
robust A-diagnosability as follows.

Definition 3.3: The set of possible models {(Gi , pi ) : i ∈ I} is
said to be robustly A-diagnosable if for any ε > 0, {(Gi , pi ) : i ∈ I}
is robustly ε-diagnosable.

The following theorem reveals that robust (ε, K)-diagnosability is
indeed a necessary and sufficient condition for the existence of a robust
diagnoser satisfying conditions (C1) and (C2) simultaneously.

Theorem 3.1: Given ε > 0 and K ∈ N, there exists a diagnoser
satisfying conditions (C1) and (C2) if and only if {(Gi , pi ) : i ∈ I} is
robustly ε-diagnosable.

Proof: (⇒) We prove the necessity by contradiction. Suppose that
there exists a diagnoser D satisfying conditions (C1) and (C2) and
assume that {(Gi , pi ) : i ∈ I} is not robustly (ε, K)-diagnosable.
Then, there exist i ∈ I and a faulty string s ∈ Ψ(Gi ) such that
Prob ({t ∈ LK (Gi , δi (s)) : st ∈ UI} | δi (s)) ≥ ε. Since diagnoser D
satisfies condition (C2), we know that for any st ∈ UI , D(P (st)) =
0; otherwise, if D(P (st)) = 1, then we know that D(P (w)) =
D(P (st)) = 1 for some w ∈ L(GN

j ), which violates (C2). Therefore,
we know that

{t ∈ LK (Gi , δi (s)) : st ∈ UI}⊆{t ∈ LK (Gi , δi (s)) : D(P (st)=0}
which means Prob ({t ∈ LK (Gi , δi (s)) : D(P (st)) = 0} | δi (s)) ≥
ε. Therefore, for the above chosen i and s, condition (C1) does not
hold for diagnoser D, which is a contradiction.

(⇐) Suppose that {(Gi , pi ) : i ∈ I} is robustly (ε, K)-diagnosable.
We construct a diagnoser D by: for any w ∈ ∪i∈IL(Gi )

D(P (w)) =

{
1, if P (w) /∈ P (UI)

0, otherwise
. (6)

Next, we claim that the above-mentioned constructed diagnoser
satisfies conditions (C1) and (C2). To see that D satisfies (C2),
let us consider an arbitrary model i ∈ I and arbitrary nonfaulty
string s ∈ L(GN

i ). Since s ∈ UI , we know that P (s) ∈ P (UI).
By (6), we know that D(P (s)) = 0, i.e., (C2) holds. To see that
(C1) holds, let us consider arbitrary i ∈ I and s ∈ Ψ(Gi ). Since
{(Gi , pi ) : i ∈ I} is robustly (ε, K)-diagnosable, we know that
Prob ({t ∈ LK (Gi , δi (s)) : st ∈ UI} | δi (s)) < ε. Then, for any string
v ∈ LK (Gi , δi (s)) such that D(P (sv)) = 0, by (6), we know that
P (sv) ∈ P (UI), which further implies that sv ∈ UI . Therefore, we
know that

{t∈LK (Gi , δi (s)) : D(P (st))=0}⊆{t∈LK (Gi , δi (s)) : st∈UI}.
Since Prob ({t ∈ LK (Gi , δi (s)) : st ∈ UI} | δi (s)) < ε, we know that
Prob ({t ∈ LK (Gi , δi (s)) : D(P (st)) = 0} | δi (s)) < ε, i.e., condi-
tion (C1) also holds. �

Remark 3.2: It is worth remarking that the “⇐” part of the above-
mentioned proof is actually constructive. That is, (6) also tells us how
to construct a robust diagnoser satisfying (C1) and (C2) for a robustly
ε-diagnosable system.

Remark 3.3: In the context of logical DES, the condition of K-
diagnosability [42] has been proposed in the literature to capture
whether or not any fault can be detected for sure within K steps after
the occurrence of fault. Our definition of robust (ε, K)-diagnosability
generalizes K-diagnosability to the stochastic setting by specifying
a misdetection rate after K steps. Also, in [34], the condition of A-
diagnosability was proposed in order to capture whether or not any
fault can be detected with probability one by knowing the system
model precisely; the reader is referred to [34] for its definition. By
comparing robust A-diagnosability with A-diagnosability, we see that
if the set of possible models is a singleton, i.e., I = {1}, then robust
A-diagnosability reduces to A-diagnosability. Therefore, our condition
generalizes the condition of A-diagnosability in [34] by considering
the issue of model uncertainty. This is also why we term our condition
as robust A-diagnosability. However, our general case is more compli-
cated to handle, as we do not know the true model a priori and a model
identification problem is hidden in the robust diagnosis problem.

In the remainder of this paper, we will focus on the verification
of robust (ε, K)-diagnosability, robust ε-diagnosability, and robust
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A-diagnosability. Before, we formally present the algorithms, we first
illustrate Definitions 3.1–3.3 by the following example.

Example 3.1: Let us still consider the motivating example and sup-
pose we know that (G1 , p1 ) and (G2 , p2 ) shown in Fig. 1(a) and (b),
respectively, are two possible models of the system. We assume that
XN

1 = {1, 2, 4, 5}, XN
2 = {1, 2, 4, 5} and Σo = {a, o1 , o2}, i.e., d is

the only unobservable event.
Then, we know that {(G1 , p1 ), (G2 , p2 )} is not robustly (ε, 1)-

diagnosable for any ε < 1. To see this, first, we have I = {1, 2} and

UI = L(GN
1 ) ∪ L(GN

2 ) ∪ {a}{o1}∗{d, do2} ∪ {ad}{ε, o2}{o1}∗.
If (G1 , p1 ) is the true mode, then for any faulty string s ∈ Ψ(G1 ), we
have L1 (G1 , δ1 (s)) = {o2} and

Prob ({t ∈ L1 (G1 , δ1 (s)) : st ∈ UI} | δ1 (s)) = 1.

Similarly, if (G2 , p2 ) is the true mode, then for any faulty string s ∈
Ψ(G2 ), we have L1 (G2 , δ2 (s)) = {o1 , o2} and

Prob ({t ∈ L1 (G2 , δ2 (s)) : st ∈ UI} | δ2 (s)) = 1.

Therefore, it is not robustly (ε, 1)-diagnosable for any ε < 1.
However, it is robustly (0.2,5)-diagnosable. To see this, if (G1 , p1 )

is the true mode, then for any faulty string s ∈ Ψ(G1 ) and K ≥ 2, we
have

Prob ({t ∈ LK (G1 , δ1 (s)) : st ∈ UI} | δ1 (s)) = 0.

If (G2 , p2 ) is the true mode, then for any faulty string s ∈ Ψ(G2 ) and
K ≥ 2, we have

Prob ({t ∈ LK (G1 , δ1 (s)) : st ∈ UI} | δ1 (s)) = 0.1 + 0.9 × 0.5K−1 .
(7)

Moreover, according to (7), we see that any misdetection rate smaller
than 0.1 cannot be achieved even when the delay goes to infinity.
Therefore, this system is not robustly 0.1-diagnosable and hence, it is
not robustly A-diagnosable.

IV. VERIFICATION OF ROBUST DIAGNOSABILITY

In this section, we investigate how to verify different notions of
robust diagnosability in stochastic DES.

First, for any i ∈ I, we define a new automaton

Vi = (XV
i , Σ, δV i

, qV
0 , i ) := Gi‖Obs(G1 )‖Obs(G2 )‖ . . . ‖Obs(Gn )

(8)
where “‖” denotes the standard parallel composition (see, e.g., [10])
and Obs(Gi ) = (Qi , Σo , fi , q0 , i ) is the observer automaton for model
Gi . Recall that the transition function of each observer is total, i.e.,
L(Obs(Gi )) = Σ∗

o . Therefore, by the property of parallel composition,
we know that L(Vi ) = L(Gi ). Moreover, for any s ∈ L(Vi ), we know
that δV i

(s) = (δi (s), f1 (P (s)), . . . , fn (P (s))). Automaton Vi is also
referred to as the verification automaton hereafter. Note that we do
not assume liveness of the system or the absence of unobservable cycle
since Vi tracks the original behavior of the system. Similar construction
has also used in the literature for different purposes, e.g., [14], [36].

Definition 4.1: A state (x, q1 , q2 . . . , qn ) ∈ XV
i in Vi is said to be

1) robustly certain if x ∈ XF
i and ∀j ∈ I : qj ⊆ XF

j ;
2) robustly uncertain if x ∈ XF

i and ∃j ∈ I : qj ∩ XN
j �= ∅.

We denote by X cer
i and Xunc

i the set of robustly certain and robustly
uncertain states in Vi , respectively.

The following lemma establishes the relationship between robustly
uncertain states and set UI .

Lemma 4.1: For any i ∈ I and faulty string s ∈ L(Gi ) \ L(GN
i ),

we have s ∈ UI if and only if δV i
(s) ∈ Xunc

i .

Proof: Suppose that s ∈ UI and denote δV i
(s) = (x, q1 , . . . , qn ).

Then, we know that x = δ(s) ∈ XF
i and ∃j ∈ I, ∃t ∈ L(GN

j ) :
P (s) = P (t). This implies that δj (t) ∈ fj (P (t)) = qj and δj (t) ∈
XN

j . Therefore, δV i
(s) ∈ Xunc

i . Similarly, suppose that δV i
(s) ∈

Xunc
i . Then, we know that ∃j ∈ I : qj ∩ XN

j �= ∅, i.e., {x ∈ XN
j :

∃t ∈ L(Gj ) s.t. x = δj (t) ∧ P (s) = P (t)} �= ∅. Therefore, we know
that ∃j ∈ I, ∃t ∈ L(GN

j ) : P (s) = P (t), i.e., s ∈ UI . �
The next result shows that once we enter a robustly certain state in

Vi , we will stay in it forever.
Lemma 4.2: For any i ∈ I and faulty string s ∈ L(Gi ) \ L(GN

i ),
if δV i

(s) ∈ X cer
i , then for any of its continuation st ∈ L(Gi ), we have

δV i
(st) ∈ X cer

i .
Proof: Since (x, q1 , . . . , qn ) = δV i

(s) ∈ X cer
i , we know that ∀j ∈

I : fj (P (s)) ⊆ XF
j . Since for any model j ∈ I, once it enters XF

j ,
it will stay in XF

j for ever. Therefore, we know that ∀j ∈ I :
fj (P (st)) ⊆ XF

j , i.e., δV i
(st) = (δi (st), f1 (P (st)), . . . , fn (P (st)))

is also robustly certain. �
By Lemma 4.2, we know that, first, for any SCC in Vi , if it contains

one robustly uncertain state, then all states in it are robustly uncertain,
and second, once we reach a robustly certain state, we will stay in
robustly certain states forever. Therefore, we simplify the verification
automaton Vi as follows.
1) All robustly certain states in Vi are aggregated as a new single state

xcer from which no transition is defined.
2) All robustly uncertain states in terminal SCCs are aggregated as a

new single state xunc from which no transition is defined.
We denote the modified automaton by Ṽi = (X̃V

i , Σ, δ̃V i
, qV

0 , i ).

A. Verification of Robust (ε, K)-Diagnosability

Now, we discuss how to verify robust (ε, K)-diagnosability when
ε and K are given. According to Definition 3.1, it suffices to com-
pute probability Prob ({t ∈ LK (Gi , δi (s)) : st ∈ UI} | δi (s)) for all
possible s ∈ Ψ(Gi ) and test whether or not it is smaller than ε. By
Lemma 4.1, this probability is in fact the probability of staying at
states Xunc

i in K steps from string s, which can be computed as
follows.

Let ΨX (Ṽi ) := {x ∈ X̃V
i : ∃s ∈ Ψ(Gi ) s.t. x = δ̃V i

(s)} be the
set of states reached by strings in Ψ(Gi ). We denote by
Reachi (ΨX (Ṽi )) ⊆ XV

i the set of states reachable from ΨX (Ṽi )
in Ṽi and suppose that states in Reachi (ΨX (Ṽi )) are ordered as
Reachi (ΨX (Ṽi )) = {xV

1 , . . . , xV
m }, where each state xV

k is in the form
of xV

k = (xk , q1
k , . . . , qn

k ).
Then, we define a Markov chain (MC) Mi whose state space is

Reachi (ΨX (Ṽi )) = {xV
1 , . . . , xV

m } with a m × m transition probabil-
ity matrix Pi , whose k, j entry is

pk ,j :=

⎧⎪⎪⎨
⎪⎪⎩

∑
σ∈Σ: δ̃ V i

(xV
k

,σ )=xV
j

pi (σ | xk ) if xV
k /∈ {xcer, xunc}

1 if
[xV

k =xV
j = xcer] or

[xV
k = xV

j = xunc ]
0 otherwise

.

Note that pi (σ | xk ) corresponds to the probability of transition
δi (xk , σ) in the plant model. Therefore, pk ,j is the one-step transi-
tion probability from state xV

k to xV
j if the true model is Gi ; and hence,

the k, j entry in (Pi )K is the K-step transition probability from state
xV

k to xV
j .

For each state x ∈ ΨX (Ṽi ), we define an m-dimensional vector
π0

i ,x : Reachi (ΨX (Ṽi )) → {0, 1}, where only the value of state x is 1.
The following theorem states how to verify robust (ε, K)-

diagnosability using MCs Mi , i ∈ I.
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Fig. 2. In the figures, states highlighted by bold lines are robustly
certain states, states highlighted by dashes lines are robustly un-
certain states and the blue dash circle denotes a terminal SCC.
(a) V1 = G1‖Obs(G1 )‖Obs(G2 ). (b) V2 = G2‖Obs(G1 )‖Obs(G2 ).

Theorem 4.1: Given ε > 0 and K ∈ N, {(Gi , pi ) : i ∈ I} is ro-
bustly (ε, K)-diagnosable if and only if

πK
i,x 1�

u n c < ε, for any i ∈ I and x ∈ ΨX (Ṽi )

where πK
i,x = π0

i ,x (Pi )K and 1�
u n c : Reachi (ΨX (Ṽi )) → {0, 1} is a

m-dimensional vector in which only the value of state xcer is 0, i.e.,
the values of states in Xunc

i ∪ {xunc} are 1.
Proof: For any i ∈ I, s ∈ Ψ(Gi ), each element in πK

i, δ̃V i
(s)

is prob-

ability of reaching each state of Reachi (ΨX (Ṽi )) in K steps given the
occurrence of s. Hence, πK

i, δ̃V i
(s)

1�
unc is the probability that the system

is in Xunc
i after executing K steps from s. Therefore, by Lemma 4.1,

we have

Prob ({t ∈ LK (Gi , δi (s)) : st ∈ UI} | δi (s)) = πK
i, δ̃V i

(s)1
�
unc .

Note that, the above-mentioned probability only depends on the state
reached by s ∈ Ψ(Gi ). Therefore, the system is robustly (ε, K)-
diagnosable if and only if ∀i ∈ I, ∀x ∈ ΨX (Ṽi ), πK

i, δ̃V i
(s)

1�
unc < ε.�

We illustrate the above-mentioned theorem by the following
example.

Example 4.1: Again, let us consider {(G1 , p1 ), (G2 , p2 )} shown
in Fig. 1 with XN

1 = {1, 2, 4, 5}, XN
2 = {1, 2, 4, 5}, and Σo =

{a, o1 , o2}. We have discussed in Example 3.1 that the system is ro-
bustly (0.2,5)-diagnosable. Here, we verify this result by Theorem 4.1.

First, we construct the verification automata V1 and V2

shown in Fig. 2. For V1 , we have ΨX
1 (Ṽ1 ) = {(3, {2, 3}, {2, 3}),

(3, {2, 3}, {6})}; states (3, {3}, {7}) and (3, {3}, ∅) are robustly cer-
tain states. For the sake of simplicity, states in Reachi (ΨX (Ṽi )) are
renamed by x1 , . . . , x4 , xcer as denoted in the figure. Note that V1 does
not contains a terminal SCC in which all states are uncertain. However,

Fig. 3. Associated Markov chains. (a) M1 . (b) M2 .

in V2 , state (6, {2, 3}, {6}), which is a robustly uncertain state, forms
a terminal SCC by itself. Therefore, state (6, {2, 3}, {6}) is renamed
as xunc in V2 .

The associated MCs M1 and M2 are shown in Fig. 3 (a) and (b), re-
spectively. Their transition probability matrices (assuming states inM1

andM2 are ordered as x1 , . . . , x4 , xcer and x1 , . . . , x3 , xcer , xunc , re-
spectively) are as follows:

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, P2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.9 0 0 0.1

0 0 0.5 0.5 0

0 0 0.5 0.5 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then, for M1 and x1 , x2 ∈ ΨX
1 (Ṽ1 ), we have

π5
1 ,x 1

1�
unc = [1 0 0 0 0](P1 )5 [1 1 1 1 0]� = 0 < 0.2

π5
1 ,x 2

1�
unc = [0 1 0 0 0](P1 )5 [1 1 1 1 0]� = 0 < 0.2.

Similarly, for M2 and x1 ∈ ΨX (Ṽ2 ), we have

π5
2 ,x 1

1�
unc = [1 0 0 0 0](P2 )5 [1 1 1 0 1]� = 0.15625 < 0.2.

Therefore, by Theorem 4.1, we know that the system is robustly (0.2,5)-
diagnosable.

B. Verification of Robust ε-Diagnosability

In this section, we show how to check robust ε-diagnosability, i.e.,
whether or not we can achieve a given misdetection rate ε > 0 with
some delay. This problem can still be solved using the above defined
verification automata and their associated MCs.

We observe that, in each MC Mi , state xcer is absorbing in the sense
that once we reach state xcer, we will stay in it forever. Therefore, we
know that, for each x ∈ ΨX (Ṽi ), π0

i ,x (Pi )K 1�
unc is nonincreasing as

K increases. Moreover, in the construction of Ṽi , we only aggregate
uncertain states in a terminal SCC. Therefore, all uncertain states are not
absorbing except xunc and the limit of π0

i ,x (Pi )K 1�
unc is the absorbing

probability of state xunc when the initial distribution vector is π0
i ,x .

This absorbing probability can be computed by [26]

lim
K →∞

π0
i ,x (Pi )K 1�

unc = π0
i ,x v�

i

where vi : Reachi (ΨX (Ṽi )) → R is the minimal m-dimensional
nonnegative vector that solves the following equations: for any
xk ∈ {x1 , . . . , xm } (recall that we assume Reachi (ΨX (Ṽi )) =
{x1 , . . . , xm }), we have

vi (xk ) =

⎧⎪⎨
⎪⎩

1 if xk = xunc

0 if xk = xcer∑
xj ∈Reachi (Ψ X ( Ṽ i )) v(xj ) × pk ,j otherwise

. (9)

To sum up, we have the following theorem immediately.
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Theorem 4.2: Given ε > 0, {(Gi , pi ) : i ∈ I} is robustly ε-
diagnosable if and only if

π0
i ,x v�

i < ε, for any i ∈ I and x ∈ ΨX (Ṽi ).

We illustrate Theorem 4.2 by the following example.
Example 4.2: Still, we consider {(G1 , p1 ), (G2 , p2 )} shown

in Fig. 1 with XN
1 = {1, 2, 4, 5}, XN

2 = {1, 2, 4, 5}, and Σo =
{a, o1 , o2}. ForM1 , the minimal nonnegative solution to the following
equations:{

v1 (x1 ) = v1 (x3 ) = v1 (xcer ) = v1 (x2 ) = v1 (x4 )
v1 (xcer ) = 0 (10)

is v1 = [0 0 0 0 0]. For M2 , the minimal nonnegative solution to the
following equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

v2 (x1 ) = 0.9 × v2 (x2 ) + 0.1 × v2 (xunc)

v2 (x2 ) = v2 (x3 ) = 0.9 × v2 (x3 ) + 0.5 × v1 (xcer)

v2 (xunc) = 1

v1 (xcer) = 0

(11)

is v2 = [0.1 0 0 0 1]. Then, for x1 , x2 ∈ ΨX (Ṽ1 ), we have π0
1 ,x 1

v�
1 =

π0
1 ,x 2

v�
2 = 0 and, for x1 ∈ ΨX (Ṽ2 ), we have π0

2 ,x 1
v�

1 = 0.1. There-
fore, we know that we can achieve any misdetection rate ε > 0.1 with
a sufficiently large K .

Remark 4.1: Let us discuss the complexity of verifying robust
(ε, K)-diagnosability and the complexity of verifying robust ε-
diagnosability using Theorems 4.1 and 4.2, respectively. For each
i ∈ I, x ∈ ΨX (Ṽi ), it takes O(K · (mi )3 ) to compute πK

0 ,x and takes
O((mi )3 ) to solve (9), where mi denotes the number of states in
Reachi (ΨX (Ṽi )). Moreover, we need to repeat them for all i ∈ I and
x ∈ ΨX (Ṽi ). Therefore, the complexity for verifying robust (ε, K)-
diagnosability is O(

∑
i∈I K · (mi )4 ) and the complexity for verifying

robust ε-diagnosability is O(
∑

i∈I(mi )4 ). In the worst case, mi is ex-
ponential in the number of possible models and the number of states
in each model. Therefore, the overall complexity for verifying robust
(ε, K)-diagnosability and robust ε-diagnosability are both exponential
in the number of possible models and the number of states in each
model.

C. Verification of Robust A-Diagnosability

Finally, we discuss how to verify robust A-diagnosability, i.e.,
whether or not the system is robustly ε-diagnosable for an arbitrarily
small misdetection rate ε. This problem is addressed by the following
theorem.

Theorem 4.3: {(Gi , pi ) : i ∈ I} is robustly A-diagnosable if and
only if for any i ∈ I, xunc /∈ X̃V

i , i.e., Vi does not contain a SCC in
which all states are robustly uncertain.

Proof: For any i ∈ I and x ∈ ΨX (Ṽi ), since only states
xcer and xunc are absorbing states in Mi , we know that
limK →∞ π0

i ,x (Pi )K 1�
unc = π0

i ,x v�
i = 0 if and only if xunc is not reach-

able from x. Therefore, if xunc /∈ X̃V
i , then we know that ∀x ∈

ΨX (Ṽi ) : π0
i ,x v�

i = 0. By Theorem 4.2, we know that the system is
robustly ε-diagnosable for any ε > 0, i.e., it is robustly A-diagnosable.
If xunc ∈ X̃V

i , then let x ∈ ΨX (Ṽi ) be a state such that xunc is reach-
able from x. Then, we have π0

i ,x v�
i �= 0. Therefore, by Theorem 4.2,

the system is not robustly ε-diagnosable for any ε < π0
i ,x v�

i , i.e., it is
not robustly A-diagnosable. �

Theorem 4.3 provides a direct approach for the verification of robust
A-diagnosability. To this end, we just need to construct automaton Vi

for each i ∈ I and then check whether or not it contains a terminal SCC
in which all states are robustly uncertain. For example, in the running
example {(G1 , p1 ), (G2 , p2 )} shown in Fig. 1, since xunc ∈ X̃V

2 , we

know that it is not robustly A-diagnosable. However, the complexity of
this approach is exponential in both the size of each automaton and the
number of possible models. In particular, the exponential complexity
in the number of possible models comes from the fact that Theorem 4.3
requires the parallel composition of all observer automata. In fact, we
note that, in contrast to verification of robust (ε, K)-diagnosability and
robust ε-diagnosability, whose satisfactions depend on the transition
probability matrix, robust A-diagnosability is a purely structural prop-
erty. This value independency can actually help us to further improve
the verification complexity. Specifically, the following theorem shows
that, to verify robust A-diagnosability for all possible models, it suffices
to verify robust A-diagnosability for each pair of models.

Theorem 4.4: The set of all models {(Gi , pi ) : i ∈ I} is ro-
bustly A-diagnosable if and only if any pair of two models
{(Gi , pi ), (Gj , pj )}, i, j ∈ I is robustly A-diagnosable.

Proof: (⇒) By contraposition. Suppose that there exist i, j ∈ I
such that {(Gi , pi ), (Gj , pj )} is not robustly A-diagnosable, i.e.

(∃ε > 0)(∀K > 0)(∃i′ ∈ {i, j})(∃s ∈ Ψ(Gi ′))

s.t. Prob
({t ∈ LK (Gi ′ , δi ′(s)) : st ∈ U{i ,j }} | δi ′(s)

) ≥ ε. (12)

Since U{i ,j } ⊆ UI , we know that

Prob ({t ∈ LK (Gi ′ , δi ′(s)) : st ∈ UI} | δi ′(s))

≥ Prob
({t ∈ LK (Gi ′ , δi ′(s)) : st ∈ U{i ,j }} | δi ′(s)

) ≥ ε.

Therefore, we know that

(∃ε > 0)(∀K > 0)(∃i′ ∈ I)(∃s ∈ Ψ(Gi ′))

s.t. Prob ({t ∈ LK (Gi ′ , δi ′(s)) : st ∈ UI} | δi ′(s)) ≥ ε (13)

i.e., {(Gi , pi ) : i ∈ I} is not robustly A-diagnosable.
(⇐) For any two possible models i, j ∈ I, since {(Gi , pi ), (Gj , pj )}

is robustly A-diagnosable, we know that, for any ε > 0, there exists an
integer Ki,j , such that for any i′ ∈ {i, j}, s ∈ Ψ(Gi ′), we have

Prob
({t ∈ LK i , j

(Gi ′ , δi ′(s)) : st ∈ U{i ,j }} | δi ′(s)
)

<
ε

n2 . (14)

Let K := maxi ,j∈I Ki,j . By the definition of U , we have that

UI =
⋃

i ,j∈I
U{i ,j }.

Therefore, for the above chosen K , (14) implies that, for any i′ ∈ I, s ∈
Ψ(Gi ′), we have

Prob ({t ∈ LK (Gi ′ , δi ′(s)) : st ∈ UI} | δi ′(s))

≤
∑
i ,j∈I

Prob
({t ∈ LK (Gi ′ , δi ′(s)) : st ∈ U{i ,j }} | δi ′(s)

)

≤
∑
i ,j∈I

Prob
({t ∈ LK i , j

(Gi ′ , δi ′(s)) : st ∈ U{i ,j }} | δi ′(s)
)

<
ε

n2 × |I|2 = ε.

Since ε > 0 is chosen arbitrarily, we know that {(Gi , pi ) : i ∈ I} is
robustly A-diagnosable. �

Theorem 4.4 suggests immediately an improved approach for the
verification of robust A-diagnosability. Specifically, for each possible
model i ∈ I, instead of constructing Gi‖Obs(G1 )‖ . . . ‖Obs(Gn ), we
can simply construct Gi‖Obs(Gi )‖Obs(Gj ), which contains at most
|Xi | · 2|X i | · 2|X j | number of states and |Σ| · |Xi | · 2|X i | · 2|X j | number
of transitions, for all j ∈ I, and then use Theorem 4.3 to test whether or
not each pair of models is robustly A-diagnosable, where the complex-
ity of detecting all SCCs is linear in the size of Gi‖Obs(Gi )‖Obs(Gj ).
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Therefore, the overall complexity of testing robust A-diagnosability us-
ing Theorem 4.4 is O(|Σ| ·∑i ,j∈I

(|Xi | · 2|X i |+ |X j |
)
), which is poly-

nomial in the number of all possible models. Similarly, one can show
that both robust ε-diagnosability and robust (ε, K)-diagnosability can
also be verified in such a pairwise manner. However, the verifica-
tion complexity is still exponential w.r.t. the number of states in each
model. It is natural to ask whether or not this complexity can also be
improved. In fact, it has been shown in [4] and [12] that verification of
A-diagnosability, which is the special case of robust A-diagnosability
with a unique model, is already PSPACE hard w.r.t. the number of
states in the system model. Therefore, this exponential complexity for
robust A-diagnosability also seems to be unavoidable, which essen-
tially comes from the subset construction in the observer automata.
One special case, where polynomial-time solution is possible, is that
each possible model satisfies a property called natural observer prop-
erty [15]. In this case, the number of states in the observer automaton is
smaller than the number of states in the original system. Therefore, for
this special case, the complexity for verifying robust A-diagnosability
becomes polynomial in both the size of each automaton and the number
of possible models.

Finally, recall that robust A-diagnosability guarantees that, for any
given misdetection rate ε, there exists a delay K such that the misdetec-
tion rate ε can be achieved in K steps. However, finding the smallest K
achieving ε requires us to compute the smallest K such that, for each
i ∈ I, x ∈ Ψi (Ṽi ), π0

i ,x (Pi )K 1�
unc < ε, which is computationally very

challenging. Here, we provide an upper bound for estimating the delay
that achieves a given misdetection rate ε.

Proposition 4.1: Suppose that {(Gi , pi ) : i ∈ I} is robustly A-
diagnosable and let ε > 0 be an arbitrary misdetection rate.
Then, for any i ∈ I and s ∈ Ψ(Gi ), Prob({t ∈ LK (Gi , δi (s)) :
st ∈ UI} | δi (s)) < ε if

K > nm ax ×
⌈

log ε

log (1 − pn m a x
min )

⌉

where �k� denotes the smallest integer greater than or equal to k,
nm ax := maxi∈I |Reachi (ΨX (Ṽi ))| is the maximum number of states
in each MC Mi and pmin is the minimum entry in P1 , . . . , Pn .

Proof: Let i ∈ I be an arbitrary model and s ∈ Ψ(Gi ) be a faulty
string. Since the system is robustly A-diagnosable, we know that xunc /∈
X̃V

i . Therefore, from any state reachable from δ̃V i
(s), we can reach

xcer in at most nm ax steps. Moreover, the probability of reaching xcer

in nm ax steps is greater than pn m a x
min . Therefore, for any k ∈ N, we have

Prob ({t ∈ Lk×n m a x (Gi , δi (s)) : st ∈ UI} | δi (s))

≤ (1 − pn m a x
min )k .

Since K > nm ax × � log ε
log (1−pn m a x

m in ) �, we have

Prob ({t ∈ LK (Gi , δ1 (s)) : st ∈ UI} | δi (s))

≤ Prob

(
{t ∈ L

n m a x ×� l o g ε

l o g ( 1−p n m a x
m in

)
�(Gi , δ1 (s)) : st ∈ UI} | δi (s)

)

≤ (1 − pn m a x
m in )

� l o g ε

l o g ( 1−p n m a x
m in

)
�

≤ (1 − pn m a x
m in )

lo g ε

l o g ( 1−p n m a x
m in

)

= ε.

�
Remark 4.2: In this paper, we provide direct approaches for verify-

ing different notions of robust diagnosability against model uncertainty.
An alternative approach for addressing the model uncertainty issue is

to construct a new automaton such that,1 first, it starts from a new
single initial state from which the initial state of each possible model
can be reached unobservably, and second, the dynamic of the new
system follows the dynamic of each possible model from its original
initial state. One can show that the set of possible models is robust A-
diagnosable if and only if the new system is A-diagnosable. Note that
the new system contains 1 +

∑
i∈I |Xi | states and we can further use

Theorem 4.4 to reduce the complexity of verification procedure. The
idea of this machinery may also be applied to other robust problems
against model uncertainties, e.g., robust prognosis problem [32] and ro-
bust control problem [5], [22], [28], [37], to “de-robustify” the problem
settings.

V. CONCLUSION

We studied the robust fault diagnosis problem in the context of
stochastic DES. A condition termed as robust (ε, K)-diagnosability
was proposed to capture whether or not a fault can always be detected
with misdetection rate smaller ε in K steps even though we do not
know the true model a priori. We also proposed the conditions of
robust ε-diagnosability and robust A-diagnosability to capture whether
or not a misdetection rate ε can be achieved and the misdetection rate
converges to zero, respectively. Effective algorithms were also provided
to verify these conditions. Our results generalize existing works on fault
diagnosis of stochastic DES by handling the robustness issue regarding
model uncertainties.
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