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Fault Detection of Discrete-Time Stochastic Systems
Subject to Temporal Logic Correctness Requirements

Jun Chen, Member, IEEE, and Ratnesh Kumar, Fellow, IEEE

Abstract—This paper studies the fault detection of discrete-time
stochastic systems with linear-time temporal logic (LTL) as cor-
rectness requirement—A fault is a violation of LTL specification.
The temporal logic allows system correctness properties to be
specified compactly and in a user-friendly manner (being close
to natural-languages), and supports automatic translation into
other formal models such as automata. We introduce the notion
of input-output stochastic hybrid automaton (I/O-SHA) and show
that the refinement of a continuous physical system (modeled as
stochastic difference equations) against a certain class of LTL
correctness requirement can be modeled as an I/O-SHA. The
refinement preserves the behaviors of the physical system and
also captures requirement-violation as a reachability property.
Probability distribution over the discrete locations of hybrid
system is estimated recursively by computing the distributions for
continuous variables for each discrete location. This is then used
to compute the likelihood of fault, a statistic that we employ for
the purpose of fault detection. The performance of the detection
scheme is measured in terms of false alarm (FA) and missed
detection (MD) rates, and the condition for the existence of a
detector to achieve any desired rates of FA and MD is captured
in form of Stochastic-Diagnosability, a notion that we introduce in
this paper for stochastic hybrid systems. The proposed method of
fault detection is illustrated by a practical example.

Note to Practitioners—Many cyberphysical systems, such as
building automation systems, automotive vehicles and smart
power grids, can be modeled as stochastic systems with mixed con-
tinuous and discrete dynamics subject to disturbance and noise,
whose behaviors are monitored and controlled by networked
(digital) control systems. This paper investigates fault detection in
the form of temporal logic specification violation in model-based
approach, by transforming it into a state estimation problem for
stochastic systemmodels. We provide an algorithm for online fault
detection and introduce the notion of Stochastic-Diagnosability for
the existence of a detector with any desired accuracy of detection
as measured by false alarms and missed detections. The work is
illustrated by a room heating system example.
Index Terms—Bayesian filtering, cyberphysical systems, diag-

nosability, fault detection, linear-time temporal logic, stochastic
hybrid systems.
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I. INTRODUCTION

D ETECTING system failures is an important and chal-
lenging problem in many disciplines such as software

engineering [1], automotive systems [2], power systems [3],
nuclear engineering [4], aerospace engineering [5], and digital
circuits [6]. In general, a fault is a deviation of a system from
its required or normal behavior, such as executing a fault-event,
reaching a fault-state, or violating a system specification, and
needs to be detected accurately within a tolerable delay bound
to ensure timely activation of any fault tolerance actions.
The problem of fault detection has been widely researched

[7]–[18]. Reference [10] considers the fault detection in sto-
chastic discrete event systems (DESs), for which the condition
for the existence of a detector for achieving any desired ac-
curacy requirement has been captured as stochastic diagnos-
ability, as studied in [12]–[14]. For dynamical systems, a fault
can be modeled as an abrupt or steady change in system dy-
namics through a change in system parameters (e.g., [7], [8]),
or appearance of additive terms in the state equation (e.g., [15]
and [16]). The fault diagnosis problem is also studied for hy-
brid systems [17], [18]. Reference [18] considers hybrid sys-
tems whose continuous dynamics are restricted to first-order,
and a fault can abruptly change both continuous and discrete
dynamics. The model-based diagnosis techniques and signature
analysis are integrated in the proposed diagnosis algorithm of
[18]. The problem of runtime verification of LTL formula for
nonstochastic can be found in [19]–[21].
In this paper, we study fault detection of certain physical

systems, whose dynamics over discrete sample instances are
described by stochastic difference equations, and in contrast
to the aforementioned works, we consider a more general no-
tion of a fault, namely a violation of certain correctness re-
quirements expressed as linear-time temporal logic (LTL) for-
mulas. The results presented in this paper can be straightfor-
wardly adopted to the case where a fault is defined to be a
change in system dynamics (see Remark 7). LTL formulas are
widely used as correctness requirements [22]–[25], as they are
easier to specify than automata models or -language, yet they
are compact and expressive and support automatic translation
into automata/formal-language models. In [22], [23], the au-
thors studied fault diagnosis problem in the setting of determin-
istic DESs whose nonfault behaviors are expressed as LTL for-
mulas; the present work generalizes to stochastic discrete-time
systems. References [24], [25] consider the controller design
problem for hybrid/piecewise-affine systems, where the desired
system behaviors are subject to LTL requirements.
An LTL formula is defined over infinite traces, so any system

behavior violating a given formula will be of infinite length.
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Since a fault detector can access only a finite history of ob-
servations, it is natural to assume that every infinite run of a
system, that violates a given LTL formula, possesses a finite
prefix, called an indicator, such that all its infinite extensions
that are feasible in the system also violate the LTL formula.
This is a necessary requirement for any online diagnosis, and a
system is said to be prediagnosable if it satisfies such a property
with respect to the given LTL specification [22]. As established
in [22], prediagnosability is equivalent to the existence of a de-
terministic Büchi automaton which accepts those system traces
satisfying the LTL property, and those equal the limits of finite
prefixes accepted by the same model. To aid the diagnosis anal-
ysis, we refine the continuous physical system against the Büchi
automaton to obtain a stochastic hybrid system for which fault
detection problem becomes a stochastic reachability estimation
problem.
Stochastic hybrid systems are widely studied in literature

[26]–[32]. For example, continuous time stochastic hybrid
system is studied in [30], whereas probabilistic reachability
problem for discrete time stochastic hybrid system is consid-
ered in [26], [29]. The abstraction of a stochastic hybrid system
is examined in [27], [28], with a goal to find a relaxed model
which is computationally simpler and possesses behaviors with
bounded deviations compared to the original concrete system.
Model checking of temporal properties for stochastic hybrid
systems has been examined in [31], [32].
To model the refinement of the continuous physical system

against the Büchi requirement model, we introduce the notion
of input–output stochastic hybrid automaton (I/O-SHA), ex-
tending the logical input–output hybrid automaton (I/O-HA)
introduced in [33], by allowing randomness in invariants,
guards, data updates, and output assignments. Next we pro-
pose an algorithm that performs the refinement to yield an
I/O-SHA such that the violation of the LTL formula is cap-
tured as a reachability property to a certain fault-location.
The likelihood of fault versus no-fault (requirement-violation
versus non-violation) is recursively computed and is used as
a statistic for issuing fault detection decisions: Whenever the
likelihood of fault arises above a suitable threshold, i.e., the
likelihood of fault is “high”, a fault decision is issued, and
otherwise the detector remains silent. The performance of
this detection scheme is determined by introducing and com-
puting its false alarm (FA) and missed detection (MD) rates.
In order to identify the class of systems for which detection
with any desired accuracy is feasible, we introduce the notion
of Stochastic-Diagnosability as the corresponding necessary
and sufficient condition. The proposed diagnosis framework is
implemented for a benchmark room heating problem, inspired
from [34], to demonstrate the validity and applicability of the
results.
The contributions of this paper are summarized as follows.
1) The notion of I/O-SHA is introduced, extending its logical

counterpart in [33].
2) Stochastic filtering equations are provided to recursively

update the distributions for both continuous states and dis-
crete locations of I/O-SHA.

3) Fault detection, namely, LTL requirement-violation de-
tection, is performed based on above stochastic filtering
equations.

4) To measure the performance of our detection scheme we
introduce the notions of false alarm and missed detection
rates, and show their dependence on detection threshold
and detection delay.

5) The notion of Stochastic-Diagnosability is introduced, and
its necessity and sufficiency for the existence of a detector
for achieving any desired false alarm and missed detection
rates is established.

The remainder of this paper is organized as follows.
Section II provides some preliminaries on LTL, while
Section III formulates the fault detection problem. Definition
of I/O-SHA is introduced in Section IV, where the main results
are also given. An illustration by applying our results to a room
heating problem is studied in Section V. Section VI introduces
the notion of Stochastic-Diagnosability as an existence condi-
tion of a detector. The paper is concluded in Section VII.

II. PRELIMINARIES

In this paper, we study fault detection of physical systems
subject to disturbance and noise, modeled by stochastic differ-
ence equations

(1)
(2)
(3)

where represent, respectively, the input, state,
requirement (unobserved), output (observed), disturbance and
noise variables, and is the time-index. Note that the require-
ment variable is used to capture a user-defined specification
that, at each step, depends on system state and input, and, being
a user-defined requirement, it is independent of disturbance
or noise. The properties of the nonfault system behaviors are
described by using a LTL formula over the requirement vari-
ables, which may not be directly observed and hence must be
estimated from observations of inputs and outputs. In the fol-
lowing we present a brief description of LTL; a more thorough
introduction can be found in [35], [36].
Let be a state transition graph,

where is the set of states, is a total transition
relation, i.e., , is a finite set of atomic
proposition symbols, and is a function
that labels each state with the set of atomic propositions true
at that state. A sequence of states is a
state-trace in if for every .

, where , is used to denote
the suffix of starting from index . A proposition-trace
over an atomic proposition set is defined as a sequence
of set of atomic propositions, such
that . A proposition-trace

over is said to be contained in
if there exists a state-trace in such that

, in which case is said to
be associated with .
LTL temporal logic is a formalism for describing properties

of sequences of states. Such properties are expressed using tem-
poral operators of the temporal logic which include:
• (“next time”): it requires that a property holds in the next
state of the state-trace;
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• (“until”): it is used to combine two properties. The com-
bined property holds if there is a state on the state-trace
where the second property holds, and at every preceding
state on the trace, the first property holds;

• (“eventually” or “in the future”): it requires that a prop-
erty will hold at some future state on the state-trace;

• (“always” or “globally”): it requires that a property holds
at every state on the trace;

• (“before”): it combines two properties. It requires that if
there is a state on the state-trace where the second property
holds, then there exists a preceding state on the trace where
the first property holds.

We have the following relations among the above operators,
where denotes a temporal logic formula.
• .
• .
• .

Thus, we can use and to express all of the other temporal
operators. LTL formulas are generated by the following rules.

P1) If , then is a LTL formula.
P2) If and are LTL formulas, then so are and

.
P3) If and are LTL formulas, then so are and

.
The semantics of LTL can be defined with respect to infinite

state-traces in a state transition graph .
For a LTL formula , we use the notation (resp.,

) to denote that holds (resp., does not hold)
along the infinite state-trace in . The relation is defined
inductively as follows.
1) if and only if .
2) if and only if .
3) if and only if and .
4) if and only if .
5) if and only if there exists a such that

and for all .
The semantics of LTL formulas can also be expressed over

infinite length proposition-traces without referring to any spe-
cific state transition graph. This is done by replacing the first
condition shown previously with

where is an infinite proposition-trace over AP, i.e.,
for all .

Given an LTL formula , denote as the set of all infinitely
long proposition-traces over satisfying . Then, we can ob-
tain a generalized nondeterministic Büchi automaton ([35])
that accepts . To construct , we first put into negation
normal form, in which negation is only applied at atomic level.
Then we rewrite each subformula of the form , , or
as . Let be the number of subformulas of the form

. Then, the generalized nondeterministic Büchi automaton
has sets of accepting states and is of the form

where
• is the set of states;

• is the transition relation;
• is the initial state;
• is the generalized Büchi acceptance condition,
such that for each subformula of the form in , there
exists a which is used to capture the fulfillment of

.
When , then the generalized Büchi automaton re-
duces to a standard one. An infinite length proposition-trace

over is accepted by if and only
if there exists an infinite length state-trace in
such that for all , and visits each
set of locations in infinitely often. Then the set of all infinite
length proposition-traces accepted by , called its -language,
equals .
While every LTL formula can be characterized as the -lan-

guage accepted by a nondeterministic Büchi automaton, only
certain fragments of LTL can be modeled as the -language ac-
cepted by a deterministic Büchi automaton. Since a detector has
access to only a finite history of observed behavior, only the
failure behaviors possessing finite indicator (see Definition 1)
can be detected. It turns out that in this case, the accepted traces
of the system satisfying the LTL specification can be modeled
as the -language accepted by a deterministic Büchi automaton.

III. FAULT DETECTION PROBLEM FORMULATION

Suppose the dynamics of the physical system under di-
agnosis can be described by the stochastic difference (1)–(3),
where we recall that represent, respectively, the
input, state, requirement (unobserved), output (observed), dis-
turbance, and noise variables, and is the time-index. The ini-
tial state , the disturbance as well as the noise are
all assumed mutually independent with known distributions,
which can be dependent on current states. Note that the require-
ment variable, which specifies a required value for each input-
state pair through the function , is used to capture a user-de-
fined specification that, at each step, depends on system state
and input, and being a user-defined requirement, it is not cor-
rupted by noise. We assume that the properties of the required
system behaviors can be described by using a LTL formula
involving predicates defined over the requirement variables ,

. Then the predicates, appearing in the LTL formula, and
their Boolean combinations act as atomic propositions guarding
the transitions in the Büchi automaton. The set of all infinitely
long feasible sequences of aforementioned predicates is denoted
as .
Since detection of requirement-violation must occur based on

a finite history of input/output observations, it is natural to as-
sume that every infinite run of a system, that violates the given
LTL formula, possesses a finite prefix, called an indicator, such
that all of its infinite extensions that are feasible in the system
also violate the LTL formula. This property was captured under
the name of prediagnosability in [22], and is a necessary con-
dition for any detector's ability to detect the violation of the
specified LTL formula based on finite-length observations. So,
without loss of generality, we assume that the prediagnosability
holds. Next, we provide a formal definition of indicator and also
of prediagnosability.
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Definition 1: Given a system and a LTL formula , a finite
sequence of requirement variables is said to be an indicator if
all of its infinite extensions in violate . We denote the set
of all indicators as . is said to be prediagnosable with
respect to if each infinite sequence of requirement variables
violating possesses a finite prefix that is an indicator.
Remark 1: By utilizing the notion of indicator, detecting the

occurrence of infinite trace violating a LTL formula is trans-
formed into detecting the execution of finite indicators. As men-
tioned in [22], when an indicator is executed, the actual fault
may not have happened yet. Hence, our framework includes
both cases of fault detection (that a fault has already occurred)
and prediction (that a fault will inevitably occur). Note that the
notion of indicator has also been utilized for the purpose of fault
prognosis (see for example [37]–[39]), where the prediction of
a future fault is performed by detecting the occurrence of a non-
fault prefix indicator.
Remark 2: Note that a system is inherently prediagnosable

if the LTL formula is a safety one [35], i.e., it only requires
that some “bad” things must never occur. However, when the
correctness requirement is a more general one, the system may
not be prediagnosable (See Example 1), and in this case, the vi-
olation of can not be detected even if the system is perfectly
observable, i.e., for all . For this reason, we
assume without loss of generality that the system is prediagnos-
able with respect to the LTL formula.
As established in [22, Theorem 1], the prediagnosability of

system with respect to a LTL formula is equivalent to the ex-
istence of a deterministic Büchi automaton accepting ,
which can also be characterized as the limits of the finite pre-
fixes accepted by the same model treated as a standard finite
state automaton. Then owing to the determinism, and assuming
no redundant states, we can augment the Büchi automaton, by
adding an absorbing state “ ”, reaching which indicates the ex-
ecution of either a fault that already occurred or a future fault
that is inevitable, thereby yielding an augmented deterministic
requirement model, denoted as . Note the augmentation re-
quires adding one new transition from each state to the newly
added fault state , guarded by the complement of the existing
transition guards of the state.
Example 1: Consider a system with dynamics

where are i.i.d. Gaussian random variables. Suppose the LTL
formula is given as , i.e., it is always (G) pos-
sible that in future (F), the requirement variable becomes nega-
tive. Then it can be verified [see Fig. 1(a)] that for any infinite
sequence with (i.e., a sequence
violating ), any of its prefix has at least one infinite extension
in which is satisfied for infinitely many (i.e., a se-
quence satisfying ). Therefore is not prediagnosable with
respect to . In this case even with perfect observation ,
the violation of cannot be detected.
Now consider the disturbance to be , where
is a positive-valued random variable, i.e., the noise is de-

pendent on the state variable and is negative (resp., posi-

Fig. 1. (a) Büchi automaton for . (b) Büchi automaton for
in the case of state dependent noise . (c) The requirement model

for Example 1.

Fig. 2. Detection structure.

tive) if is negative (resp., positive). As a result, the sequence
, and also , are monotonically increasing (resp.,

decreasing) if is positive (resp., negative). Consider again
the LTL formula . Then in this case, for every
infinite sequence with (i.e., a
sequence violating ), there exists a finite prefix with

(so that ) whose all infinite exten-
sions also violate . Then is prediagnosable with respect to

. In this case the Büchi automaton accepting
is given in Fig. 1(b), where , i.e., is the limits
of . The requirement model is shown in Fig. 1(c),
where the system behaviors satisfying visit infinitely often
while those violating are absorbed at .

IV. FAULT DETECTOR COMPUTATION

Consider the detection structure of Fig. 2, where the moni-
tored physical system evolves according to stochastic differ-
ence (1)–(3), and requirement model tracks its own discrete
location as the requirements variable evolves. At any given
time, the true state of requirement model is not available to
the detector and must be estimated from observed history of in-
puts and outputs. We transform this problem of estimating re-
quirement-violation to fault-location reachability estimation in
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an I/O-SHA model that captures the behaviors of both and
in a unified manner.
We first introduce the notion of an I/O-SHA, extending the

logical inputI/O-HA given in [33].

A. Input–Output Stochastic Hybrid Automaton
Definition 2: An I/O-SHA is a 10-tuple

, where
• is the set of locations (symbolic states), and each
is a 3-tuple , where
— is the location invariant probability

satisfying (4) below;
— assigns for each

a probability density function on data
space ;

— assigns for each
a probability density function on output

space .
• is the set of data (numerical
states), and hence the hybrid state space of is given by

;
• is the set of numerical inputs;
• is the set of numerical outputs;
• is the set of symbolic inputs;
• is the set of symbolic outputs;
• is the initial probability distribution for the
locations;

• is the initial probability distribution for
the data values;

• is the set of final locations;
• is the set of edges (transitions), and each is a
7-tuple , where
— is the original location,
— is the terminal location,
— is the symbolic input,
— is the symbolic output,
— is the guard probability satisfying

(4) below,
— assigns for each

a probability density function on data
space ,

— assigns for each
a probability density function on output

space .
Remark 3: In Definition 2, and , where ,

capture the probabilities that an I/O-SHA stays in current loca-
tion or executes a transition , and so it satisfies the following
stochasticity constraint:

(4)

Note that, in a special setting, the range space of and
can simply be the binary set [33], i.e., given

any , an I/O-SHA will either stay at current loca-
tion or execute one transition, with probability 1. Then, the
guard/invariant can be equivalently written as logical pred-
icates and

. Since in this paper
we consider refinement of discrete-time stochastic systems
against their logical LTL formula, only logical guards/invari-
ants are needed in the refined I/O-SHA models.
An I/O-SHA starts from an initial distribution over

and an initial distribution over . At each time step, given a
current location , current data value and input value , upon
the arrival of a symbolic input , evolves either
within current location with probability or executes an
outgoing edge such that with probability .
In the former case, it updates data variable according to dis-
tribution , and output variable is assigned a value
according to distribution . In the latter case, distribu-
tions and are used for updating and , and
a symbolic output is emitted.
Remark 4: In [26] and [29], the authors proposed discrete

time stochastic hybrid systems (DTSHS), which includes hybrid
state/control space. The I/O-SHAmodel introduced here is more
general than the DTSHS model: state variables of a DTSHS
are fully observed, whereas data variables of an I/O-SHA are
only partially and unreliably observed. The notion of I/O-SHA
can also be utilized to model cyberphysical systems [21], [40]
where a cyber (discrete) component interacts with a physical
(continuous) component.

B. Modeling the Refined System as a Stochastic I/O-HA

Next, we present the refinement of a system against its LTL
formula that is translated into a requirement model as de-
scribed in Section III. Given a physical system with dynamics
described by (1)–(3) and the requirement model , the refine-
ment is modeled by an I/O-SHA , where
• is given by the state space of , where is
the Dirac delta function, and ;

• are given by the state/input/output space of ,
respectively, and ;

• the discrete transition structure of is preserved from
that of ;

• for each location :
— location invariant is given by

violates the predicates over each outgoing transition
from in ,

— probability density functions and
for data updates and output assignments are determined
by the distributions of and , together with the func-
tions and of ,

• for each , is a transition of
(i.e., ), if and only if

— there exists a transition from to in ,
— satisfies the predicates over the

above transition of ,
— , , and is

the identity function that keeps output values unchanged
on discrete transitions.

Remark 5: The refinement captures the behaviors of both
and in a unified manner such that any system behavior

associated with an indicator transitions to the fault-location
.
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C. State Estimation for I/O-SHA

In order to aid the estimation of fault location reachability, we
present the stochastic filtering equations to recursively estimate
state distributions of I/O-SHA. Denote the history of observed
inputs/outputs up to a time as ,
and let . Define as

which is the conditional probability distribution over discrete
locations given the observations until time . We further define
two probability distribution functions over continuous vari-
ables of an I/O-SHA. The first one is the prior distribution

given by

which is the probability density function over continuous vari-
ables at time , given (i.e., prior to the input/output at time
) and (the discrete location at time ). The second one is the
posterior distribution given by

which is the probability density function over continuous vari-
ables at time , given (i.e., post to the input/output at time )
and (the discrete location at time ).
The following equations initialize and recursively update the

state distributions , and for an I/O-SHA upon the
arrival of the th input/output pair for each :

(5)
(6)

(7)

(8)

(9)

where for each , and is de-
fined as

, i.e., it is the set of data values that
enable the edge from to when the input is . The detailed
derivations of (7)–(9) are given in the Appendix.

D. Detection Statistics and Detection Scheme

Now that we have computed the state probability distribu-
tions given the input/output sequence up to a current time ,
we can use this to compute the likelihood of fault, which is

the probability of the refinement being at the fault-location
, and is given by

(10)

Note that can be found by first computing , which in turn
is computed by the filter (5)–(9). A detector issues a fault de-
cision “ ” whenever this likelihood of fault is higher than a
threshold, i.e., when , and remains silent otherwise. The
detector is formally defined as

(11)

Note that once the detector issues , it issues for all subse-
quent steps, i.e., the detector “doesn't change its mind”. This is
a desired property of a detector since it is designed to detect the
execution of an indicator that occurred in the past.
Remark 6: Note that performing filter (5)–(9) requires

complexity that is linear to the size of discrete locations and
quadratic to the number of sample points in , while com-
puting in (10) needs complexity linear to the size of .
Note also that, while we only consider discrete-time sto-

chastic systems with single mode of dynamics, the framework
can be straightforwardly extended to the case where the system
under diagnosis is itself an I/O-SHA. In this case, the locations
of the refinement are given by the location-pairs of
and , and the guards/invariants are given by intersections of
guards/invariants in and . The detection algorithm (5)–(11)
continues to apply to this more general setting where itself is
an I/O-SHA.
Remark 7: In this paper, we consider a fault to be a violation

of given LTL formulas. As studied in literature [15], [16], a fault
may be modeled as a change in system dynamics. We can sub-
sume this situation in our framework by considering the refine-
ment in which the probability density functions
for location undergoes a dynamics change due to the oc-
currence of fault. Then the fault detection problem is again re-
duced to fault-location reachability detection problem for ,
i.e., estimation of the probability of reaching fault-location ,
which can be solved by our proposed algorithm (5)–(11).

V. CASE STUDY: A ROOM-HEATING PROBLEM

Here, we illustrate the fault detection computations described
above by applying to a room heating benchmark, which aims to
regulate the temperature in a single room with a single heater
and is inspired from [34]. Let the continuous variable present
the room temperature at time , and the binary variable de-
note the status of the heater, with if the heater is on at
time and 0 otherwise. The room temperature is assumed to
evolve according to the linear stochastic difference equation

and the requirement and output variables are given by
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Fig. 3. Rrequirement model for single-room heating problem.

TABLE I
LIST OF

where is the (constant) ambient temperature, and the distur-
bance and the noise are zero mean Gaussian random vari-
ables with variances and , respectively.
For safety purposes, it is required that the room temperature

satisfies for all . It is also required that the room
temperature is guaranteed to be higher than in at most 2 steps
after the heater is turned on. Note are constants,
specified by user/designer. Such correctness requirement can be
expressed as LTL formula

(12)

It can be verified that the aforementioned system is prediagnos-
able with respect to , and the requirement model is shown
in Fig. 3, which has four states and nine edges, while reaching
the state indicates the violation of formula (12).
The refinement is such that ,

, , , , and
the edges are as shown in Fig. 3. For each ,

where denotes Gaussian distribution with mean
and variance . Recall that, as defined in Section IV-C,

for each , and is the set of data values that enable
the edge from to when the input is . For each
and , can be easily computed and is shown
in Table I.

Fig. 4. Detection result for a run that violates the correctness requirement by
exceeding upper limit . (a) True . (b) Estimation of . (c) Likeli-
hood of fault computed by detector.

Fig. 5. Detection result for a run that violates the correctness requirement by
failing to reach within two steps after the heater is on. (a) True .
(b) Estimation of . (c) Likelihood of fault computed by detector.

For the computational study, we set ,
, and suppose the system is initialized at

and . Suppose the specification parameters are ,
and . For simulation, the continuous space

is discretized by a grid size of 0.1 over the range . The
input is such that the heater switches between on and off at each
discrete time.
A total of 5000 runs, with terminal time , were sim-

ulated, out of which there were 457 runs violating . We im-
plemented the detection algorithm (5)–(11), and the results are
shown in Figs. 4–6. In Fig. 4, the room temperature exceeds the
upper limit, whereas in Fig. 5, is violated since the room tem-
perature remains below two steps after the heater is
on. In both cases, the likelihood of fault, , arises soon after
the specification is violated, and the fault can be detected with
a delay of 7 steps by using a detection threshold . The
performance of the detection scheme can be evaluated by the
errors in terms of false alarms and missed detections (formally
defined in next section), and Fig. 6 shows the number of runs
that are false-alarmed or missed-detected over the 5000 runs, as
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Fig. 6. (a) Number of false alarms as a function of threshold. (b) Number of
missed detections as a function of threshold. (c) Number of missed detections
as a function of detection delay, when the threshold is .

detection threshold and detection delay are changed. The
number of runs that are false-alarmed is a function of detection
threshold and decreases as detection threshold increases, while
the number of runs that are missed-detected is a function of both
detection threshold and detection delay. When detection delay
is fixed, the number of runs that are missed-detected increases
as detection threshold increases, whereas it decreases as the de-
tection delay increases while the detection threshold is fixed.

VI. PERFORMANCE EVALUATION AND STOCHASTIC
DIAGNOSABILITY

As illustrated in the case study in the previous section, the per-
formance of the detection scheme proposed above can be mea-
sured in terms of false alarm (FA) and missed detection (MD)
rates. Here, we formally define FA and MD rates, by first intro-
ducing the following notions.
A finite run of the system is a finite execution of the stochastic

difference (1)–(3), denoted as , where
and for each , . A run

is a fault-run if the associated sequence of requirement variables
is an indicator, i.e., , where recall that

is the set of all indicators. A run is a nonfault-run if it is not
a fault-run. Given two runs and

, is said to be a prefix of ,
denoted as , if and for each

. In this case, we denote as an extension
of .
Associated with each run is a sequence of detection sta-

tistics, , computed using (5)–(10). Then a FA
occurs if the detector issues decision for a nonfault-run, and
so FA rate can be defined as

(13)

A MD occurs if the detector remains silent steps after the
system executes an indicator, where is the detection delay
bound allowed by the detector. So MD rate can be defined as

(14)

Next we present a characterization of the class of systems
for which detectors with arbitrary accuracies can be designed,
by introducing the notion of Stochastic-Diagnosability which
requires that for any tolerable threshold and error bound ,
there must exist a delay bound such that for any fault-run, its
extensions, longer than and having likelihood of fault lower
than , occur with probability at most .
Definition 3: Given a system subjected to an input-se-

quence drawn from a distribution , with correctness re-
quirement expressed in LTL formula , is said to
be Stochastically-Diagnosable, or simply S-Diagnosable, if

, , such that for any fault-run

(15)

The following theorem establishes the significance of the
S-Diagnosability property, by showing its necessity and suf-
ficiency for the existence of a detector to achieve any desired
level of accuracy as measured in terms of FA and MD rates.
Theorem 1: For any FA rate and MD rate ,

there exists a detection threshold and delay bound so that
the rates of FA and MD defined by (13)–(14) satisfy
and if and only if is S-Diagnosable.

Proof :
(Sufficiency) As shown in (13), for ,

, and so
FA rate decreases as detection threshold gets higher. Therefore,
any FA rate can be achieved by adequately lowering the de-
tection threshold. Let be the threshold that ensures FA rate .
When is S-Diagnosable, there exists an integer
such that (15) holds. Therefore

Thus, the sufficiency holds.
(Necessity)When is not S-Diagnosable, there exists

and a fault-run such that for any , (15) does
not hold, i.e.,

(16)

Let be such that . Then, for any ,

Therefore in this case, a MD rate of can not be achieved.
Thus the necessity holds.
Remark 8: Theorem 1 identifies the class of systems for

which a detector of any desired accuracy can be constructed.



CHEN AND KUMAR: FAULT DETECTION OF DISCRETE-TIME STOCHASTIC SYSTEMS SUBJECT TO TEMPORAL LOGIC CORRECTNESS REQUIREMENTS 1377

Therefore, the S-Diagnosability property should be checked
before designing a detector—a desired accuracy may not be
achievable if S-Diagnosability is not satisfied. Verifying the
S-Diagnosability property is an open problem, subject for
future work, along with an algorithm that computes a detector
so as to ensure the desired rates of FA and MD.
Example 2: Let us revisit the second system in Example 1.

The state equation is given by , where the dis-
turbance and is a positive-valued random
variable with density function whose mean is 1. The re-
quirement and output variables are given by and

, where are i.i.d. zero mean Gaussian
random variables with variance . Consider again the LTL for-
mula . As shown in Example 1, the system
is prediagnosable with respect to . Moreover, according to
Fig. 1(c), detecting the requirement-violation by time is equiv-
alent to detecting the existence of such that (or

).
Now consider a fault-run and its extension , we have

For any , define be such that

Then , and so
. Hence,

According to the discussion of Example 1, for any fault-run
, the sequence of state variables is monotoni-

cally increasing with average increase of 1 at each time step.
Therefore and so for a fixed (or ),

(See Fig. 7). Then we have
, i.e., for any

, there exists , such that

Since the above analysis works for any , one can con-
clude that S-Diagnosability holds in this example. According to
Theorem 1, any desired rates of FA and MD can be achieved by
suitably choosing threshold and delay bound. When the FA rate
is made tighter by decreasing it, a larger detection threshold

is required, while when the MD rate is made tighter by low-
ering it, a detector needs to wait for a longer delay bound .

Fig. 7. Gaussian distribution with mean and variance .

VII. CONCLUSION

This paper studied the fault detection of discrete-time sto-
chastic systems subject to linear-time temporal logic correct-
ness requirement. The continuous physical system (modeled as
stochastic difference equations) was refined against its LTL cor-
rectness requirement to yield an input-output stochastic hybrid
automaton which preserves the behavior of the physical system
and captures requirement-violation as a reachability property
to a fault-location. The likelihood of fault was proposed as a
detection statistic, and was recursively computed for issuing a
detection decision (a fault decision is issued when the likeli-
hood of fault arises above a suitably chosen threshold, implying
the likelihood of fault has become “high” and so a fault is con-
cluded). Although in the proposed framework, a fault is defined
to be a violation of certain correctness requirement and does
not necessarily result in a dynamics change, the framework can
be straightforwardly adopted to capture fault models which in-
volve a change in system dynamics as in [15], [16]. The pro-
posed diagnosis procedure was implemented for a benchmark
room heating problem to show its validity and applicability.
The performance of the procedure was evaluated in terms of
false alarm and missed detection rates, and the existence of de-
tector for achieving any desired false alarm and missed detec-
tion rates was captured as Stochastic-Diagnosability introduced
in this paper. As part of future work, analytical computation
of the rates of false alarm and missed detection will be inves-
tigated. Also the verification of the Stochastic-Diagnosability
property will be developed.

APPENDIX

Here we derive (7)–(9). According to the definition, we have
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Therefore, we have

Combining and , we obtain

i.e.,

Thus, we have shown (7). Next by combining ,
and , we have

Thus, we have established (8). Finally combining
, , and

yields

i.e.,

Thus, we have also established (9).
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