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Quantification of Secrecy in Partially Observed
Stochastic Discrete Event Systems
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Abstract— While cryptography is used to protect the content of
information (e.g., a message) by making it undecipherable, behav-
iors (as opposed to information) may not be encrypted and may
only be protected by partially or fully hiding through creation of
ambiguity (by providing covers that generate indistinguishable
observations from secrets). Having a cover together with partial
observability does cause ambiguity about the system behaviors
desired to be kept secret, yet some information about secrets may
still be leaked due to statistical difference between the occurrence
probabilities of the secrets and their covers. In this paper,
we propose a Jensen–Shannon divergence (JSD)-based measure
to quantify secrecy loss in systems modeled as partially observed
stochastic discrete event systems, which quantifies the statistical
difference between two distributions, one over the observations
generated by secret and the other over those generated by cover.
We further show that the proposed JSD measure for secrecy loss
is equivalent to the mutual information between the distributions
over possible observations and that over possible system status
(secret versus cover). Since an adversary is likely to discriminate
more if he/she observes for a longer period, our goal is to evaluate
the worst case loss of secrecy as obtained in the limit over longer
and longer observations. Computation for the proposed measure
is also presented. Illustrative examples, including the one with
side-channel attack, are provided to demonstrate the proposed
computation approach.

Note to Practitioners—Secrecy is the ability to hide private
information. For communicated information, this can be done
through encryption or access control. However, the same is not
possible for system behaviors, and in contrast, cover is introduced
for providing ambiguity. Quantifying the ability to hide secrets
is a challenge. This paper provides a means to quantify this in
terms of a type of distance measure between a secret and its
cover. A computation of the same is also provided for partially
observed stochastic discrete event systems and illustrated through
a cache’s side-channel secrecy loss example.
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I. INTRODUCTION

THE rapid progress in information and communication
technology has made it possible for an adversary to

eavesdrop and/or attack confidential or private communica-
tion. While cryptography is used to protect the content of
information (e.g., a message) by making it undecipherable,
the same technique may not be used to hide behaviors, which
may not be encrypted. In such cases, secrecy can instead be
attained through creation of ambiguity, caused, for example,
by partial observation that ambiguates secrets from covers,
where the secrets are system behaviors desired to be kept
confidential, whereas the covers are the complementary system
behaviors that generate the same observations as the secrets,
creating ambiguity. Researchers in the field of security and
privacy have explored many techniques for hiding secrets
based on ambiguation schemes such as steganography and
watermarking [1], [2], network-level anonymization [3], and
software obfuscation [4].

Various notions of information secrecy have been explored
in the literature. References [5]–[7] defined the noninterference
for input–output systems as a property in which the outputs
that are observable to an adversary should not depend on any
secret input so that the adversary does not deduce anything
about the secret input by observing the output. Noninterference
is a logical notion that is either satisfied or violated, and as
such, it does not allow the quantification of the degree to which
a system may violate the property. Accordingly, the notion
is enriched for probabilistic systems for which the degree
of interference can be quantified in terms of the amount of
information leaked by a system to an observer. The amount of
information leakage, in turn, is measured by the loss of uncer-
tainty about the inputs due to the observation of the outputs,
i.e., the difference between the prior and posterior entropies
of the inputs, namely, the mutual information between inputs
and outputs [5]. While such a quantification of information
leakage is satisfactory for long periods of system operation
(since entropy measures uncertainty in an average sense),
it is of limited use for systems in which an adversary makes a
single observation. To address this situation, the average case
measure of entropy was replaced by its best case measure,
corresponding to minimum uncertainty, namely, min-entropy,
in the definition of mutual information [7].
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In general, a secret can be defined as a sequence of
executions instead of a single execution, and this general
situation has also been examined in the literature. For example,
in the setting of discrete event systems (DESs), the defini-
tion of secrecy examined in [8] requires that the execution
of behaviors constituting a secret must be masked to an
observer through indistinguishable behaviors that are nonsecret
(i.e., cover). This is indeed analogous to the notion of non-
interference, which by virtue of being logical has the same
limitation that it cannot quantify the degree to which a system
is interfering (or leaks information).

For probabilistic DESs, where each discrete transition is
associated with a certain occurrence probability, more power-
ful notions of secrecy can be defined. For example, [9] used
Jensen–Shannon divergence (JSD) between the distributions
of a secret versus its cover as a way to quantify the secrecy,
which is measured as the divergence of two distributions over
the set of feasible observations, one being the probabilities of
secret behaviors and the other being those of cover behaviors.
An approximation algorithm for computing an upper bound
of JSD was also provided in [9]. Another attempt to gen-
eralize secrecy from logical to stochastic DESs is provided
in the work of Saboori and Hadjicostis [10], where similar
to the setting of mutual-information-based characterization
of information leakage, they consider the difference between
the prior and posterior distributions (before and after any
observations) of the secret states and require it to be upper
bounded. The corresponding verification problem turns out
to be undecidable. Saboori and Hadjicostis [11] proposed the
notion of step-based almost current-state opacity requiring that
the probability of revealing the secret must be upper bounded
at each time step. This notion is decidable, but stringent since
it is defined for each individual step. In contrast, the definition
of Sτ secrecy proposed by [12] bounds the probability of
revealing the secret over the set of all behaviors, as opposed to
that for each step. It is shown that Sτ -secrecy can be viewed as
a generalization of the logical secrecy defined in [8] and that
it is a variant of the divergence used in [9]. Related works on
K-step and infinite step opacity are explored in [13] and [14].
The above-mentioned secrecy notions (also referred to opacity
in the literature) along with the related articles have been
reviewed in a recent survey [15].

In this paper, we propose a JSD-based quantification to
measure the secrecy loss in partially observed stochastic
DESs (SPODESs), which are Markovian generators of arbi-
trary long sequences with transitions being partially observed.
(SPODESs are equivalent to partially observed labeled Markov
chains; see the following text.) The proposed JSD-based
quantification for secrecy loss is shown to be equivalent to
the mutual information between the distributions over possible
observations and that over possible status of system execution
(secret versus cover). A recursive method for JSD computa-
tion is also presented: given the distribution with respect to
length-(n−1) sequences and the length-1 dynamics of the
underlying partially observed model, it computes the JSD
of length-(n) sequences. Under certain ergodicity conditions
(see Section III-B), this recursion reaches a fixed point and
provides “limiting” JSD measure, quantifying the worst case

statistical difference, which is defined over arbitrary long
sequences. Since JSD is always bounded between 1 and 0, this
worst case value is also bounded, providing an upper bound to
the quantification of the amount of information leaked about
secrets due to statistical difference between the observations
of secrets versus covers (see Remark 3). We derive the
above recursion and then construct an observer model of the
given SPODES, which is then used to develop a state-based
computation of the fixed-point JSD measure.

The computation of JSD for a SPODES is challenging
since a finite-state DES under partial observations is poten-
tially infinite state (with the state space being conditional
state distributions following observations). However, a finite-
state stochastic observer can be constructed for computing
conditional state distribution following observations, which
we construct and employ for divergence computation. Note
that such a stochastic observer was first introduced in [16] for
analyzing diagnosability of SPODES. This observer model is
not a Markov chain model since the transition probabilities
are no longer scalars, rather matrices (not necessarily square).
Secrecy has also been studied in the context of partially
observed labeled Markov chain (POLMC). The reader is
referred to [15] and [17] and the reference therein for the
work on secrecy in the context of POLMC. While there
is a slight difference between SPODES and POLMC (in a
POLMC, transitions are not labeled and the states are partially
observed, whereas in SPODES, transitions are labeled and they
are partially observed), this does not affect the expressibility,
as partial observability of states can be expressed as partial
observability of transitions and vice versa. Note that [9]
considers JSD over all finite length of observations for a termi-
nating SPODES, while this paper formulates the limiting JSD
for nonterminating SPODES, where the limiting JSD provides
an upper bound to the level of loss of secrecy that is achieved
when an intruder is able to wait for arbitrary long observations.

The rest of this paper is organized as follows. Section II
presents notations and preliminaries. Divergence-based quan-
tification of secrecy loss is provided in Section III, whereas
Section IV presents an observer-based computation of worst
case JSD resulting from arbitrary long observations. Section V
illustrates the proposed approach through practical examples,
while this paper is concluded in Section VI. The Appendix
includes the proofs of lemmas and theorems.

II. NOTATIONS AND PRELIMINARIES

A. Stochastic PODESs

For an event set �, define �̄ := � ∪ {ε}, where ε denotes
“no-event.” The set of all finite-length event sequences over �,
including ε, is denoted by �∗, and �+ := �∗ − {ε}. A trace
is a member of �∗ and a language is a subset of �∗. We use
s ≤ t to denote if s ∈ �∗ is a prefix of t ∈ �∗ and |s| to denote
the length of s or the number of events in s. For L ⊆ �∗,
its prefix closure is defined as pr(L) := {s ∈ �∗|∃t ∈ �∗ :
st ∈ L} and L is said to be prefix closed (or simply closed) if
pr(L) = L, i.e., whenever L contains a trace, it also contains
all the prefixes of that trace.

A SPODES can be modeled by a stochastic automaton
G = (X,�, α, x0), where X is the set of states, � is the finite
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set of events, x0 ∈ X is the initial state, and α : X ×�× X →
[0, 1] is the probability transition function [18], and ∀x ∈ X,∑

σ∈�

∑
x ′∈X α(x, σ, x ′) = 1. A non-stochastic partially

observed discrete event system can be modeled as the
same four-tuple, but by replacing the transition function
with α : X × � × X → {0, 1}, and a non-stochastic
partially observed discrete event system is deterministic if
∀x ∈ X, σ ∈ �,

∑
x ′∈X α(x, σ, x ′) ∈ {0, 1}. The transition

probability function α can be generalized to α : X × �∗ × X
in a natural way. Define the language generated by G as
L(G) := {s ∈ �∗ | ∃x ∈ X, α(x0, s, x) > 0}. For a given
G, a component C = (XC , αC ) of G is a “subgraph”
of G, i.e., XC ⊆ X and ∀x, x ′ ∈ XC and σ ∈ �,
αC (x, σ, x ′) = α(x, σ, x ′) whenever the latter is positive,
and αC (x, σ, x ′) = 0 otherwise. C is said to be a strongly
connected component (SCC) or irreducible if ∀x, x ′ ∈ XC ,
∃s ∈ �∗ such that αC(x, s, x ′) > 0. An SCC C is said to be
closed if for each x ∈ XC ,

∑
σ∈�

∑
x ′∈XC

αC (x, σ, x ′) = 1.
The states that belong to a closed SCC are recurrent states
and the remaining states (which do not belong to any closed
SCC) are transient states. Another way to identify recurrent
versus transient states is to consider the steady-state state
distribution π∗ as the fixed point of π∗ = π∗�, where π∗ is
a row vector with the same size as X and � is the transition
matrix with i j th entry being the transition probability∑

σ∈� α(i, σ, j). (In case � is periodic with period d �= 1,
we consider the set of fixed points of π∗ = π∗�d .) Then any
state i is recurrent if and only if there exists a reachable fixed
point π∗ such that the i th entry of π∗ is nonzero. Identifying
the set of recurrent states can be done polynomially by the
algorithm presented in [19].

The events executed by a SPODES can be partially observed
by an observer (i.e., an adversary). Such limited observation
capability of an observer can be represented as an observation
mask, M : �̄ → 	̄, where 	 is the set of observed symbols
and M(ε) = ε. An event σ is unobservable if M(σ ) = ε. The
set of unobservable events is denoted by �uo and the set of
observable events is then given by � − �uo. The observation
mask can be generalized in a natural way to �∗ with M(ε) = ε
and ∀s ∈ �∗, σ ∈ �̄, M(sσ) = M(s)M(σ ).

B. Secret/Nonsecret Behaviors and Refined Plant
Suppose K ⊆ �∗ models the secret behaviors (traces),

whereas the remaining traces in L − K can be viewed as
its cover. Let the stochastic automaton G = (X,�, α, x0)
with generated language L(G) = L be the system model
and the deterministic automaton R = (Y,�, β, y0), which
specifies the secret behaviors K , be such that L(R) = K .
Then a refinement of G with respect to R, denoted G R ,
can be used to capture the property-satisfying/violating traces
in form of the reachability of certain nonsecret states (the
state has D in its second coordinate), and is given by
G R := (X × Ȳ ,�, γ, (x0, y0)), where Ȳ = Y ∪ {D} and
∀(x, ȳ), (x ′, ȳ ′) ∈ X × Ȳ , σ ∈ �, γ ((x, ȳ), σ, (x ′, ȳ ′)) =
α(x, σ, x ′), if the following holds:

(ȳ, ȳ ′ ∈ Y ∧ β(ȳ, σ, ȳ ′) > 0)

∨(ȳ = ȳ ′ = D) ∨
(

ȳ ′ = D ∧
∑

y∈Y

β(ȳ, σ, y) = 0

)

and otherwise γ ((x, ȳ), σ, (x ′, ȳ ′)) = 0. Note that here D is
an added state to capture the traces in L − K . Then it can be
seen that the refined plant G R has the following properties.

1) L(G R) = L(G).
2) Any property-satisfying trace s ∈ L(G) but not in L(R)

transitions the refinement G R to a nonsecret state.
3) For each s ∈ L(G) = L(G R),

∑
x∈X α(x0, s, x) =∑

(x,ȳ)∈X×Ȳ γ ((x0, y0), s, (x, ȳ)), i.e., the occurrence
probability of each trace in G R is the same as that in G.

For (x, ȳ), (x ′, ȳ ′) ∈ X × Ȳ and δ ∈ 	 define the
set of traces originating at (x, ȳ), terminating at (x ′, ȳ ′),
and executing a sequence of unobservable events fol-
lowed by a single observable event with observation δ
as LG R ((x, ȳ), δ, (x ′, ȳ ′)) := {s ∈ �∗|s = uσ,
M(u) = ε, M(σ ) = δ, γ ((x, ȳ), s, (x ′, ȳ ′)) > 0}. Define
α(LG R ((x, ȳ), δ, (x ′, ȳ ′))) := ∑

s∈LG R ((x,ȳ),δ,(x ′,ȳ′)) γ ((x, ȳ),

s, (x ′, ȳ ′)) and denote it by θ(x,ȳ),δ,(x ′,ȳ′). Therefore,
θ(x,ȳ),δ,(x ′,ȳ′) is the probability of all traces originating at
(x, ȳ), terminating at (x ′, ȳ ′), and executing a sequence of
unobservable events followed by a single observable event
with observation δ. Also for i = (x, ȳ) and j = (x ′, ȳ ′), define
λi j = ∑

σ∈�uo
γ (i, σ, j) as the probability of transitioning

from (x, ȳ) to (x ′, ȳ ′) while executing a single unobservable
event. Then θi,δ, j = ∑

k λikθk,δ, j + ∑
σ∈�:M(σ )=δ γ (i, σ, j),

where the first term on the right-hand side (RHS) corresponds
to transitioning in at least two steps (i to intermediate k
unobservably and k to j with a single observation δ at the
end), whereas the second term on the RHS corresponds to
transitioning in exactly one step [20], [21]. Thus, for each
δ ∈ 	, all the probabilities {θi,δ, j |i, j ∈ X × Ȳ } can be found
by solving the following matrix equation (see [22]–[24] for a
similar equation):

�(δ) = ��(δ) + �(δ) (1)

where �(δ),�, and �(δ) are all |X × Ȳ | × |X × Ȳ | square
matrices whose i j th elements are given by θi,δ, j , λi j and∑

σ∈�:M(σ )=δ γ ((x, ȳ), σ, (x ′, ȳ ′)), respectively.
Remark 1: To find �(δ) using (1), we need to solve

�(δ) = (I − �)−1�(δ). The complexity of matrix inverse
is O(|X |3 ×|Ȳ |3) and the complexity of matrix multiplication
is O(|X |3×|Ȳ |3), and so overall complexity is O(|X |3×|Ȳ |3).
Since the number of secret states and the number of nonsecret
states are both upper bounded by the number of states in G R ,
which is O(|X | × |Ȳ |), the complexity of finding �(δ) for all
δ ∈ 	 using (1) is bounded by O(|	| × |X |3 × |Ȳ |3).

Note also G R has O(|X | × |Ȳ |) states and O(|�| × |X |)
transitions per state since only the G part is nondeterministic,
whereas the complexity of identifying all the nonsecret recur-
rent states in G R is cubic in the number of states in G R and
linear in the number of transitions in G R , respectively [25].
Therefore, the overall complexity for finding all �(δ) using (1)
is O(	 × |X |3 × |Ȳ |3 + |�| × |X |2 × |Ȳ |).

Example 1: Fig. 1(a) is an example of a stochastic automa-
ton G. The set of states is X = {0, 1, 2} with initial state
x0 = 0 and event set � = {a, b, c}. A state is depicted as a
node, whereas a transition is depicted as an edge between
its origin and termination states, with its event name and
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Fig. 1. (a) Stochastic automaton G . (b) Deterministic secret specification R.
(c) Refinement G R .

probability value labeled on the edge. The observation mask M
is such that M(c) = ε and for all other events σ ∈ {a, b},
M(σ ) = σ . Suppose R is given in Fig. 1(b), i.e., K =
L(R) = ab∗, L − K = ca∗ ∪ (ca∗b)+ ∪ (ca∗b)+ab∗. Then
the refinement G R automaton is shown in Fig. 1(c). Let
the state space of G R be indexed as the following order:
{(0, 0), (2, 1), (1, D), (0, D), (2, D)}. Then, by solving (1),
we get

�(a) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0.5 0.375 0 0
0 0 0 0 0
0 0 0.75 0 0
0 0 0.375 0 0.5
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

�(b) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0.125 0
0 1 0 0 0
0 0 0 0.25 0
0 0 0 0.125 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Remark 2: In this paper, the secret behaviors are specified
through a deterministic automaton R, instead of through the
subset of the system states. This is because in general, secret
may not be captured as a subset of the system model, but
a subset of its behavior. Moreover, secret can be defined and
modeled independently from the plant modeling. In both cases,
the secret is specified by R, which is independent of the system
model G, while the refined plant G R with dump state D can
be used to capture the violation of secret.

As a simple illustrative example, in Fig. 1, the system
state “2” can be either secret or nonsecret, depending on the
traces executed before reaching state “2.” In this example, the
secret specification is defined by R, which models the secret
behavior, while the refined plant G R captures the violation
of R, e.g., state “(2, 1)” in G R denotes the nonviolation of
secrecy, while state “(2, D)” denotes violation.

Note that the results developed in this paper can be straight-
forwardly applied to the case in which secrecy is modeled as
a subset of the system states.

In [8], a logical version of secrecy was defined, which is
satisfied whenever each secret can be masked by a cover and

vice versa, with nonzero probability. A weaker version con-
sidered in [12] allows some secrets/covers to be nonmasked,
but limits the probability of such traces to be a small number.
In the next section, a new approach for measuring the level
of secrecy is introduced utilizing the notion of JSD, following
the review of related information theoretic notions.

C. Information Theoretic Notations

This section reviews related information theoretic notations.
As is standard in information theory, a base-2 logarithm has
been used. For more details, the reader is referred to [26].

Given a probability distribution p over discrete set A, the
entropy of p is defined as

H (p) = −
∑

a∈A

p(a) log p(a).

Given two probability distributions p and q over A, the
Kullback–Leibler (KL) divergences between p and q , denoted
by DK L(p, q), is defined as

DK L(p, q) =
∑

a∈A

p(a) log
p(a)

q(a)
.

For given λ1 > 0 and λ2 > 0 satisfying λ1 + λ2 = 1, the JSD
between p and q , denoted by D(p, q), is defined as

D(p, q) = λ1 DK L(p, λ1 p + λ2q) + λ2 DK L(q, λ1 p + λ2q)

which is equivalent to

D(p, q) = H (λ1 p + λ2q) − λ1 H (p) − λ2 H (q). (2)

Given two probability distributions p over A and q over B ,
the mutual information between p and q is defined as

I (p, q) =
∑

a∈A,b∈B

Pr(a, b) log
Pr(a, b)

p(a)q(b)
.

Mutual information can also be equivalently defined as

I (p, q) = H (p) − H (p|q)

where the condition entropy H (p|q) is given as

H (p|q) = −
∑

a∈A

p(a)
∑

b∈B

Pr(b|a) log Pr(b|a).

III. DIVERGENCE-BASED SECRECY QUANTIFICATION

For any n ∈ N and a length-n observation o ∈ 	n ,
let pn(o) denote the probability of observation o. Since the
occurrences of observations of length n are mutually dis-
joint,

∑
o∈	n pn(o) = 1, i.e., pn is a probability distribution

over 	n . Then its entropy is given as

H (pn) = −
∑

o∈	n

pn(o) log pn(o).

Lemma 1: The entropy pn as defined above for length-n
observation can be recursively computed as follows:
H (pn) = H (pn−1) −

∑

o∈	n−1

pn−1(o)
∑

δ∈	

Pr(δ|o) log Pr(δ|o).

Proof: See the Appendix.
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Observations in 	n can be generated by secrets (behaviors
in K ) or by covers (behaviors in L − K ), and accordingly
define two more probability distributions over 	n: probability
that an observation o ∈ 	n is generated by some secret in K ,
denoted by ps

n(o), versus that is generated by some cover
in L − K , denoted by pc

n(o)

ps
n(o) := Pr(s ∈ K ∩ M−1(o))

Pr(s ∈ K ∩ M−1(	n))

pc
n(o) := Pr(s ∈ (L − K ) ∩ M−1(o))

Pr(s ∈ (L − K ) ∩ M−1(	n))
.

Further define λs
n := Pr(s ∈ K ∩ M−1(	n)) to be the

probability of secrets and λc
n := Pr(s ∈ (L − K ) ∩ M−1(	n))

to be the probability of covers, respectively, generating length-
n observation. Then it is easy to show that λs

n +λc
n = 1 for all

n ∈ N. The entropy of ps
n and pc

n are given, respectively, by

H
(

ps
n

) = −
∑

o∈	n

ps
n(o) log ps

n(o) (3)

H
(

pc
n

) = −
∑

o∈	n

pc
n(o) log pc

n(o). (4)

The ability of an intruder to identify secret versus cover
behaviors based on observations of length n depends on
the disparity between the two distributions ps

n versus pc
n: if

ps
n and pc

n are identical, i.e., with “zero disparity,” there is
no way to statistically tell apart secrets from covers, and in
that case, there is perfect secrecy. However, when ps

n and pc
n

are different, then one could characterize the ability of an
intruder to discriminate secrets from covers based on length-n
observations, using the JSD between ps

n and pc
n , denoted by

D(ps
n, pc

n). This JSD is given by the following weighted sum
of a pair of KL divergences between, respectively, ps

n and pc
n

and their weighted sum:
D

(
ps

n, pc
n

) = λs
n DK L

(
ps

n, λ
s
n ps

n + λc
n pc

n

)

+λc
n DK L

(
pc

n, λ
s
n ps

n + λc
n pc

n

)

= H
(
λs

n ps
n + λc

n pc
n

) − λs
n H

(
ps

n

) − λc
n H

(
pc

n

)

= H (pn) − λs
n H

(
ps

n

) − λc
n H

(
pc

n

)
(5)

where DK L represents the KL divergence. Note that JSD is
symmetric in its arguments and bounded by 0 and 1.

We first show that the JSD measure as considered in this
paper is indeed a useful measure of information revealed, by
formally establishing in the following theorem that it equals
the mutual information between the observations pn and the
status (secret versus cover) of system executions. (Mutual
information is a well-accepted measure of the information
revealed about one random variable from the observations
of another.) This status can be captured by a bivalued
random variable �n , defined for each n ∈ N , such that
Pr(�n = s) = λs

n and Pr(�n = c) = λc
n . With a slight abuse of

notation, also denote its distribution by �n , which corresponds
to the distribution of the system executing secret versus cover.

Theorem 1: The JSD as defined in (5) is equivalent to the
mutual information of �n and pn, that is

D
(

ps
n, pc

n

) = I (�n , pn).

Proof: See the Appendix.

Remark 3: Theorem 1 establishes the equivalence of the
JSD in (5) and the mutual information of �n and pn , the latter
of which measures the mutual dependence between length-n
observations and status of system execution (secret versus
cover). When D(ps

n, pc
n) = I (�n, pn) = 0, length-n obser-

vations are independent of system execution status, and thus
no secret information can be leaked through length-n observa-
tions. On the other hand, when D(ps

n, pc
n) = I (�n, pn) > 0,

the dependence of length-n observations and system status can
be measured by the JSD, D(ps

n, pc
n), which in turn quantifies

the extent to which system secrecy can be leaked by length-n
observations.

A. Recursive Characterization

An intruder is likely to discriminate more if he/she observes
for a longer period. Accordingly, our goal is to evaluate
the worst case loss of secrecy, as obtained in the limit:
limn→∞ D(ps

n, pc
n). This worst case JSD provides an upper

bound to quantify the amount of information leaked about
secrets.

To compute the worst case loss of secrecy, we first develop
a recursive computation for D(ps

n, pc
n), relating it to distribu-

tions of length-(n−1) observations and divergence of length-1
distributions. For o ∈ 	∗ and δ ∈ 	, define the distributions
of secret versus cover upon a single observation δ following
a history of observation o:

ps|o(δ) := Pr(s ∈ K ∩ M−1(oδ))

Pr(s ∈ K ∩ M−1(o{	}))
pc|o(δ) := Pr(s ∈ (L − K ) ∩ M−1(oδ))

Pr(s ∈ (L − K ) ∩ M−1(o{	})) .

Further define λc|o := Pr(s ∈ K ∩ M−1(o{	}))/Pr(o) and
λs|o := Pr(s ∈ (L − K ) ∩ M−1(o{	}))/Pr(o). Then again, we
have λc|o + λs|o = 1. Following (2), we have:

D(ps|o, pc|o) = H (λs|o ps|o + λc|o pc|o)
− λs|o H (ps|o) − λc|o H (pc|o). (6)

The following lemma characterizes the computation of the
length-1 JSD for the given observation o.

Lemma 2: Given observation o, the length-1 JSD between
ps|o and pc|o can be computed as

D(ps|o, pc|o) = H (λs|o ps|o + λc|o pc|o) + H ({λs|o, λc|o})
− H (λs|o ps|o) − H (λc|o pc|o). (7)

Proof: See the Appendix.
Using the above lemma, we can next provide the following

recursive computation for JSD.
Lemma 3: The JSD over the distribution of length-n secret

behaviors and that of cover behaviors can be recursively
computed by

D
(

ps
n, pc

n

) = H
({

λs
n, λc

n

}) +
∑

o∈	n−1

pn−1(o)

×[−H ({λs|o, λc|o}) + D(ps|o, pc|o)]. (8)

Proof: See the Appendix.
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B. State-Distribution-Based Characterization

In order to numerically compute JSD, we map the JSD
computation to a computation based on the state-distribution
following an observation. Each observation o ∈ 	∗ results in
a conditional state distribution π(o), which can be computed
recursively as follows: for any o ∈ 	∗, δ ∈ 	: π(ε) = π0
and π(oδ) = (π(o) × �(δ))/(||π(o) × �(δ)||) [20], where
π0 is the initial state distribution. Let � denote the set of
all such conditional state distributions, and for each π ∈ �
and n ∈ N, denote Pn(π) = Pr(o ∈ 	n : π(o) = π), which
is the probability that the set of all observations of length n,
upon which is the conditional state distribution, is π . Given π ,
define the following notations:

λs|π :=
∑

δ∈	

π�(δ)Is

λc|π :=
∑

δ∈	

π�(δ)Ic

ps|π(δ) := π�(δ)Is

λs|π

pc|π (δ) := π�(δ)Ic

λc|π

where Is and Ic denote indicator column vectors of the same
size as the number of states, with binary entries to identify the
secret versus cover states (states reached by traces in K versus
L − K ). Similar to (6), the length-1 JSD, conditioned upon a
current state distribution π , is given by

D(ps|π , pc|π) = H (λs|π ps|π + λc|π pc|π )

−λs|π H (ps|π) − λc|π H (pc|π).

Following the definitions introduced above and the recursion
result in Lemma 3, the next lemma can be obtained, which
characterizes the recursive computation of JSD based on
distributions over system state space.

Lemma 4: For a stochastic DES G and specification R, the
JSD over the distribution of length-n secret behaviors and that
of cover behaviors, as given in (5), can be rewritten as

D
(

ps
n, pc

n

) = H
({

λs
n, λc

n

}) +
∑

π∈�

Pn−1(π)

× [−H ({λs|π, λc|π }) + D(ps|π , pc|π )]. (9)

In the limit when n → ∞, if the distribution Pn(·)
over � converges to P∗(·), then limn→∞ D(ps

n, pc
n) exists.

The reader is referred to [27] for a condition under which
such a convergence is guaranteed: it requires the system to
be ergodic (period equals 1 and irreducible) and the existence
of a finite sequence e1, . . . , em such that �(e1) . . .�(e2) is a
nonzero subrectangular matrix.

IV. OBSERVER-BASED COMPUTATION OF

WORST-CASE SECRECY LOSS

The state-based characterization of limn→∞ D(ps
n, pc

n)
requires the computation of limn→∞ Pn−1(π), which can be
accomplished with the help of an observer that was previously
introduced in [16] in the context of stochastic diagnosability.
An observer tracks the possible system states following each

Fig. 2. (a) System model G . (b) Deterministic specification R. (c) Refine-
ment G R .

Fig. 3. Observer for the system in Fig. 2.

observation and also allows the computation of the corre-
sponding state distribution. We let Obs denote an observer
automaton with state set as the power set of states of the
refined plant, namely, Z ⊆ 2X×Ȳ , so that each node z ∈ Z of
the observer is a subset of system states, i.e., z ⊆ X × Ȳ , and
we use |z| to denote the number of system states in z. Obs
is initialized at node z0 = {(x0, y0)} and there is a transition
labeled with δ ∈ 	 from node z to z′ if and only if every
element of z′ is reachable from some elements of z along a
trace that ends in the only observation δ, i.e., z′ = {(x ′, ȳ ′) ∈
X × Ȳ : ∃(x, ȳ) ∈ z, LG R ((x, ȳ), δ, (x ′, ȳ ′)) �= ∅}. Associated
with this transition is the transition probability matrix �z,δ,z′
of size |z| by |z′| (a submatrix of �(δ) matrix introduced
earlier), whose i j th element θi,δ, j is given by the transition
probability from the i th element (x, ȳ) of z to the j th element
(x ′, ȳ ′) of z′ while producing the observation δ, and equals
α(LG R ((x, ȳ), δ, (x ′, ȳ ′))).

Example 2: Consider the models of Fig. 2, where
M(u) = ε, M(a) = a, and M(b) = b. Then the observer Obs
is given as Fig. 3.

Associated with each observation o ∈ 	∗, there is a
reachable state distribution π(o) as discussed earlier. Let the
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state z be reached in Obs following observation o. Then
obviously the number of positive elements of π(o) is the
same as the number of elements in z. Then with a slight
abuse of notation, we also use π(o) to denote the row
vector containing only positive elements and of the same
size as the number of elements in the node reached by o
in Obs. Then π(o) can also be recursively computed as
follows: for any o ∈ 	∗, δ ∈ 	: π(ε) = 1 and π(oδ) =
(π(o) × �zo,δ,zoδ )/(||π(o) × �zo,δ,zoδ ||), where zo and zoδ are
the nodes reached in Obs following o and oδ, respectively.
Then it can be seen that along any cycle in Obs, the
distribution upon completing the cycle is a function of the
distribution upon entering the cycle, through a sequence of
transition matrix multiplications and their normalization.
In the case of steady state, those two distributions will be
the same, namely, a fixed point of that function.

Given the Obs with state space Z for system G and
specification R, let �̃ be a

(∑
z |z|)× (∑

z |z|) square matrix,
whose i j th block is the |zi | × |z j | matrix

∑
δ �zi ,δ,z j . The

fix point distribution associated with �̃ can be obtained by
solving π∗ = π∗�̃, where π∗ is a row vector of size

∑
z |z|.

For each zi ∈ Z , let p(zi ) be the summation of the i th
block of π∗, then zi is said to be recurrent if p(zi ) > 0.
Note here that zi is recurrent if and only if there exists
(x, ȳ) ∈ zi such that (z, (x, ȳ)) is recurrent in �̃ as defined
in Section II-A. Also note that for each z ∈ Z , there exists a
sufficiently large N such that p(z) = ∑

o∈	N : o reaches z pN (o).
In other words, p(z) is the probability of all sufficiently long
observations that reach the observer state z. With a slight
abuse of notations, define λs as the summation of the elements
of π∗ corresponding to secret states, i.e., λs := π∗Is , and
λc = 1 − λs .

Example 3: For the observer in Example 2,
∑

z |z| = 8 and
so �̃ is a 8 × 8 matrix given as

�̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.1 0.1 0.7 0.1 0 0 0
0 0 0 0 0.3 0.7 0 0
0 0 0 0.5 0 0 0.5 0
0 0 0 1 0 0 0 0
0 0 0 0 0.7 0 0 0.3
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

π∗ = [0 0 0 0.75 0 0.07 0.05 0.13].
Therefore, p(z0) = p(z1) = 0, p(z2) = 0.75, p(z3) = 0.12
and p(z4) = 0.13. Since

Is = [1 1 0 0 1 1 0 1]T

Ic = [0 0 1 1 0 0 1 0]T

we have λs = 0.2 and λc = 0.8.
For a set of recurrent nodes {z1, z2, . . . , zn} that forms an

SCC in Obs, define a set of distributions {π∗
z1

, π∗
z2

, . . . , π∗
zn

}
to be a set of steady-state distributions if ∀i, j, δ such that
�zi ,δ,z j is defined, the following holds:

π∗
z j

= π∗
zi
�zi ,δ,z j

||π∗
zi
�zi ,δ,z j ||

i.e., π∗
zi

represents a steady-state conditional distribution
following a single sufficiently long observation o that
reaches zi . Note that in this case, any other extension of o
that also reaches zi will induce the same conditional dis-
tribution π∗

zi
. There may exist multiple sets of steady-state

distributions for a given set of recurrent nodes, denoted by
{{π∗

z1,k
, . . . , π∗

zn ,k}, k ∈ N}. Then if steady state always exists,
for any sufficiently long observation that reaches a recurrent
node z, there exists k ∈ N such that π(o) = π∗

z,k . Denote
p(z, k) := Pr[{o | o reaches z and π(o) = π∗

z,k}]. Note that
when the set of steady state distributions is a singleton and
hence unique, p(z, k) = p(z).

Example 4: Let us revisit Example 2. It can be seen
that z2, z3, and z4 are recurrent nodes, and each of them
forms an SCC. We have π∗

z2
= [1 0] and π∗

z4
= [1],

and while there are multiple solutions to the equa-
tion set π∗

z3
= (π∗

z3
�z3,a,z3)/(π

∗
z3

�z3,a,z3) and π∗
z3

=
(π∗

z3
�z3,b,z3)/(π

∗
z3

�z3,b,z3), only π∗
z3

= [0.5833 0.4167] is
reachable. Thus, each set of recurrent nodes is a singleton
set, each with a unique fixed-point distribution. Therefore, for
each recurrent node z, p(z, k) = p(z).

Let Is
z′ and Ic

z′ be indicator column vectors with binary
entries of size |z′| for identifying, within z′, the secret
and cover states, respectively. For each steady-state distrib-
ution π∗

z,k of each recurrent node z, define

λs|π∗
z,k :=

∑

δ∈	

π∗
z,k�z,δ,z′Is

z′

λc|π∗
z,k :=

∑

δ∈	

π∗
z,k�z,δ,z′Ic

z′

ps|π∗
z,k (δ) := π∗

z,k�z,δ,z′Is
z′

λs|π∗
z,k

pc|π∗
z,k (δ) := π∗

z,k�z,δ,z′Ic
z′

λc|π∗
z,k

.

Example 5: Then for Example 2, Is
z2

= [0 1]T , Ic
z2

=
[1 0]T , Is

z3
= [1 0]T , Ic

z3
= [0 1]T , Is

z4
= [1]T , and

Ic
z4

= [0]T . For z2 and π∗
z2

λ
s|π∗

z2 = 0

λ
c|π∗

z2 = 1

pc|π∗
z2 (b) = π∗

z2
�z2,b,z2Ic

z2

λ
c|π∗

z2
= 1

ps|π∗
z2 (a) = pc|π∗

z2 (a) = ps|π∗
z2 (b) = 0.

For z3 and π∗
z3

λ
s|π∗

z3 = 0.5833

λ
c|π∗

z3 = 0.4167

ps|π∗
z3 (a) = π∗

z3
�z3,a,z3Is

z3

λ
s|π∗

z3
= 0.3

ps|π∗
z3 (b) = π∗

z3
�z3,b,z3Is

z3

λ
s|π∗

z3
= 0.7

pc|π∗
z3 (a) = π∗

z3
�z3,a,z3Ic

z3

λ
c|π∗

z3
= 0.3

pc|π∗
z3 (b) = π∗

z3
�z3,b,z3Ic

z3

λ
c|π∗

z3
= 0.7.
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Fig. 4. (a) Cache side-channel attack. (b) Cache side-channel attack with random eviction. (c) Observer for the cache side-channel attack example with
random eviction.

For z4 and π∗
z4

λ
s|π∗

z4 = 1

λ
c|π∗

z4 = 0

ps|π∗
z4 (a) = π∗

z4
�z4,a,z4Is

z4

λ
s|π∗

z4
= 0.3

ps|π∗
z4 (b) = π∗

z4
�z4,b,z4Is

z4

λ
s|π∗

z4
= 0.7

pc|π∗
z4 (a) = pc|π∗

z4 (b) = 0.

In the following, we assume the existence of steady state.
Assumption 1: Assume that for any sufficiently long obser-

vations o1 ≤ o2, if Obs reaches the same node following
o1 and o2, then π(o1) = π(o2).

Then following the above definitions and Lemma 4, the next
theorem provides computation of limn→∞ D(ps

n, pc
n), under

Assumption 1.
Theorem 2: Consider a system G and specification R. Then

under Assumption 1, the worst case secrecy loss, i.e., JSD
between ps

n and pc
n when n → ∞, is given by

lim
n→∞ D(ps

n, pn = c)

= H ({λs, λc}) +
∑

z:z is recurrent

∑

k∈N

×p(z, k)[−H ({λs|π∗
z,k , λc|π∗

z,k }) + D(ps|π∗
z,k , pc|π∗

z,k )].
The next assumption assumes that for each set of recur-

rent nodes in Obs, there only exists one set of steady-state
distributions.

Assumption 2: For each set of recurrent nodes in Obs,
k = 1, i.e., the set of steady-state distributions is unique, so
that p(z, k) = p(z).

Theorem 3: Consider a system G and specification R. Then
under Assumptions 1 and 2, the worst case secrecy loss, i.e.,
the JSD between ps

n and pc
n when n → ∞, is given by

lim
n→∞ D

(
ps

n, pc
n

)

= H ({λs, λc}) +
∑

z:z is recurrent

×p(z)
[ − H ({λs|π∗

z , λc|π∗
z }) + D(ps|π∗

z , pc|π∗
z )

]
.

Note that computing limiting JSD requires construction of
an observer, whose worst case complexity is exponential to
the number of states in G R [28].

Example 6: Revisit Example 2. Following Examples 2–5,
we have:

H ({λs, λc}) = −0.2 log(0.2) − 0.8 log(0.8) = 0.7219

×
∑

z:z is recurrent

p(z)
[ − H ({λs|π∗

z , λc|π∗
z })

+ D(ps|π∗
z , pc|π∗

z )
]

= 0.1176.

Therefore, according to Theorem 3

lim
n→∞ D

(
ps

n, pc
n

) = −0.7219 − 0.1176 = 0.6043.

Thus, for the system in Fig. 2, the worst case secrecy loss, as
measured by the limiting JSD, is 0.6043.

Remark 4: As discussed earlier (see Remark 3), the worst
case secrecy loss is bounded between 0 and 1, where 0 indi-
cates no secrecy loss and 1 means largest secrecy leaks. As a
relative value, the smaller it is, the better system design is
regarding protecting system secret.

Note also that current quantification measures how much
secrecy is lost in general with respect to the set of secret
behaviors specified by automaton R. In case quantification for
leaking of each secret behavior is interested, one can construct
automaton Rs for each secret behavior s and compute the
limiting JSD for each pair of G and Rs .

V. CACHE SIDE-CHANNEL ATTACK EXAMPLE

In this section, a modified version of cache side-channel
attack example adopted from [29] is considered. When a host
program executes on the system, its memory accesses contain
information that might help an attacker determine the secret
of whether or not the host is accessing the cache memory.
Suppose the attacker executes a program on the same processor
and shares the same cache as the host program [see Fig. 4(a)].
If the host holds its own data in cache, its cache access results
in a hit (Hhit), but if the attacker evicts the host’s data in
the cache lines by requesting cache access, it would result
a miss (Hmiss). Similarly, when the host requires cache data,
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it evicts the cache lines that hold the attacker’s data, which
make the attacker’s future cache access “miss” (Amiss).
On the other hand, Ahit occurs when the attacker accesses
the data while it is held in cache. These behaviors may give
the attacker information to infer the host’s cache accesses. The
system is described as in Fig. 4. Note that as long as the host
requests cache access, the attacker will for sure witness an
Amiss and at that point it would occupy the cache, thereby
fully knowing the cache status.

Now suppose, in order to prevent any information leak,
the system (i.e., the processor) practices attack protection
by periodically evicting the occupant of cache through the
execution of the “Inv” event as shown in Fig. 4(b). This
introduces ambiguity in the attacker’s knowledge about the
occupancy of the cache, i.e., when it observes a cache miss, it
does not know whether it is due to the processor’s eviction or
due to the host’s cache access. Note that in Fig. 4(a) and (b),
the state AH is used to denote that currently the cache line is
filled with attacker’s data, while in the last step, it was filled
with host’s data. Then in Fig. 4(b), we can view {H, AH} to
be the secret states, whereas {I, A, I ′} to be the cover states.
Assuming that only the Amiss and Ahit are observable to the
attacker, its observer model Obs is as given in Fig. 4(c). It can
be computed that p(z1) = 1/6, p(z2) = 5/6, π∗

z1
= [1],

π∗
z2

= [0.6 0.4], λs = 1/3, and λc = 2/3. Further, the limiting
divergence limn→∞ D(ps

n, pc
n) = 0, meaning that no amount

of secrecy could be leaked through the side channel if the
cache line is periodically evicted by the processor.

VI. CONCLUSION

In this paper, we presented an information theoretic measure
of secrecy loss in SPODESs, where the information about
system secrets may be revealed through the side channel of
observable inputs/outputs. Statistical difference, in the form
of the JSD measure between the influence of secrets versus
covers on the observations, is employed to quantify the loss
of secrecy. We showed that this JSD measure is equivalent to
the mutual information between the distribution over possible
observations and that over possible status of system execution
(secret versus cover), and proposed the computation of the
“limiting” JSD as a measure of worst case secrecy loss, result-
ing from their longer and longer observations. The computa-
tion of limiting JSD required developing a recursion relating
JSD over length-n sequences to distributions over length-(n-1)
sequences through the one-step dynamics of underlying system
model. We also presented an observer-based approach for com-
puting the fixed-point of recursion and also the limiting JSD.
Illustrative examples, including the one based on side-channel
attack, are provided to demonstrate the proposed notions and
associated computation. For terminating DESs, one can simply
add unobservable self-loops at terminating states with proba-
bility 1 and proceed as in this paper. Future work can consider
generalizing the results, by computing the JSD for systems that
may not satisfy the two assumptions about convergence (see
Assumption 1) and uniqueness (see Assumption 2), respec-
tively, and extend the results to stochastic hybrid systems [30].
Quantification of secrecy loss that also considers the modeling
uncertainties is another future research direction.

APPENDIX

Proof of Lemma 1: According to the definition of entropy,
we have

H (pn)

= −
∑

o∈	n

pn(o) log pn(o)

= −
∑

o∈	n−1

∑

δ∈	

pn(oδ) log pn(oδ)

= −
∑

o∈	n−1

∑

δ∈	

pn−1(o)Pr(δ|o) log(pn−1(o)Pr(δ|o))

= −
∑

o∈	n−1

pn−1(o)
∑

δ∈	

Pr(δ|o)(log pn−1(o) + log Pr(δ|o))

= −
∑

o∈	n−1

pn−1(o)
∑

δ∈	

Pr(δ|o) log Pr(δ|o)

−
∑

o∈	n−1

pn−1(o) log pn−1(o)
∑

δ∈	

Pr(δ|o)

= −
∑

o∈	n−1

pn−1(o)
∑

δ∈	

Pr(δ|o) log Pr(δ|o)

−
∑

o∈	n−1

pn−1(o) log pn−1(o)

= −
∑

o∈	n−1

pn−1(o)
∑

δ∈	

Pr(δ|o) log Pr(δ|o) + H (pn−1).

Thus, Lemma 1 is established.
Proof of Theorem 1: According to the definition of mutual

information, we have

I (�n, pn) = H (pn) − H (pn|�n).

The conditional entropy H (pn|�n) can be expressed as

H (pn|�n) = −λs
n

∑

o∈	n

Pr(o|�n = s) log Pr(o|�n = s)

−λc
n

∑

o∈	n

Pr(o|�n = c) log Pr(o|�n = c)

= −λs
n

∑

o∈	n

ps
n(o) log ps

n(o)

− λc
n

∑

o∈	n

pc
n(o) log ps

n(o)

= λs
n H

(
ps

n

) + λc
n H

(
pc

n

)

where we utilize the fact that Pr(o|�n = s) = ps
n(o) and

Pr(o|�n = c) = pc
n(o). Substituting H (pn|�n) into the

definition of mutual information I (�n, pn) and considering
the relationship in (5), we have

I (�n , pn) = H (pn) − λs
n H

(
ps

n

) − λc
n H

(
pc

n

) = D
(

ps
n, pc

n

)
.

Thus, the proof is completed.
Proof of Lemma 2: By expanding (6), we have

D(ps|o, pc|o) = H (λs|o ps|o + λc|o pc|o)

+
∑

δ∈	

λs|o ps|o(δ) log
λs|o ps|o(δ)

λs|o

+
∑

δ∈	

λc|o pc|o(δ) log
λc|o pc|o(δ)

λc|o
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= H (λs|o ps|o + λc|o pc|o)
+

∑

δ∈	

λs|o ps|o(δ) log λs|o ps|o(δ)

+
∑

δ∈	

λc|o pc|o(δ) log λc|o pc|o(δ)

−λs|o log λs|o
(

∑

δ∈	

ps|o(δ)
)

−λc|o log λc|o
(

∑

δ∈	

pc|o(δ)
)

.

Since
(∑

δ∈	 ps|o(δ)
) = (∑

δ∈	 pc|o(δ)
) = 1, we have

D(ps|o, pc|o) = H (λs|o ps|o + λc|o pc|o)

+
∑

δ∈	

λs|o ps|o(δ) log λs|o ps|o(δ)

+
∑

δ∈	

λc|o pc|o(δ) log λc|o pc|o(δ)

−λs|o log λs|o − λc|o log λc|o

= H (λs|o ps|o + λc|o pc|o) + H ({λs|o, λc|o})
−H (λs|o ps|o) − H (λc|o pc|o).

Thus, Lemma 2 is established.
Proof of Lemma 3: We first define some notations, for

simplicity of presentation, as follows:
p̃s

n(o) := Pr(s ∈ K ∩ M−1(o)) = λs
n ps

n(o)

p̃c
n(o) := Pr(s ∈ (L − K ) ∩ M−1(o)) = λc

n pc
n(o)

p̃s(δ|o) := Pr(s ∈ K ∩ M−1(oδ))

Pr(o)
= λs|o ps|o(δ)

p̃c(δ|o) := Pr(s ∈ (L − K ) ∩ M−1(oδ))

Pr(o)
= λc|o pc|o(δ)

p(δ|o) := λs|o ps|o(δ) + λc|o pc|o(δ) = Pr(δ|o).

We start by deriving a recursive computation for H (ps
n) as

defined in (3) as follows:
H

(
ps

n

) = −
∑

o∈	n

ps
n(o) log ps

n(o)

= − 1

λs
n

∑

o∈	n

p̃s
n(o) log

p̃s
n(o)

λs
n

= − 1

λs
n

∑

o∈	n−1

∑

δ∈	

p̃s
n(oδ) log

p̃s
n(oδ)

λs
n

= − 1

λs
n

∑

o∈	n−1

∑

δ∈	

pn−1(o) p̃s(δ|o) log
pn−1(o) p̃s(δ|o)

λs
n

= − 1

λs
n

∑

o∈	n−1

pn−1(o)
∑

δ∈	

p̃s(δ|o)

×[
log pn−1(o) + log(ps|o(δ)λs|o) − log λs

n

]

= − 1

λs
n

∑

o∈	n−1

pn−1(o) log pn−1(o)
∑

δ∈	

p̃s(δ|o)

− 1

λs
n

∑

o∈	n−1

pn−1(o)
∑

δ∈	

p̃s(δ|o) log(ps|o(δ)λs|o)

+ 1

λs
n

∑

o∈	n−1

pn−1(o)
∑

δ∈	

p̃s(δ|o) logλs
n

= − 1

λs
n

∑

o∈	n−1

pn−1(o) log pn−1(o)λs|o + log λs
n

+ 1

λs
n

∑

o∈	n−1

pn−1(o)H (λs|o ps|o).

Similarly, H (pc
n) as defined in (4) can be recursively charac-

terized as

H
(

pc
n

) = − 1

λc
n

∑

o∈	n−1

pn−1(o) log pn−1(o)λc|o + log λc
n

+ 1

λc
n

∑

o∈	n−1

pn−1(o)H (λc|o pc|o).

Expanding (5) using the above recursion and Lemma 1 yields
the following:
D

(
ps

n, pc
n

)

= H (pn) − λs
n H

(
ps

n

) − λc
n H

(
pc

n

)

= H (pn) − λs
n log λs

n − λc
n log λc

n

+
∑

o∈	n−1

pn−1(o) log pn−1(o)λs|o

−
∑

o∈	n−1

pn−1(o)H (λs|o ps|o)

+
∑

o∈	n−1

pn−1(o) log pn−1(o)λc|o

−
∑

o∈	n−1

pn−1(o)H (λc|o pc|o)

= H
({

λs
n, λc

n

}) +
∑

o∈	n−1

pn−1(o)

×
[

−
∑

δ∈	

p(δ|o) log p(δ|o) − H (λs|o ps|o) − H (λc|o pc|o)
]

= H
({

λs
n, λc

n

}) +
∑

o∈	n−1

pn−1(o)

×[H (λs|s ps|s + λc|o pc|o) − H (λs|o ps|o) − H (λc|o pc|o)].
Finally, by substituting (7) in Lemma 2, we have

D
(

ps
n, pc

n

) = H
({

λs
n, λc

n

}) +
∑

o∈	n−1

pn−1(o)

× [−H ({λs|o, λc|o}) + D(ps|o, pc|o)].
Thus, Lemma 3 is established.
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