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Active Battery Cell Balancing by Real-Time Model
Predictive Control for Extending Electric
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Abstract— Electrical vehicles (EV) have been considered to be
an effective way to combat global climate change. To extend
the driving range of EV, this paper studies the active battery
cell balancing control based on linear parametric varying model
predictive control (MPC). Specifically, an equivalent circuit model
is used to predict cell terminal voltage, and three different
MPC-based battery cell balancing control strategies are proposed
to dynamically transport electricity from cell to cell to reduce
the imbalance. In particular, for the first control strategy, MPC
is set up to be a tracking controller with the primary control
objective of forcing all cells’ terminal voltage to follow the
same trajectory generated by a nominal cell model; for the
second control strategy, MPC maximizes the lowest cell voltage,
so that the battery operating range can be extended; for the
third and last strategy, MPC minimizes the maximum variation
among cell terminal voltages. To assess the effectiveness of the
proposed battery cell balancing control strategies, simulations
are performed on all three MPC formulations, using both
steady-state and transient conditions. Numerical results show
that the proposed battery cell balancing control can achieve a
driving range extension of 9% for dynamic driving cycle and
7% for steady-state condition, based on our simulation setup.
Compared to the existing work, our approaches do not require
the over-restrictive assumption that the trip duration is known
in advance, while at the same time achieve similar driving
range extension. Furthermore, it is also shown that different
driving condition favors different cell balancing control strategy,
indicating a need for a hybrid approach. Finally, real time
implementability is demonstrated via throughput analysis.
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Note to Practitioners—Improving the efficiency of electric
vehicles is of paramount importance to combat the global climate
challenge. This paper contributes by proposing effective cell
level balancing control methodologies to extend the driving
range of electric vehicles to improve their energy efficiency and
public acceptance. The control methods, which are based on
model predictive control, are analytically derived with details for
embedded implementation. Simulation results demonstrate the
effectiveness of the proposed methodologies, with future work to
investigate the applicability of nonlinear model predictive control
with large number of cells.

Index Terms— Active battery cell balancing, electric vehicles,
equivalent circuit model, model predictive control, quadratic
programming.

I. INTRODUCTION

ELECTRIC vehicles are projected to make up 31% of the
global fleet by 2050 [1] and have been considered to be

a promising way to combat the global climate challenge by
reducing over 3,000 kg carbon dioxide emission per vehicle
per year [2]. Among many other choices, Lithium-Ion battery
cells are dominating EV applications thanks to their high
power and energy density [3], [4]. However, battery cells
can suffer state-of-charge (SOC) and voltage imbalance, due
to manufacturing and/or operation variations [5], [6]. Since
the weakest cell determines the usable capacity of the whole
battery pack, such imbalance would reduce EV driving range
over single charge as well as life cycle, and result in safety
issues such as thermal runaway [7], [8], [9], [10]. In order
to increase EV driving range, battery cell balancing control
has been proposed to reduce the variations among battery
cells [11], [12], [13], [14], by using a balancing circuit [15],
[16], [17], [18] such as flyback DC/DC converter [10], [15]
and half-bridge converter [16], especially under conditions
of higher power demand and high variation [17]. Battery
cell balancing and can be either dissipative or nondissipative,
where dissipative method removes charges from higher cells
with higher SOC without reusing them [19] and nondissi-
pative method transports electricity from cells to cells [10],
[18]. Nondissipative battery cell balancing control can achieve
greater energy saving benefit and higher efficiency, but at the
same time requires sophisticated battery management systems
to monitor and control the cell SOC/voltage. In this paper,
we focus on nondissipative cell balancing control, which is
also called active cell balancing and has less energy waste.
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The goal of active cell balancing is to push all cell’s
voltages away from a minimum bound, below which a cell
would fail and lead to the failure of the entire battery pack.
Several control techniques have been studied in the literature
to achieve such goal [20], [21], [22], [23], [24], [25], such as
simple feedback control [20], [21], rule-based control [22],
[23], heuristic control [24], [25]. For example, [20] and
[21] investigated simple feedback control, while rule-based
control methods are utilized in [22] and [23]. In particular,
reference [20] studied cell balancing problem and a simple
feedback controller was utilized to calculate the balancing cur-
rent in the context of renewable energy integration in the power
grid, where heterogeneous battery systems with different types,
ages, and rated capacity, were interconnected. The authors
of [23] proposed a rule based balancing control algorithm
for groupwise balancing and demonstrate the robustness and
performance through realistic driving profile. In [22], a rule-
based control strategy was adopted for cell balancing, where
both voltage imbalance and SOC imbalance were considered
in the criterion to trigger control action. Authors in [25]
designed a power converter circuit that allows many to many
balancing, and developed a fast simulation model for analysis.
Heuristic strategy was developed and shows promising results
in [24] and [25].

Though these aforementioned works [20], [21], [22], [23],
[24], [25] demonstrate promising results, they rely on simple
control method that do not fully utilize all electricity stored
in battery cells. Towards this regard, model predictive control
(MPC), a real-time receding horizon control technique [26],
[27], [28], [29], [30], [31], [32], has been demonstrated to have
great potential for active battery cell balancing control [8],
[17], [18], [33], [34], [35], [36], [37], [38], [39]. For example,
two linear MPC strategies were studied in [18], one optimizing
charging and balancing simultaneously while the other using
separate controls for charging and balancing. Software-in-the-
loop results and experiment validation were shown in [18] as
well. Different balancing objectives, e.g., SOC, voltage, and
charges, were considered in [8], which also adopted linear
MPC method. Note that in [8], the MPC aims at tracking a
reference trajectory generated by assuming the trip duration
was known in advance. Though such an assumption was very
restrictive, a 5% range increase was shown through simulation.
The authors of [8] also demonstrated the robustness against
the unknown driving cycle. To demonstrate the benefit of
driving range extension, the authors of [7] cast the balancing
control problem as a reachability analysis problem, which
is computationally tractable for only a short driving cycle.
References [36], [37], and [38] focused on nonlinear MPC.
In particular, [36] considered both minimizing SOC variation
and reducing energy waste in the nonlinear MPC formulation,
with simulation results demonstrated on a two-cell battery.
To reduce MPC computation for embedded implementation,
reference [17] convexified of the control problem for the
ease of computation, with significant problem simplification.
Similarly, [33] utilized fast MPC, where the optimal con-
trol problem was reformulated into a linear programming
problem, suitable for an embedded environment. Finally, dis-
tributed control has also been studied in literature for battery

control [40], [41], [42], [43], [44]. Specifically, distributed
MPC control strategies for active battery cell balancing was
studied in [42], where cells are grouped into submodules and
then modules. The higher level control optimizes modules
balancing current by assuming a certain parameterization on
the intramodule currents, with the lower level control opti-
mizing the balancing currents within each module. Distributed
control strategy with module topology constraints were applied
for SOC balancing between the battery modules of a recon-
figurable battery energy storage system in [40]. Though the
proposed work in [40] was applied to generic battery balancing
problem, the approach can be extended to EV applications.

However, there are several limitations with the aforemen-
tioned MPC-based active battery cell balancing. For example,
only tracking controller was considered in [8], [36], and [42],
which indirectly achieves the goal of pushing all cell voltages
away from the minimum bound. Moreover, the assumption
in [8] that the trip duration is known in advance for reference
generation, can be very restrictive given the current technology
and make the developed control algorithm not practical for
short-term deployment. Furthermore, most of the work either
utilize linear prediction model [8], [17], [18] that can result
in over simplification or nonlinear model [36], [37], [38]
that cause high computation cost, and a better approach that
intermingle these two, e.g., linear parametric varying (LPV)
prediction model, is needed.

To address these limitations, In this paper, we study LPV
MPC for active battery cell balancing problem for EV driving
range extension, and investigate three different balancing con-
trol strategies. For the first control strategy, MPC is set up to
be a tracking controller with the primary control objective of
forcing all cells’ terminal voltage to follow the same short-term
trajectory generated by a nominal cell model. This setup is
similar to the MPC formulation of [8], without assuming that
the trip duration is known in advance. For the second control
strategy, MPC maximizes the lowest cell voltage, so that the
battery operating range can be extended. Finally, for the third
strategy, MPC minimizes the maximum variation among cell
terminal voltages. Note that the eventual control objective
here is to push all cell’s voltages away from the minimum
bound, below which a cell would fail and lead to the failure
of the entire battery pack. The three proposed MPC control
strategies achieve this goal by using different cost functions,
whose effectiveness are assessed through simulations with
both steady-state and transient conditions. Numerical results
show that the proposed battery cell balancing control can
achieve a driving range extension of 9% for dynamic driving
cycle and 7% for steady-state condition. Furthermore, it is
also shown that different driving condition favors different
cell balancing control strategy, indicating a need for a hybrid
approach. Finally, real time implementability is demonstrated
via throughput analysis.

Comparing to the existing work, our contribution are sum-
marized below.

1) Our approaches do not require the over-restrictive
assumption that the trip duration is known in advance,
while at the same time achieve similar driving range
extension.
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Fig. 1. Structure of series connected battery cells with balancing current.

2) The proposed MPC strategies allow direct maximization
of the lowest cell voltage, instead of indirectly achieving
this goal through tracking controller.

3) The proposed MPC formulations can be cast into
linearly constrained quadratic programming problem,
which has been proven to be suitable for real-time
implementation.

4) Extensive simulations using both steady-state and tran-
sident driving profiles are performed to evaluate the
effectiveness of the proposed active battery balancing
control strategies and demonstrate the EV driving range
extension.

A preliminary version of this work [45] has been pre-
sented in 2021 IEEE Conference on Decision and Control.
This submitted manuscript extends the conference version
by completing literature review, including details on control
design, correcting several oversights, improving the simulation
environment, and supplementing with additional results and
analysis. All results in the submitted manuscript are updated.
The rest of this paper is organized as follows. Section II
presents the equivalent circuit model for each cell and the
whole battery pack, while Section III formulates the optimal
control problems and three MPC setups. Section IV presents
numerical results, and the paper is concluded in Section V.

II. ACTIVE CELL BALANCING

The series connected battery considered here is shown in
Fig. 1, where N cells are stacked to provide the requested
current i to the load, e.g. an EV in this case. Note that
we only consider series connection here for the simplicity
of presentation. The proposed control methodologies and cor-
responding analysis can be straightforwardly extended to the
case with parallel connections. Note that the request of current
i can be made, for example, from higher level controller.
Note that different power converters can result in different
balancing performances. In this work, we ignore the dynamic
of the power converter and proposed a generic framework for
MPC-based active cell balancing control. The development
of MPC that explicitly incorporate the dynamic of power
converter will remain a future work direction.

Recall that EV battery pack usually consists of hundreds of
cells, and the SOC and voltage of each cell can be significantly
different from each other due to manufacturing variation
and/or different aging conditions. When the voltage of the
weakest cell drops below a certain minimum bound, denoted

as vmin, the whole battery pack stops operation due to safety
reason. Therefore, the control objective of active battery cell
balancing is then to dynamically relocate electric charges from
cell to cell, through a power converter circuit, so that all the
voltages of all cells stay away from the minimum bound vmin.
In other words, the goal is to find the balancing current un

k for
each cell n = 1, . . . , N and for each time step k = 0, 1, . . . ,
so that the cell voltage vn

k satisfies

vmin ≤ vn
k . n = 1, . . . , N & ∀k, (1)

for any driving cycle in the form of power profile Pk or current
profile ik . Note that the problem formulation considered here is
similar to the one investigated in [8]. However, as will be seen
shortly, we propose completely solution approaches compared
to [8].

Note that uk for all time steps k cannot be determined at the
same time, since in practice we do not have the entire driving
cycle Pk . Furthermore, solving uk for all k together requires
significant computational power that makes it impractical
for real-time application. Fortunately, this problem can be
reformulated into receding horizon control problem. In par-
ticular, we adopt model predictive control (MPC) method,
which uses a relatively short horizon p to predict the future
evolution and optimizes a certain objective function over this
prediction horizon. In other words, we usually have p ≪ N .
At each time step, a control sequence over the entire prediction
horizon is obtained, but only the first element is implemented.
At next time step, the whole process repeats. Denoting uk =[
u1

k, u2
k, . . . , uN

k

]T , the optimal control problem (OCP) for
MPC to solve at time k is given by

min
uk

J (uk) (2a)

s.t. Linearized battery system dynamics (2b)
umin ≤ un

k ≤ umax, n = 1, . . . , N (2c)
vmin ≤ yn

k+ j , j = 1, . . . , p, n = 1, . . . , N (2d)

0 =

N∑
n=1

un
k , (2e)

where J (uk) is a cost function to be formally defined in
Section IV. See Section III for more details regarding the
linearized battery model development. The last constraint
(2e) indicates that the balancing circuit is only responsible
to transport charge from one cell to another, and cannot
provide or consume any additional charge (hence different
from dissipative balancing strategy where the summation of
all balancing current can be positive).

Remark 1: Note that in OCP (2), the MPC is to optimize
one balancing current un

k for each cell, which is then kept
unchanged over the entire prediction horizon. In other words,
we do not calculate un

k+ j for j = 0, . . . , p −1, and instead set
un

k+ j = un
k throughout the prediction horizon. This strategy

is adopted from [8] as the balancing currents are almost
constant over the prediction horizon. Such an arrangement
can significantly reduce the size of the OCP for real-time
implementation.

Remark 2: Note that though we consider constant minimum
bound vmin in (2d) for our numerical study, the OCP (2) can
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Fig. 2. Equivalent circuit model of a battery cell.

be straightforwardly extended to include the case when the
minimum allowable voltage is changing dynamically. In other
words, the value of vmin can be changed dynamically to
accommodate transient condition. In this case, a new value
for vmin,k needs to be computed and received by MPC for
each sampling time k.

III. BATTERY MODEL

The OCP (2) requires a linearized battery model to predict
the system evolution over the prediction horizon. This section
briefly reviews the nonlinear battery model, and later linearize
it for MPC.

A. Equivalent Circuit Model

The dynamics of each battery cell can be modeled using
an equivalent circuit model (ECM), which provides a good
balance between accuracy and computational cost. Note that
ECM has been widely used in the literature to study the
dynamic behavior of Li-Ion battery [46], [47], [48], [49], [50],
[51], [52]. Specifically, second order ECM has been used in
literature for cell balancing control due to the simplicity to
model and ease of computation. See for example [8] and
[7]. In this section, we briefly describe second order ECM as
follows. For more details, please refer to the aforementioned
references and the references therein.

The ECM used to model a battery cell is shown in Fig. 2,
where the superscript n denotes the nth cell, V n

oc is the open
circuit voltage, vn is the terminal voltage, Rn

o , Rn
p, and Cn

p are
resistance and capacitor of the ECM, respectively, and in is
the battery pack current. We use the convention that positive
value of in indicates discharging from the battery cell and
negative indicates charging to the battery cell. Denote sn as the
remaining SOC of cell n. The cell dynamics are then specified
by

ṡn = −ηn in

3600Cn
(3a)

V̇ n
p = −

V n
p

Rn
pCn

p
+

in

Cn
p

(3b)

vn
= V n

oc − V n
p − in Rn

o , (3c)

where ηn is the coulombic efficiency of cell n, Cn is the cell
Amp-Hour capacity, and V n

p is the relaxation voltage over
the RC component. Note that V n

oc, Rn
o , Rn

p, and Cn
p are all

Fig. 3. Parameters for a nominal cell, adopted from [49].

Fig. 4. Open circuit voltage versus state of charge.

dependent on sn , making (3) a nonlinear model, i.e., nonlinear
with respect to states. Fig. 3 depicts an example of such
dependency for Rn

o , Rn
p, and Cn

p for a nominal cell, as adopted
from [49]. Furthermore, V n

oc = −1.9123(sn)2
+ 3.6775(sn) +

2.4348. (See Fig. 4.) Note that due to manufacturing variation
and/or different aging conditions, the dependency of V n

oc, Rn
o ,

Rn
p, and Cn

p on sn can be different for each cell n, resulting
different characteristics for each cell.

Denote xn
:= [sn, Vp]

T where ·
T denotes matrix/vector

transpose, then one can write (3) as

ẋn = f n(xn, in), vn
= gn(xn, in), (4a)

where functions f n(x, in) and gn(x, in) are defined by (3).
Considering the battery structure in Fig. 1, the current in drawn
through cell n equals the pack current i plus balancing current
un . Therefore, we can rewrite (4) as

ẋn = f n(xn, i + un), vn
= gn(xn, i + un). (5a)
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Define x = [x1, x2, . . . , x N
]
T as the state vector for the entire

battery pack and vb as the terminal voltage of the battery pack,
then we have

ẋ =


f n(x1, i + u1)

f n(x2, i + u2)
...

f n(x N , i + uN )

 (6a)

vb =

N∑
n=1

vn
=

N∑
n=1

gn(xn, i + un). (6b)

which will be used as the virtual plant for simulation study as
well as the prediction model for MPC after online linearization
and discretization. See Section III-B.

B. Model Linearization and Discretization

To derive a linearized discrete-time prediction model for
MPC, denote for cell n its the current state estimate and output
as x̂n

k = [ŝn
k ; V̂ n

p,k] and v̂n
k , where k denotes the current time

step. Furthermore, denote ûn
k and î k as the nominal balancing

current and pack current, respectively, for time k. In this study,
we simply choose the balancing current applied at previous
control loop as ûn

k and the requested pack current at time k
as î k . Further denote δxn

k = [δsn
k ; δV n

p,k], δvn
k , δik and δun

k as
the deviations from their nominal values. Then, Equ. (5) can
be linearized as follows.

˙δsn
k = −ηn î k + ûn

k

Cn
− ηn 1

Cn
δik − ηn 1

Cn(ŝn
k )

δun
k

˙δV n
p,k = −

V̂ n
p,k

Rn
p(ŝ

n
k )Cn

p(ŝ
n
k )

+
î k + ûn

k

Cn
p(ŝ

n
k )

+
V̂ n

p,k(
Rn

p(ŝ
n
k )Cn

p(ŝ
n
k )

)2

∂
(
Rn

p(s
n)Cn

p(s
n)

)
∂sn

∣∣∣∣∣
sn=ŝn

k

δsn
k

−
î k + ûn

k(
Cn

p(ŝ
n
k )

)2

∂Cn
p(s

n)

∂sn

∣∣∣∣
sn=ŝn

k

δsn
k

−
1

Rn
p(ŝ

n
k )Cn

p(ŝ
n
k )

δV n
p,k +

1
Cn

p(ŝ
n
k )

δik +
1

Cn
p(ŝ

n
k )

δun
k

vn
k =V n

oc(ŝ
n
k ) − V̂ n

p,k − î k Rn
o (ŝn

k ) +
∂V n

oc(s
n)

∂sn

∣∣∣∣
sn=ŝn

k

δsn
k

− (î k + ûn
k )

∂ Rn
o (sn)

∂sn

∣∣∣∣
sn=ŝn

k

δsn
k

− δV n
p,k − Rn

o (ŝn
k )δik − Rn

o (ŝn
k )δun

k .

Putting everything together, we have

˙δxn
k = f n(x̂n

k , î k + ûn
k ) + Ac

kδxn
k + Bc

k δun
k + Bc

d,kδik (7a)

vn
k = gn(x̂n

k , î k + ûn
k ) + Cc

kδxn
k + Dc

kun
k + Dc

d,kδik, (7b)

where Ac
k is a 2 × 2 matrix, Bc

k and Bc
d,k are 2 × 1 matrices,

Cc
k is a 2 × 2 matrix, Dc

k and Dc
d,k are scalar, with elements

specified as follows.

Ac
k(1, 1) = 0, Ac

k(1, 2) = 0

Ac
k(2, 1) =

V̂ n
p,k(

Rn
p(ŝ

n
k )Cn

p(ŝ
n
k )

)2

∂
(
Rn

p(s
n)Cn

p(s
n)

)
∂sn

∣∣∣∣∣
sn=ŝn

k

−
î k + ûn

k(
Cn

p(ŝ
n
k )

)2

∂Cn
p(s

n)

∂sn

∣∣∣∣
sn=ŝn

k

Ac
k(2, 2) = −

1
Rn

p(ŝ
n
k )Cn

p(ŝ
n
k )

Bc
k = Bc

d,k =

[
−ηn 1

Cn(ŝn
k )

1
Cn

p(ŝ
n
k )

]T

Cc
k (1, 1) =

∂V n
oc(s

n)

∂sn

∣∣∣∣
sn=ŝn

k

− (î k + ûn
k )

∂ Rn
o (sn)

∂sn

∣∣∣∣
sn=ŝn

k

Cc
k (1, 2) = −1, Dc

k = −Rn
o (ŝn

k ), Dc
d,k = Dc

k .

The linearized model (7) can be further discretized using
Euler’s forward integration as follows, where Ts denotes the
sampling.

δxn
k+1 = f̂ n

k + Akδxn
k + Bkδun

k + Bd,kδik (8a)

vn
k = ĝn

k + Ckδxn
k + Dkun

k + Dd,kδik, (8b)

where

f̂ n
k = f n(x̂n

k , î k + ûn
k )Ts (9a)

Ak = I + Ac
k Ts (9b)

Bk = Bc
k Ts (9c)

Bd,k = Bk (9d)

ĝn
k = gn(x̂n

k , î k + ûn
k ) (9e)

Ck = Cc
k (9f)

Dk = Dc
k (9g)

Dd,k = Dk (9h)

Remark 3: Note that this linearized model is parametric
varying, since at each time step k, a new set of matrices are
obtained based on the current operating conditions x̂n

k , v̂n
k , ûn

k ,
and î k . Furthermore, (8) is scheduled according to SOC s,
which is often not measured. However, several techniques in
literature that can effectively estimate s according to terminal
voltage measurement. See for example [23], [36], [40], [42],
[49], and [53].

Remark 4: Note also that the since the linearized model
above requires a nominal operating battery pack current î k ,
which can be time varying over the prediction horizon of
the OCP (2). Therefore, the active battery balancing control
based on OCP (2) would require a short-term prediction of
the load profile over the prediction horizon, i.e., ik+ j for
j = 1, . . . , p. Such preview can often be available from high
level controller such as vehicle speed control unit. However,
when such preview is not available, the value at time k can
be used throughout the whole horizon, i.e., ik+ j = ik for
j = 1, . . . , p.

IV. CONTROL STRATEGIES

In this section, we present three different control strategies
to perform the active battery cell balancing to extend EV
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driving range. Recall that the goal of active cell balancing
is to push all cell’s voltages away from a minimum bound,
below which a cell would fail and lead to the failure of the
entire battery pack. To achieve this goal, we propose and
evaluate three MPC-based control strategies to dynamically
transport electricity from cell to cell to reduce the imbalance.
For the first control strategy, MPC is set up to be a tracking
controller with the primary control objective of forcing all
cells’ terminal voltage to follow the same short-term trajectory
generated by a nominal cell model. This setup is similar to
the MPC formulation of [8], without assuming that the trip
duration is known in advance. For the second control strategy,
MPC maximizes the lowest cell voltage, so that the battery
operating range can be extended. Finally, for the third strategy,
MPC minimizes the maximum variation among cell terminal
voltages.

A. Tracking-Based Balancing Control

In the first formulation, we use a nominal cell model to
integrate over the prediction horizon based on the requested
total current ik (or ik+ j if preview is available), and the
resulting voltage trajectory is used as reference that all cells
need to track. More specifically, the dynamics of the nominal
cell are the same as those of (3) but with nominal parameters,
as shown in Fig. 3. Then we integrate the nominal cell model
using the initial condition x0

k =
1
N

∑N
n=1 xn

k to obtain the refer-
ence sequences x0

k+1, x0
k+2, . . . , x0

k+p and v0
k+1, v

0
k+2, . . . , v

0
k+p.

Further define the reference voltage as

vr
k+ j =

[
v0

k+ j , v0
k+ j , . . . , v0

k+ j

]T︸ ︷︷ ︸
N blocks

Then the OCP for tracking-based balancing control can be
represented as

min
uk

p∑
j=1

(
vk+ j − vr

k+ j

)T (
vk+ j − vr

k+ j

)
+ uT

k Ruk, (10a)

s.t. System dynamics (8) (10b)
umin ≤ un

k ≤ umax, n = 1, . . . , N (10c)
vmin ≤ yn

k+ j , j = 1, . . . , p, n = 1, . . . , N (10d)

0 =

N∑
n=1

un
k , (10e)

where the cost function (10a) is denoted as Jt with R is a
positive definitive weighting matrix.

Remark 5: Note that the first term of (10a) is to track all
cell voltage to follow the reference trajectory vr

k+ j , while
the second term penalizes large balancing currents to reduce
energy waste, which results from resistant heating. Note also
that we only impose weighting matrix in the second term. This
is because all the cell terminal voltages have the same scale,
and the balance between voltage tracking and control efforts
can be achieved through the R matrix alone.

Remark 6: In this work, the initial condition for integrating
the nominal cell is given by averaging all cells’ state vectors.
Another approach to obtain the initial condition is to utilize
an observer to estimate the state of the nominal cell based

on measurement from battery pack. This however remains as
future work.

Remark 7: MPC strategy based on OCP (10) is similar
to the MPC formulation of [8]. However, the way that the
reference trajectory is generated in our work does not assume
that the trip duration is known in advance, which can be a
restrictive assumption in reality.

B. Max-Min Balancing Control

The control strategy of (10) is intuitive to understand.
However, forcing all cells to follow the same reference trajec-
tory can sometimes be too aggressive, especially considering
that the primary goal of balancing control is to ensure the
lowest cell voltage stay away from the minimum bound.
Therefore, we propose the second formulation which, instead
of tracking a nominal trajectory, directly maximizes the lowest
cell voltage. In other words, the OCP is defined as follows.

min
uk

−

p∑
j=1

min
n

vn
k+ j + uT

k Ruk, (11a)

s.t. System dynamics (8) (11b)
umin ≤ un

k ≤ umax, n = 1, . . . , N (11c)
vmin ≤ yn

k+ j , j = 1, . . . , p, n = 1, . . . , N (11d)

0 =

N∑
n=1

un
k , (11e)

where the cost function (11a) is denoted as Jm with R is a
positive definitive weighting matrix. Note that the OCP (11)
aims to maximize the lowest cell voltage for each time step
over the prediction horizon with minimum balancing current.

To reformulate (11) for embedded environment, the trick
discussed in [54] is adopted as follows. Define p slack vari-
ables as ϵ =

[
ϵ1, ϵ2, . . . , ϵp

]T . Then the objective function
(11a) can be rewritten as,

Jm(uk, ϵ) = −

p∑
j=1

ϵ j + uT
k Ruk,

with additional constraint

ϵ j ≤ vn
k+ j , j = 1, . . . , p, n = 1, . . . , N .

Please refer to [54] for more details. In other words, the
max-min balancing control solves the following OCP at every
time step.

min
uk ,,ϵ

−

p∑
j=1

ϵ j + uT
k Ruk, (12a)

s.t. System dynamics (8) (12b)
ϵ j ≤ vn

k+ j , j = 1, . . . , p, n = 1, . . . , N (12c)

umin ≤ un
k ≤ umax, n = 1, . . . , N (12d)

vmin ≤ yn
k+ j , j = 1, . . . , p, n = 1, . . . , N (12e)

0 =

N∑
n=1

un
k , (12f)
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C. Minimum Bound Balancing Control

Finally, in the third (and last) control strategy, instead of
maximizing the lowest cell voltage, MPC is set up to minimize
the difference between the highest and lowest cell voltage. The
primary goal of this approach is to encourage MPC to directly
move electric charges from cell with highest voltage. More
specifically, the OCP in this case is defined as follows.

min
uk

p∑
j=1

(
max

n
vn

k+ j − min
n

vn
k+ j

)
+ uT

k Ruk, (13a)

s.t. System dynamics (8) (13b)
umin ≤ un

k ≤ umax, n = 1, . . . , N (13c)
vmin ≤ yn

k+ j , j = 1, . . . , p, n = 1, . . . , N (13d)

0 =

N∑
n=1

un
k , (13e)

where the cost function (13a) is denoted as J1 and R is a
positive definite weighting matrix. Note that the OCP (13)
aims to minimize the cell voltage variation by reducing the
bound of the difference of the cell voltages.

To reformulate (13) for embedded environment, define 2p
slack variables as, with a slight abuse of notation, ϵ =[
ϵ1, ϵ2, . . . , ϵp, ϵp+1, . . . , ϵ2p

]T . Then the objective function
(13a) can be rewritten as,

J1,σ (uk, ϵ) =

p∑
j=1

(
max

n
σ n

k+ j − min
n

σ n
k+ j

)
+ uT

k Ruk

=

p∑
j=1

max
n

σ n
k+ j −

p∑
n=1

min
n

σ n
k+ j + uT

k Ruk

=

p∑
j=1

ϵp+ j −

p∑
j=1

ϵ j + uT
k Ruk,

with additional constraint

ϵ j ≤ σ n
k+ j , j = 1, . . . , p, n = 1, . . . , N

ϵp+ j ≥ σ n
k+ j , j = 1, . . . , p, n = 1, . . . , N .

In other words, the minimum bound balancing control
solves the following OCP at every time step.

min
uk ,ϵ

p∑
j=1

ϵp+ j −

p∑
j=1

ϵ j + uT
k Ruk (14a)

s.t. System dynamics (8) (14b)
ϵ j ≤ σ n

k+ j , j = 1, . . . , p, n = 1, . . . , N (14c)

ϵp+ j ≥ σ n
k+ j , j = 1, . . . , p, n = 1, . . . , N , (14d)

umin ≤ un
k ≤ umax, n = 1, . . . , N (14e)

vmin ≤ yn
k+ j , j = 1, . . . , p, n = 1, . . . , N (14f)

0 =

N∑
n=1

un
k , (14g)

Remark 8: Please note that different from [54], constraints
in (12c), (14c), and (14d) are only one sided, e.g., ϵ j ≤ σ n

k+ j
instead of ϵ j ≤ ±σ n

k+ j . This is because vn is positive by design

and hence the complexity of the resulting OCP (12) and (14)
are slightly reduced.

Remark 9: Please note that all three MPC formulations,
namely (10), (12) and (14) can all be cast into quadratic
programming (QP) problem, which can be solved in real
time by embedded devices when the problem size is manage-
able [55], [56], [57]. Assuming sparse QP formulation, Jt then
has (2p + 1)N optimization variables, Jm has (2p + 1)N + p
optimization variables with additional pN constraints, while
J1 has (2p +1)N +2p optimization variables with additional
2pN constraints. Therefore, Jm and J1 have larger problem
sizes and require larger amount of computation to solve, while
at the same time, provide certain benefits in some conditions,
as will be seen in the next section.

Remark 10: Note that the output constraints (10d), (12e),
and (14f) can be infeasible when the cell voltage is approach-
ing the minimum bound vmin. In other words, when the lowest
cell voltage is close to vmin, no matter what balancing current
uk MPC chooses, the constraints (10d), (12e), and (14f) are
going to be violated over the prediction horizon. However,
in this case, we still want MPC to compute a control input
so that such constraints violation are minimized. To do that,
we introduce an additional slack variable ϵv , and add to
each cost function an additional term Wϵ2

y where W ≫ R.
Furthermore, (10d), (12e), and (14f) are modified as follows,

vmin ≤ vn
k+ j + ϵy, j = 1, . . . , p, n = 1, . . . , N . (15)

In other words, MPC will initially solve the original OCP
(10), (12), (14), and when the OCP is found to be infeasible
(which usually occurs towards the end of driving cycle), MPC
will then modify the cost function and replace (10d), (12e),
or (14f) with (15) as discussed here. Note that this is called
“soft constraint” in literature, and has been applied to avoid
infeasible OCP [55], [56].

V. NUMERICAL RESULTS

In this section, several simulations are performed to demon-
strate the effectiveness of the proposed MPC-based active
battery cell balancing control strategies. Specifically, the
linearized parametric model (8) will be used by MPC to
form the OCPs, and the original nonlinear model (3) with
SOC-dependent parameters and additive process noise will
be used as simulation plant to mimic model mismatch. Fur-
thermore, two scenarios are considered. In the first scenario,
a constant requested current ik is considered, which is selected
so that the simulation can be conducted in a reasonable amount
of time. In the second scenario, the vehicle follows a realistic
driving cycle, i.e., FTP cycle, where the vehicle is controlled
by an MPC speed tracking controller that requested a battery
power Pk [58]. At each time k, Pk is then converted to
the requested current by solving the quadratic equation as
documented in [59]. Note that in this case, the preview of
ik is assumed to be unavailable, i.e., δik+ j = 0 throughout the
entire prediction horizon. Due to the recent advancement of
connected and automated vehicle, the preview of Pk may be
estimated with acceptable accuracy. However, such availability
assumption can be too restrictive for the present study.
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TABLE I
VARIATION OF ECM PARAMETERS

For each of these two scenarios, the three MPC strategies
are simulated. Recall that the first MPC (denoted as Jt)
tracks all cell voltages to follow the same reference trajectory
generated by a nominal cell. The second MPC (denoted as
Jm) maximizes the lowest cell voltage. And the third MPC
(denoted as J1) minimizes the difference between the highest
and lowest cell voltages. For all setups, N = 5 is used and all
cells are initialized to be fully charged, i.e., with sn

0 = 1. The
cell parameters Cn , Rn

o , Rn
p, and Cn

p are randomly generated
to be within 10% deviation from the nominal values. In other
words, Let C0, R0

o , R0
p, and C0

p be the nominal values as
depicted in Fig. 3. Then Table I lists the ratio between Cn ,
Rn

o , Rn
p, and Cn

p with respect to their nominal values. Finally,
sampling time Ts is chosen to be 1 second, and the bound
constraints on the balancing currents are set to be umin = −2A
and umax = 2A. Recall that a weighting matrix R is imposed
in the cost functions (10a), (11a) and (13a) to balance control
performance and control efforts by penalizing large balancing
currents. It is intuitive to see that if R = 0, MPC can choose
however large balancing currents so that all cells voltages are
balanced. However, this may result in energy waste due to
Ohmic loss in balancing circuits. On the other hand, when
R is large, MPC will simply set all balancing current to 0,
resulting in poor control performance. In this paper, the value
for R is manually tuned to that a desired balance between
control performance and control efforts is achieved.

A. Steady-State Condition

In this scenario, constant commanded current ik is used
to represent the steady-state operation. Without active cell
balancing, the battery pack can last 1,527 seconds until the
lowest cell voltage drops below vmin. For MPCs with pre-
diction horizon p = 5, Jt can extend the operation time to
1,599 seconds (4.72% increase), Jm extends to 1,640 seconds
(7.40% increase), while J1 extends to 1,682 seconds (6.61%
increase). This is summarized in Table II and Figs. 5, 6 and
7, where each cell’s voltage, SOC, and balancing current are
plotted. It can be seen that the balancing currents for three
MPC strategies possess a similar pattern, and are near constant
or vary slowly for most of the time. Note that the capacities
of cells in our simulation range from 11.18 Ah to 13.41 Ah.
If the battery cells are allowed to operate until SOC reaches 0,
then with umax = 2A roughly 8.94% of range extension is
possible. However, since the cell voltage is not allowed to
drop below ymin, the battery operations terminate before SOC
reaches 0 for all simulations. In addition, the voltage is a
nonlinear function of the SOC, especially around the low SOC
area, which explains the lower extension reported in Table II.

TABLE II
SIMULATION RESULTS FOR CONSTANT DISCHARGE CURRENT

Fig. 5. Results for Jt with constant discharge current.

Furthermore, Fig. 8 compares the lowest cell voltage for
different control strategies, as well as the balancing effort,
which represents an index for Ohmic heating loss due to
balancing and is calculated as

ek = uT
k uk .

It is clear from Fig. 8(b) that, Jt requires larger balancing
efforts, especially when the SOC and voltage are still high.
This is because Jt tracks all cell voltages to the nominal
trajectory, and hence will try to balance even when all cell
voltages are clearly away from the minimum bound vmin.
When the cell voltage gets closer to vmin, all three MPCs
utilize a similar amount of balancing efforts, while J1 is a
little more aggressive.

Note that in practice, p is chosen in a way to balance
control performance and prediction horizon. When p is small,
MPC relies on shorter prediction to make control decision,
and often can be short-sighted. When p is large, MPC
could make better control decision, but at the same time the
required computation can be much higher that prevents real-
time implementation. See Section V-C for discussion on the
relationship between prediction horizon p and computation
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Fig. 6. Results for Jm with constant discharge current.

Fig. 7. Results for J1 with constant discharge current.

time. Furthermore, when prediction horizon is too long, it can
also result in degraded control performance due to model
inaccuracy, dynamic load profile, etc. In this section, p is

Fig. 8. Comparison of the lowest cell voltages and balancing efforts for
different MPC-based balancing control strategies with constant discharge
current.

manually selected to achieve best control performance with a
manageable computation time. Furthermore, to see the impact
of prediction horizon, we set p = 35, reduce the current to a
reasonable level, and at the same time divide R by 7 to balance
the two terms in the cost functions. For Jt formulation, without
balancing, the battery terminated at 5 hours, 16 minutes and
45 seconds, while with active cell balancing, it terminated at
5 hours, 33 minutes and 52 seconds, providing a 5.13% range
extension, which is a bit more than the 4.72% reported in
Table II. Note that conducting a similar simulation for Jm
and J1 is not possible due to the long simulation time (see
Table IV).

B. Dynamic Condition

In this section, the vehicle follows a realistic driving cycle,
i.e., FTP cycle, where the vehicle is controlled by an MPC
speed tracking controller, as presented in [58]. The vehicle
speed profile and corresponding requested power of FTP cycle
is shown in Fig. 9, which is then concatenated and scaled up so
to provide a realistic assessment of the range extension within
a manageable amount of simulation time. In particular, over
3 hours and 20 minutes are simulated to mimic actual driving
scenarios.

The range extensions for different controllers for p =

5, 10, 15, together with their balancing efforts defined as
e =

1
K

∑K
k=1 ek where K is the length of battery operation,

are presented in Tables III. With prediction horizon p = 5,
all control strategies can achieve 9.33% of driving range
extension, with very minimum balancing efforts. However, the
driving range extensions slightly decrease with the increase of
p. Such slight decrease may be due to the fact that we are
not using preview on load profile in the present simulation,
making longer prediction horizon less effective.

Finally, Fig. 10 plots the cell voltages for all strategies,
where very similar behaviors are observed. Fig. 11 compares
the lowest cell voltages and balancing efforts for a short period
of time that is preceding to the pack failure. Though the lowest
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Fig. 9. Speed profile and corresponding requested power of FTP driving
cycle.

TABLE III
SIMULATION RESULTS FOR FTP CYCLE

TABLE IV
COMPARISON OF COMPUTATIONAL TIME (IN MILLISECOND)

cell voltages for three control strategies are almost the same
in Fig. 11(a), the balancing efforts are very much different.
In particular, similar to the steady-state scenario, Jt requires
the maximum amount of balancing efforts.

C. Further Discussion and Future Direction

The computational time required by each MPC are summa-
rized in Table IV, which is measured on a desktop computer
with standard CPU using Matlab’s standard matrix operations
and quadprog as the QP solver. As can be seen, Jt is always
manageable even for longer prediction horizon, while Jm and
J1 are applicable for real time implementation only when p
is smaller than 15.

From Table II, it can be seen that for steady-state condition,
Jm and J1 can achieve better driving range extensions with
lower balancing efforts. However, they require a significant
amount of computation time compared to Jt, according to

Fig. 10. Comparison of cell voltages for different MPC-based balancing
control strategies with FTP cycle.

Fig. 11. Comparison of the lowest voltages and balancing efforts for different
MPC-based balancing control strategies with FTP cycle.

Table IV. In particular, the high computation required by
J1 with long prediction horizon may prevent its real-time
implementation in embedded devices. Therefore, with shorter
prediction horizon only, they seem to be better choices
for steady-state condition. On the other hand, according to
Table III, for transient condition, Jt is much more robust
against disturbance on future load profile, achieves better range
extension with a slightly higher balancing efforts. Therefore,
Jt seems to be a better choice for the transient condition.

These findings suggest that a hybrid approach may provide
best driving range extension in reality that has a mix of
both steady-state and transient condition. In other words,
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a steady state detection algorithm [60] can be implemented
to determine whether the vehicle speed is at steady-state
condition. Based on the current driving condition (steady-state
v.s. transient), a switching MPC can then be constructed to
switch between Jm/J1 for steady-state condition and Jt for
transient condition. To avoid chattering, hysteresis can also be
introduced.

Note that in our work, we assume the same OCV v.s.
SOC curve as shown in Fig. 4 holds for all cells, and only
consider cell to cell variations on Cn , Rn

o , Rn
p, and Cn

p.
In reality, the OCV v.s SOC curves can be different for
different cells, especially during highly dynamic conditions.
Such discrepancy may decrease balancing efficiency, making
the range extension lower than the 7%-9% as reported by our
simulation environment. One possible solution is to modify
(10a), (11a), (13a) to include both voltage and SOC terms, with
a price of complexity increase. Note also that only 5 connected
cells are considered in this paper. In reality, EV batteries
usually consist of hundreds of cells. To scale up the proposed
MPC strategies, several approaches can be considered. First,
distributed and hierarchical control approach [41], [42] can
be used so that each MPC agent solves a relatively smaller
optimization problem. Second, explicit MPC approach [61]
can be used to reduce online computation while maintain-
ing same real-time control performance. Investigating these
approaches are reserved as future work. Recall that one of
the sources of cell variations is aging, which can also lead to
model mismatch. In this regard, parameter estimation has been
studied in the literature [62] to estimate ECM parameters in
real time, which is then used for adaptive control design. In the
future, we will also investigate the impact of model mismatch
and parameter estimation algorithms that can be utilized for
real-time compensation.

Finally, battery cell balancing has been studied outside
of EV applications. See for example [40]. The proposed
MPC strategies can be straightforwardly extended to non-EV
applications, since the proposed methodology, as discussed in
Section IV, are formulated based on generic battery ECM
modeling. It is worth noting that the input constraints umin
and umax, minimum voltage vmin, as well as objective function
calibration R need to be tuned based on applications. It is
also envisioned that the proposed methodology can find several
applications such as renewable energy integration and EV fleet
control, where efficient operations of batteries is a key enabler.

VI. CONCLUSION

In this paper, we studied the active battery cell balancing
problem by using model predictive control (MPC) for electric
vehicle driving range extension. Specifically, three MPC strate-
gies were investigated. In the first control strategy, a nominal
cell was used to compute a short term reference trajectory and
MPC was set to track all cell voltages to follow this reference
trajectory. In the second and third control strategies, MPC
was set to maximize the lowest voltage cell and to minimize
the difference between the highest and lowest cell voltage,
respectively. To demonstrate the effectiveness of the proposed
control strategies, both steady-state and transient conditions
were simulated. In general, a 7% driving range extension can

be achieved for steady-state condition and 9% for transient
condition. It was also found that different driving scenarios
may favor different control strategy, and a hybrid approach
might be needed. Compared to the existing approaches in
literature, our approach can achieve similar driving range
extension without restrictively requiring the trip duration to
be known in advance. For future work, we would focus on
(1) designing an observer to estimate the cells’ voltage and
SOC, as full state feedback was assumed in the current work,
(2) developing control algorithms to handle series-parallel
connections, (3) scaling up the algorithms for a large number
of connected cells, and (4) hardware validation of the proposed
MPC strategies.
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