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Simultaneous Cell State Estimation via Dense
Adaptive Extended Kalman Filter

Luke Nuculaj and Jun Chen , Senior Member, IEEE

Abstract—This work addresses the computational intractabil-
ity apropos of extended Kalman filters (EKFs) in the context of
battery cell state estimation under limited voltage measurement.
A novel, compact variation of the Kalman filter, namely the
“dense EKF” (DEKF) is proposed, which leverages unique
information about each of the cell’s inherent physical properties
and net currents at each time step to compress sparsely populated
covariance matrices and state vectors into a dense form whose
size does not vary with the number of cells in the pack.
The computational savings in terms of floating-point operations
(FLOPs) reduction are analytically compared and illustrated
through simulation. More specifically, the DEKF offers significant
resource savings while maintaining estimation accuracy, reducing
the estimation algorithm’s time complexity from O(N3) to O(N),
where N is the number of cells in a serial-connected string.
Furthermore, a special case where all serial-connected cells share
the same discharge current, that is, no balancing or leakage, is
also studied and demonstrated.

Index Terms—Adaptive extended Kalman filter (EKF), battery
cell state estimation, complexity, limited sensor measurement.

NOMENCLATURE

DAEKF Dense adaptive extended Kalman filter.
DEKF Dense extended Kalman filter.
ECM Equivalent circuit model.
EKF Extended Kalman filter.
EV Electric vehicle.
FLOP Floating-point operation.
OCV Open-circuit voltage.
RFF Relative fitness factor.
RMSE Root mean square error.
SOC State of charge.

I. INTRODUCTION

W ITH the growing popularity of EVs in recent years,
their superiority to their gasoline-powered counterparts

in areas of reduced carbon emissions and cost efficiency have
rightfully catapulted EVs to the frontier of today’s cutting-
edge, infrastructural technology [1], [2]. At the heart of
EVs lay hundreds of battery cells, typically of the lithium-
ion (Li-ion) variety [3], [4], [5]. Due to the inevitability of
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manufacturing variations, battery cells exhibit voltage and
SOC imbalances with one another which, in turn, curtail
both battery life and performance, ultimately reducing an
EV’s range [6], [7]. To combat this, nondissipative cell-
balancing techniques are frequently employed in conjunction
with advanced control techniques—model predictive control
is among the most commonly explored and appealing control
techniques by virtue of its ability to account for system
constraints [8], [9]. However, the dual-problem of a battery
cell’s harshly nonlinear dynamics and its internally complex,
electrochemical processes renders direct measurement of SOC
a challenging task, if not an impossible one [10], [11]. This
fact necessitates a reliable means of SOC estimation, as an
ill-informed cell-balancing controller is prone to overcharg-
ing/discharging multiple cells at a time, thereby exacerbating
the degradation of the pack.

Despite their computational lightness, traditional Coulomb
counting methods for SOC estimation suffer a great deal from
accumulated, current integration error [12], [13]. On the other
hand, the EKF [14], [15], [16], which unionizes a preconceived
mathematical model of the cell’s internal, nonlinear dynamics
and terminal voltage measurements to accurately estimate cell
SOC while mitigating the drift that plagues the Coulomb
counting method, has been widely researched in literature
[17], [18]. For example, [17] explores the adaptive EKF,
which employs a covariance matching approach for quick,
yet reliable online estimation, yielding a maximum SOC
estimation error of less than 2%. Sun et al. [19] built upon the
AEKF, introducing an intelligent AEKF, which monitors the
changes in the fixed-length error innovation sequence’s (EIS)
distribution and updates the innovation covariance matrices
accordingly. In comparison to the AEKF, this method sees the
decrease of the estimator’s root-mean-square error (RMSE)
by 43.34%, while the computational overhead only increases
by 4.59%.

While these improved estimators show promising results,
as soon as the task becomes simultaneous (and with lim-
ited measurement [20]), multicell SOC estimation instead of
single-cell, variants of the EKF suffer immensely from com-
putational latency and hefty memory requirements [21], [22].
For purposes of multicell SOC estimation, this fact renders
traditional Kalman filtering over a large number of cells wholly
impractical for embedded deployment, wherein computing
power and memory resources are tightly constrained. While
there exists some utility in heuristic, data-driven methods of
pack SOC estimation [23], [24], their “closed-box” nature is
not desirable in the context of deterministic estimation meth-
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ods. While the research on deterministic pack SOC estimation
is scarce at best, [25] exploits the local observability of a
nominal battery model to enable interval estimation of pack
SOC, scalable by virtue of the interval observer’s number of
states being independent of the number of cells. Although this
method realizes cell heterogeneity in the form of different SOC
initialization, electrical parameters, and unevenly distributed
currents, the assignment of an identical OCV-SOC relationship
to each cell is restrictive, despite its favorable CPU time with
respect to cell number.

The work presented in the current manuscript further
explores the EKF as a viable means of estimation, but rather
than dealing explicitly with each cell’s system dynamics in
the form of sparse state vectors/matrices, a novel, dense EKF
(DEKF) is proposed. This method of cell SOC estimation
reimagines the entire pack as a single “average” cell and
performs state estimation over the said average cell, whose
dimensions are constant regardless of the number of cells in
the string. Furthermore, an RFF is uniquely defined for each
cell based on how much its SOC changes with respect to the
average cell—the RFF is largely a function of cell parameters.
As will be shown later, the RFF can be exploited to recover
the changes in every single cell’s state from the average state,
hence reducing the state estimation problem for each single
cell to that of the average cell whose size is constant. Similar
to [25], the state vector’s size is invariable with respect to
the number of cells, but the DEKF’s covariance matrices are
also a fixed size. With this in mind, it was found by way of
numerical simulation that for the 100-cell problem, an adaptive
rendition of the DEKF saved over 16 million FLOPs of
computation in comparison to the sparse EKF while exhibiting
nearly identical performance. The adaptive DEKF’s scalability
in terms of estimation performance is closely examined for
various cell numbers and is shown to grow more accurately
with a larger cell number. This is because the measurement
and, consequently, the measurement noise are being scaled
down by a greater amount for a large cell number N, which
sees the adaptive DEKF relying on the measurements more
to balance the model predictions (see Section VII for more
details).

Note that though [25] considers a similar setting in that
only one voltage sensor is used, only interval estimation is
performed in [25]. The proposed DEKF in this article, on the
other hand, estimates the state for each cell. The contribution
of this work is summarized as follows.

1) We introduce a notion termed RFF that characterizes
how each cell’s state would change with respect to that
of an average cell.

2) A new variant of EKF, termed DEKF, is proposed to
simultaneously estimate the SOC of each cell with only
one voltage sensor (measuring the terminal voltage),
which can significantly reduce the computational com-
plexity (from cubic order to linear order).

3) The estimation performance of DEKF is analytically
studied. In particular, it is proved that the measurement
update step will not incur any error, while a theoretical
error bound of time update is provided.

4) Extensive simulations are conducted to analyze the per-
formance of the proposed DEKF, together with sensitive
analysis to illustrate the robustness of the proposed
approach under cell degradation.

The rest of the article is organized as follows. Section II
contains an explanation of all of the relevant notation and
nomenclature used throughout the article. Section III formu-
lates the problem of cell SOC estimation in a serial-connected
string, while Section IV presents the traditional sparse EKF
for cell SOC estimation. Section V introduces the concept of
RFFs, which forms the basis for the DEKF. Section VI derives
the DEKF and establishes its equivalence to sparse formula-
tion, while Section VII provides the main simulation results.
Section VIII discusses a special case with homogeneous cell
current, and Section IX concludes the article with a summary
of our findings and a discussion of future work. The appendix
contains several lemmas used throughout the article.

II. NOTATION AND NOMENCLATURE

Let R, Rn, Rm×n, and N denote the field of real numbers,
the set of real column vectors of length n, the set of m-by-n
real matrices, and the set of nonnegative integers, respec-
tively. The transpose of a matrix A ∈ Rm×n is denoted by
A>. The Moore-Penrose pseudoinverse of A is denoted by
A† := (A>A)−1A>. A symmetric matrix B ∈ Rn×n (B = B>)
is said to be positive definite if and only if x>Bx > 0 for
all x ∈ Rn\{0} and is denoted by B � 0. Similarly, B is
said to be positive semidefinite if and only if x>Bx ≥ 0
for all x ∈ Rn, denoted by � 0. For a vector x ∈ Rn, the
Euclidean norm ‖x‖2 := (x(1)2 + x(2)2 + . . .+ x(n)2)1/2 and
the infinity norm ‖x‖∞ := maxi |x(i)|. For a matrix A ∈ Rm×n,
its induced infinity-norm ‖A‖∞ := max1≤i≤m

Pn
j=1 |A(i, j)|,

following from the standard definition for induced p-norms
‖A‖p = supx,0(‖Ax‖p/‖x‖p). Any variable name accompanied
by superscript (·)i indicates that is of or belongs to the ith cell
in the battery pack. For k ∈ N, any variable name accompanied
by a subscript (·)k indicates that it is the variable as it exists
at the kth discrete time step and a subscript (·)µ indicates
that it is a “dense” variable belonging to the DEKF (more
details provided in Section VI). Combinations of subscripts
and superscripts may occur, but this does not impact the
aforementioned meaning of the individual terms that appear.
Unless otherwise specified, vector x̂ with the hat notation
indicates that it is an estimate of x; superscripts x̂− and x̂+

indicate prior and posterior estimates, respectively. Unless
specified otherwise, elements of a vector x are indexed via x( j),
where j = 1 points to the first element in x. For convenience,
a tabulated list of the acronyms used throughout this article
can be found in Nomenclature.

III. CELL STATE ESTIMATION PROBLEM

A. Battery Model

Consider a serial-connected battery with N cells, as shown
in Fig. 1. The highly nonlinear chemical processes that occur
within battery cells are difficult to precisely model. Instead,
a first-order ECM is adopted as a suitable representation of
a Li-ion battery’s system dynamics [26], [27] (see Fig. 2),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on June 05,2025 at 13:42:19 UTC from IEEE Xplore.  Restrictions apply. 



NUCULAJ AND CHEN: SIMULTANEOUS CELL STATE ESTIMATION VIA DENSE ADAPTIVE EKF 3

Fig. 1. Structure of serial-connected battery cells with balancing currents and
pack terminal voltage measurement (ya

k − yb
k ).

Fig. 2. ECM of a battery cell.

where the OCV (Voc), open-circuit resistance (Ro), terminal
voltage (y), total cell current (u), relaxation resistance (Rp),
and relaxation capacitance (Cp) are all model parameters. The
cell dynamics are specified by

ṡi = −ηi ui

3600Ci (1a)

V̇ i = −
V i

Ri
pCi

p
+

ui

Ci
p

(1b)

yi = V i
oc − V i − uiRi

o (1c)

where si is the ith cell’s SOC, V i is the relaxation voltage, ηi is
the Coulombic efficiency, and Ci is the cell capacity with the
unit of Amp-hours (the latter two being constant with respect
to cell states). Additionally, ui

k is the ith cell’s total current at
time step k and is the sum of an applied balancing current βi

k
and the battery pack current uk. Finally, the convention that
ui

k > 0 signifies discharging and ui
k < 0 charging is used in

this work.
Forward Euler method can be used to discretize (1) with a

sampling time Ts as follows:

si
k+1 = si

k − η
i Ts

3600Ci ui
k (2a)

V i
k+1 =

 
1 −

Ts

Ri
pCi

p

!
V i

k +
Ts

Ci
p

ui
k (2b)

yi
k = V i

oc,k − V i
k − ui

kRi
o. (2c)

Denoting xi :=
�
si V i

�>, (2a) and (2b) can be compactly
represented as follows:

xi
k+1 = Aixi

k + Biui
k (3)

where

Ai =

241 0

0 1 −
Ts

Ri
pCi

p

35 Bi =

2664−η
i Ts

3600Ci

Ts

Ci
p

3775 . (4)

Note that the ECM’s electrical parameters typically vary
as a function of SOC [10], [17], [27], making (3) nonlinear.
However, to simplify the notation in this work, we consider
Ro, Rp, and Cp as constant values that do not vary with SOC,
thus making the state (3) linear. A sensitivity analysis for these
parameters and the accompanying discussion can be found
in Section VII-B. Moreover, the measurement function (2c)
remains nonlinear, since the OCV Voc is nonlinear with respect
to SOC. In this work, we follow a common approach in the
literature by approximating the OCV-SOC behavior with a
polynomial [28], [29] (see Section VII-A for details).

Leveraging (4), the collection of state update equations
across all N cells

Xk+1 :=

26664
x1

k+1
x2

k+1
...

xN
k+1

37775 =

26664
A1x1

k + B1u1
k

A2x2
k + B2u2

k
...

AN xN
k + BNuN

k

37775 (5)

and define the sparse state vector as Xk =
�
x1

k x2
k . . . xN

k

�>,
which is the state vector for the entire battery pack at time
step k. Rewriting (5) gives

Xk+1 = AXk + BUk (6)

where

A =

26664
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN

37775 (7)

B =

26664
B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . BN

37775 (8)

are block-diagonal matrices consisting of (4) for each cell,
and cell current matrix Uk is defined as

�
u1

k u2
k . . . uN

k

�>. The
measurement function, in the case of pack-level dynamics, is
a scalar quantity representative of the pack terminal voltage
defined as follows:

yk =

NX
i=1

�
V i

oc,k − V i
k − ui

kRi
o

�
:= h(Xk,Uk). (9)

Example 1: Consider a battery with N = 5 serial-connected
cells, with cell parameters listed in Table I and initial states
listed in Table II. Moreover, Ts = 10, and all cell currents
are equal to 4.6 A. Fig. 3 plots the SOC, relaxation voltage,
and terminal voltage for each cell. As can be seen, due to the
heterogeneous cell parameters (see Table I), the cells’ SOC
significantly differ from each other, making cell-level state
estimation a challenging task, especially under limited sensor
capability.
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Fig. 3. Plots of SOC, relaxation voltage, and terminal voltage for five cells.

TABLE I
NOMINAL CIRCUIT PARAMETERS

TABLE II
INITIAL STATES

B. Problem Formulation

Given the battery dynamic model (6), the primary objective
of this article is to find a computationally efficient state
estimation algorithm to estimate Xk, with only one voltage
sensor to measure the pack terminal voltage. Formally, the
problem being addressed in this article is described below.

Problem 1: Given battery dynamic model (6) and
output (9), find a computationally efficient algorithm for
estimating Xk based on Uk and yk.

Remark 1: Note that Problem 1 restricts the number of
voltage sensors to only 1, that is, only the pack terminal
voltage is measured. This setting is similar to [25], which
also assumes only the pack terminal voltage measurement is
available. However, our work is different from [25] in that only
interval estimation is performed in [25], while the state for all
cells is estimated in our work. Note also that, the assumption
that only terminal voltage is measured can be beneficial in
reducing manufacturing cost while at the same time can be

restrictive. In the future, we will also consider the scenario in
which multiple cell terminal voltages are also measured and
the corresponding optimal sensor configuration problem.

IV. SPARSE EKF

To solve Problem 1, the EKF can be applied, due to
the nonlinearity of the battery model (particularly the output
equation). This section describes a straightforward application
of EKF—termed as sparse EKF for the remainder of this
article—for estimating over N serial-connected battery cells,
which has a complexity of O(N3) since the sizes of the
covariance matrices and vectors grow proportionally to N. We
will later show a computationally efficient variant of the EKF
to solve Problem 1 with a complexity of O(N).

A. Sparse Prediction Model and Time Update

Because of the inherent deviations of real-life systems from
mathematical models, (6) and (9) take on the form

Xk+1 = AXk + BUk + Wk

yk = h(Xk,Uk) + vk

where Wk :=
�
w1

k w2
k . . . wN

k

�>, wi
k (∼ N (0,Qi

k)) is the
process noise of the ith cell, and vk (∼ N (0,Rk)) is the
measurement noise, the latter two satisfying zero-mean Gaus-
sian distributions with covariances Qi

k and Rk. Retaining (7)
and (8), the complete time-update for the sparse EKF is the
following:

X̂−k+1 = AX̂+
k + BUk (10a)

P−k+1 = AP+
k A> + Qk (10b)

where (10a) is the state update and (10b) is the covariance
update. The initial sparse process covariance P+

0 and sparse
process noise covariance Qk are block-diagonal matrices
defined as follows:

P+
0 =

26664
P1,+

0 0 . . . 0
0 P2,+

0 . . . 0
...

...
. . .

...

0 0 . . . PN,+
0

37775 (11)

Qk =

26664
Q1

k 0 . . . 0
0 Q2

k . . . 0
...

...
. . .

...
0 0 . . . QN

k

37775 (12)

where Pi,+
0 and Qi

k are the initial process covariance and
process noise covariance at time step k, respectively, for the
ith cell. Note that (10a) and (10b) rely on real-time compu-
tations over matrices (11) and (12), which grow quadratically
with N. Finally, the predicted output, which is evaluated over
the sparse EKF’s prediction X̂−k+1, can be computed as follows:

ŷ = h
�
X̂−k+1,Uk

�
(13)

where h is defined in (9).
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B. Sparse Kalman Gain and Measurement Update

Recall that the OCV Voc is a nonlinear function of the SOC,
making h in (9) nonlinear. Therefore, to compute the Kalman
gain, we must obtain Jacobian H by linearizing (13)

Hk+1 = ∂Xh(X,U)
ˇ̌̌̌�

X̂−k+1,Uk

�
= ∂X

"
NX

i=1

�
V i

oc(X(i, 1))

− Ri
oU(i) − X(i, 2)

� #ˇ̌̌̌ˇ
(X̂−k+1,Uk)

.

(14)

Here, Uk(i) is equivalent to ui
k and X(i, 1) and X(i, 2) are the

SOC and V of the ith cell, respectively. Evaluating (14), we
have

Hk+1 =
h

∂V1
oc

∂X(i,1) −1 · · · ∂VN
oc

∂xN (1) −1
iˇ̌̌�

X̂−k+1,Uk

� . (15)

where X(i, 1) is the ith cell’s SOC. The resulting sparse
Kalman gain matrix and the measurement update can be
calculated

Kk+1 =
P−k+1H>k+1

Hk+1P−k+1H>k+1 + Rk
(16a)

X̂+
k+1 = X̂−k+1 + Kk+1

�
yk+1 − h

�
X̂−k+1,Uk

��
(16b)

P+
k+1 =

�
I − Kk+1Hk+1

�
P−k+1. (16c)

Recall from Section IV-A that Rk is the measurement noise
covariance such that vk ∼ N (0,Rk). Note that for our case, we
are limited to a single-voltage sensor for measurement. Hence,
Rk ∈ R, so the fraction notation for Kalman gain equations akin
to (16a) is used throughout this article.

Remark 2: While the sparse EKF provides a passable
framework for cell state estimation, a notable drawback is the
increasing size of matrices used in calculations as N increases,
making it computationally heavy. In fact, the complexity of
such a naive EKF approach requires O(N3) complexity each
time step. More particularly, the time update requires O(N2)
complexity, even if the sparsity of A and B matrices are
explicitly exploited, and the measurement update requires
O(N3) complexity. The total complexity is 16N3 + 32N2 +
(4P+14)N+6M, where M is the size of a moving window for
adaptive parameter tuning, and P is related to the resolution
of the OCV-SOC curve (see Sections VI and VII for more
details).

Such a high complexity makes the sparse EKF approach
unsuitable for real-time implementation, especially in embed-
ded environments. To address these concerns, Sections V and
VI, a DEKF is developed, whose complexity is linear with
respect to N, making it suitable for real-time implementation.
We start by introducing a key element for the proposed
DEKF—namely, the RFFs—in Section V.

V. RELATIVE FITNESS FACTORS

A. Derivation of Individual RFF

The driving paradigm of the DEKF is that estimates
are made about average state vectors and dense covariance

matrices that are invariable in size for all N—it is unique
information about each cell’s system dynamics that provide
insight into how every SOC in the pack changes with respect
to the “average” cell over time. To determine this change,
begin by averaging (2a) and (2b) over all N cells to obtain

1
N

NX
i=1

si
k+1 =

1
N

NX
i=1

si
k −

1
N

NX
i=1

ηiTs

3600Ci ui
k (17a)

1
N

NX
i=1

V i
k+1 =

1
N

NX
i=1

 
1 −

Ts

τi
p

!
V i

k +
1
N

NX
i=1

Ts

Ci
p

ui
k (17b)

where time constant τi
p = Ri

pCi
p. Denote sµ,k := (1/N)

PN
i=1 si

k
and Vµ,k := (1/N)

PN
i=1 V i

k as the average SOC at time
step k and average V at time step k, respectively. From (17),
the changes in sµ,k and Vµ,k are

∆sµ,k = sµ,k+1 − sµ,k = −
1
N

NX
i=1

ηiTs

3600Ci ui
k (18a)

∆Vµ,k = Vµ,k+1 − Vµ,k =
1
N

NX
i=1

 
Ts

Ci
p

ui
k −

Ts

τi
p

V i
k

!
. (18b)

Without loss of generality, we will now step through how to
quantify the degree to which si

k changes with respect to sµ,k.
Retrieving the control input term from (2a) yields

γi
s,k =

∆si
k

∆sµ,k
=

−
ηiTs

3600Ci ui
k

− 1
N

PN
i=1

ηiTs
3600Ci ui

k

=

ηi

Ci ui
k

1
N

PN
i=1

ηi

Ci ui
k

(19)

where γi
s,k is the ith cell’s SOC RFF at time step k. From this

methodology, γi
V,k naturally follows:

γi
V,k =

ui
k

Ci
p
−

V i
k
τi

p

1
N

PN
i=1

�
ui

k
Ci

p
−

V i
k
τi

p

� . (20)

At any given time step, each cell has a set of two RFFs—one
for each of its states. A cell’s RFFs signify the degree to which
each of its states si

k and V i
k evolve with respect to average

states sµ,k and Vµ,k. In other words, we can recover the change
in states as

si
k+1 = si

k + γi
s,k∆sµ,k (21a)

V i
k+1 = V i

k + γi
V,k∆Vµ,k. (21b)

The following theorem establishes the utility of the RFFs
in computing each cell’s change in state by proving the
equivalence of (21) to the existing state dynamic (2a) and
(2b). The proof of Theorem 1 is provided in the Appendix.

Theorem 1: The SOC update (21a) is equivalent to (2a), and
the relaxation voltage update (21b) is equivalent to (2b).

Theorem 1 established that the RFF can be used to quan-
tify how the ith state vector xi

k changes with respect to
the state vector xµ,k of an “averaging” model, defined as
xµ,k :=

�
sµ,k Vµ,k

�>. To express this mathematically, the Jaco-
bian Γi

k = ∂xi
k/∂xµ,k can be defined as follows:

Γi
k =

∂xi
k

∂xµ,k
=

24 ∂xi
k(1)

∂µµ,k(1)
∂xi

k(1)
∂xµ,k(2)

∂xi
k(2)

∂xµ,k(1)
∂xi

k(2)
∂xµ,k(2)

35 =

�
γi

s,k 0
0 γi

V,k

�
. (22)
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TABLE III
INITIAL CONDITIONS

TABLE IV

RELATIVE FITNESS FACTORS

Then, (21) can be compactly represented as follows:

xi
k+1 = xi

k + Γi
k∆xµ,k. (23)

Example 2: Consider the five-cell serial-connected battery
as discussed in Example 1. Consider Ts = 0.1, the initial cell
currents and relaxation voltages as they appear in Table III,
and cell parameters as they appear in Table I. The denominator
term in (20) can be computed as follows:

1
5

5X
i=1

 
ui

k

Ci
p
−

V i
k

τi
p

!

=
1
5

 
1.6

1.874 · 103 −
0.8�

1.874 · 103
� �

2.072 · 10−2
�

+
3.6

1.373 · 103 −
0.85�

1.373 · 103
� �

1.686 · 10−2
�

+
4.6

2.148 · 103 −
0.9�

2.148 · 103
� �

1.987 · 10−2
�

+
5.6

1.870 · 103 −
0.95�

1.870 · 103
� �

2.086 · 10−2
�

+
7.6

2.004 · 103 −
1�

2.004 · 103
� �

2.113 · 10−2
�!

= −2.279 · 10−2.

Then, each cell’s voltage RFF is computed as follows:

γ1
V,k =

−1.975 · 10−2

−2.279 · 10−2 = 0.8664

γ2
V,k =

−3.410 · 10−2

−2.279 · 10−2 = 1.4958

γ3
V,k =

−1.895 · 10−2

−2.279 · 10−2 = 0.8311

γ4
V,k =

−2.136 · 10−2

−2.279 · 10−2 = 0.9370

γ5
V,k =

−1.982 · 10−2

−2.279 · 10−2 = 0.8696.

For easy reference, the computed voltage RFF for each cell is
listed in Table IV. Given ui

k for each cell and Ts, the change in
average relaxation voltage for this time step can be found to
be −2.279 ·10−3. Using the computed RFFs listed in Table IV,
the change in each cell’s relaxation voltage can be calculated

∆V1
k = γ1

V,k∆Vµ,k = −1.975 · 10−3

∆V2
k = γ2

V,k∆Vµ,k = −3.410 · 10−3

∆V3
k = γ3

V,k∆Vµ,k = −1.895 · 10−3

∆V4
k = γ4

V,k∆Vµ,k = −2.136 · 10−3

∆V5
k = γ5

V,k∆Vµ,k = −1.982 · 10−3.

Now, to show that each cell’s change in relaxation voltage
derived from the average indeed matches that which the
individual cell dynamics produce, the same quantities are
computed based on (2b), as follows:

∆V1
k =

0.1
1.874 · 103 · 1.6 −

0.1�
1.874 · 103

� �
2.072 · 10−2

� · 0.8
= −1.975 · 10−3

∆V2
k =

0.1
1.373 · 103 · 3.6 −

0.1�
1.373 · 103

� �
1.686 · 10−2

� · 0.85

= −3.410 · 10−3

∆V3
k =

0.1
2.148 · 103 · 4.6 −

0.1�
2.148 · 103

� �
1.987 · 10−2

� · 0.9
= −1.895 · 10−3

∆V4
k =

0.1
1.870 · 103 · 5.6 −

0.1�
1.870 · 103

� �
2.086 · 10−2

� · 0.95

= −2.136 · 10−3

∆V5
k =

0.1
2.004 · 103 · 7.6 −

0.1�
2.004 · 103

� �
2.113 · 10−2

� · 1
= −1.982 · 10−3.

To relate the RFF to the Kalman filter algorithm, we recog-
nize (2a) and (2b) as being the time update equations whose
generalization over N cells is expressed as (10a). Writing (2a)
and (2b) as the time update for an individual cell gives

ŝi,−
k+1 = ŝi,+

k − ηi Ts

3600Ci ui
k

V̂ i,−
k+1 =

 
1 −

Ts

Ri
pCi

p

!
V̂ i,+

k +
Ts

Ci
p

ui
k.

Consequently, (19) and (20) are defined as follows:

γ̂i
s,k :=

ηi

Ci ui
k

1
N

PN
i=1

ηi

Ci ui
k

(24a)

γ̂i
V,k :=

ui
k

Ci
p
−

V̂ i,+
k
τi

p

1
N

PN
i=1

�
ui

k
Ci

p
−

V̂ i,+
k
τi

p

� (24b)

which will be useful later in Section VI and proofs thereof.
Note that (19) and (24a) are identical, as they are both
independent of SOC.

B. Constructing the RFF Matrix

In the context of cell SOC estimation in a battery pack, the
main concern is considering the states of all cells at once, not
individually. For this reason, we recall the sparse state vector
from Section IV and compute the pack-level Jacobian

Γk =
∂Xk

∂xµ,k
=
�
Γ1

k Γ2
k . . . ΓN

k

�> (25)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on June 05,2025 at 13:42:19 UTC from IEEE Xplore.  Restrictions apply. 



NUCULAJ AND CHEN: SIMULTANEOUS CELL STATE ESTIMATION VIA DENSE ADAPTIVE EKF 7

where Γk (termed as “RFF matrix”) is of size 2N × 2.
Extrapolating (23) to the entire pack

Xk+1 = Xk + Γk∆xµ,k (26)

offers a useful method for computing changes to the entire
pack’s states as a function of changes in xµ,k, the size of
which does not change with N. The next section leverages this
core concept into the proposed DEKF by developing an initial
framework and concurrently proving theoretical equivalence
to the sparse method outlined in Section IV. The next two
lemmas concern the left pseudoinverse of Γ, which will be
utilized in Section VI and whose proofs are provided in the
Appendix.

Lemma 1: The left pseudoinverse Γ† exists and is given by

Γ†

=

26664
γ1

sPN
i=1

�
γi

s

�2 0 . . .
γN

sPN
i=1

�
γi

s

�2 0

0
γ1

VPN
i=1(γi

V )2
. . . 0

γN
VPN

i=1(γi
V )2

37775 .
(27)

Lemma 2: Denote ∆Xk := Xk+1 − Xk ∈ R
2N×1 and ∆X̃k :=

ΓΓ†∆X ∈ R2N×1, then we have ∆X̃k = ∆Xk.
Remark 3: To verify that Γ†Γ = I, we have

Γ†Γ =

266664
PN

i=1

�
γi

s

�2PN
i=1

�
γi

s

�2 0

0
PN

i=1(γi
V )2PN

i=1(γi
V )2

377775 =

�
1 0
0 1

�
.

While Lemma 1 and Remark 3 prove that Γ†Γ = I2×2, ΓΓ†

is generally not an identity matrix. Lemma 2 addresses this
concern by proving a useful property of ΓΓ†: when being left
multiplied to a change in the sparse state ∆X, that same change
in the sparse state is the result of the calculation.

VI. DENSE EKF

This section presents the proposed DEKF. The essential idea
is to use EKF to estimate the states of an “averaging model”
and then to distribute the state estimation to each cell using the
RFF matrix. In pursuit of a filtering algorithm that estimates
over the dense state, we write a dense model

xµ,k+1 = Aµxµ,k + BµUk + wµ,k (28a)
yµ,k = hµ(Xk,Uk) + vµ,k (28b)

where xµ,k :=
�
sµ,k Vµ,k

�>, Aµ = Γ̂
†

k AΓ̂k ∈ R
2×2, Bµ = Γ̂

†

k B ∈
R2×N , hµ(X̂−k+1,Uk) = (1/N)h(X̂−k+1,Uk), wµ,k ∼ N (0, Γ̂†k QkΓ̂k),
and vµ,k ∼ N (0, (1/N2)Rk). For reasons discussed in Sec-
tion V-A and illustrated by (24), we have

Γ̂k =
∂X
∂xµ

ˇ̌̌̌
X=X̂+

k

. (29)

We claim that, for the problem at hand (see Problem 1), a
dense model (28) over xµ exists, and it is enough to show that
an alternative Kalman filtering method (the DEKF) capable of
estimating over this model can be derived from the existing

Kalman filter (10) and (16). Sections VI-A and VI-B present
the derivations and, where necessary, establish upper bounds
on the resulting errors.

A. Dense Time Update

Given the dense model (28), its time update equations are
given by

x̂−µ,k+1 = Aµ x̂+µ,k + BµUk (30a)

P−µ,k+1 = AµP+
µ,kA>µ + Qµ,k. (30b)

The estimate over the dense state vector is then “distributed”
to each cell using (26)

X̂−k+1 = X̂+
k + Γ̂k

�
x̂−µ,k+1 − x̂+µ,k

�
(31a)

P−k+1 = Γ̂kP−µ,k+1Γ̂>k . (31b)

The following theorem derives the above dense time update,
guaranteeing its near-equivalence to the sparse time update.

Theorem 2: Under the assumption that Ts � τi
p, the time

update on X̂−k+1 as computed by (30a) and (31a) is almost
equivalent to the sparse time update as computed by (10a)
with an error bound listed in (38), and P−k+1 as computed
by (30b) and (31b) is equivalent to the sparse time update as
computed by (10b).

Proof: We begin with (10a). First, solve the matrix-
differential (29) for sparse vector Xk in terms of xµ,k:

Γ̂k

=
∂Xk

∂xµ,k

ˇ̌̌̌
X=X̂+

k�
Γ̂1

k Γ̂2
k . . . Γ̂N

k

�>
=
h

∂x1
k

∂xµ,k
∂x2

k
∂xµ,k
· · ·

∂xN
k

∂xµ,k

i> ˇ̌̌̌
X=X̂+

k

γ̂i
s

=
∂xi

k(1)
∂xµ,k(1)

ˇ̌̌̌
x̂i,+

k (1)
, γ̂i

V =
∂xi

k(2)
∂xµ,k(2)

ˇ̌̌̌
x̂i,+

k (2)
, i ∈ [1, . . . ,N].

(32)

For i ∈ [1, . . . ,N], we can solve the differential equations
from (32) via separation of variables for the SOC xi

k(1)Z xi(1)

x̂i,+
k (1)

∂xi
k(1) =

Z xµ(1)

x̂+µ,k(1)
γ̂i

s,k∂xµ,k(1)

xi
k(1)

ˇ̌̌
xi

k(1)

x̂i,+
k (1)

= γ̂i
s,k xµ,k(1)

ˇ̌̌xµ,k(1)

x̂+µ,k(1)

xi
k(1) − x̂i,+

k (1) = γ̂i
s,k

�
xµ,k (1) − x̂+µ,k (1)

�
xi

k(1) = γ̂i
s,k xµ,k(1) − γ̂i

s,k x̂+µ,k(1) + x̂i,+
k (1). (33)

We must be cautious with the integration for xi
k(2) since γ̂i

V is
not a constant, but dependent on our integration variable. The
steps are the following:Z

∂xµ,k(2) =

Z
∂xi

k(2)
γ̂i

V
(34a)
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=

Z 1
N

PN
j=1

�
u j

k

C j
p
−

x j,+
k (2)
τ

j
p

�
ui

k
Ci

p
−

xi,+
k (2)
τi

p

∂xi
k(2) (34b)

=

Z
1
N

+
δ

ui
k

Ci
p
−

xi,+
k (2)
τi

p

∂xi
k(2) (34c)

=
1
N

xi
k(2) − δτi

p ln

ˇ̌̌̌
ˇ ui

k

Ci
p
−

xi
k(2)
τi

p

ˇ̌̌̌
ˇ+ C (34d)

where δ := (1/N)
Pn

j=1,,i((u
j
k/C

j
p) − (x j,+

k (2)/τ j
p)) and C is the

constant of integration. We consider the first-order approxi-
mation of the result from (34) for small deviations around
nominal points x̂i,+

k (2) and x̂+µ,k(2)

xµ,k(2) ≈ x̂+µ,k(2) +

0@ 1
N

+
δ

ui
k

Ci
p
−

x̂i,+(2)
τi

p

1A · �xi
k(2) − x̂i,+

k (2)
�

(35a)

xµ,k(2) ≈ x̂+µ,k(2) +
1
γ̂i

V
·
�
xi

k(2) − x̂i,+
k (2)

�
(35b)

xi
k(2) ≈ γ̂i

V xµ,k(2) − γ̂i
V x̂+µ,k(2) + x̂i,+

k (2) (35c)

where the error in (35c) is O(∆2), ∆ := xi
k(2) − x̂i,+

k (2).
Assembling the vector equation from solutions (33) and (35)
for all i ∈ [1, . . . ,N] and simplifying

Xk ≈ Γ̂k xµ,k − Γ̂k x̂+µ,k + X̂+
k

Xk ≈ Γ̂k xµ,k − Γ̂kΛX̂+
k + X̂+

k

Xk ≈ Γ̂k xµ,k +
�
I − Γ̂kΛ

�
X̂+

k (36)

where Λ = (1/N)
�
I I . . . I

�
and is of size 2 × 2N. For the

time update, we have X̂−k+1 = Γ̂k x̂−µ,k+1 + (I − Γ̂kΛ)X̂+
k and

X̂+
k = Γ̂k x̂−µ,k+1 + (I − Γ̂kΛ)X̂+

k . Substituting these instances
of (36) into (10a)

Γ̂k x̂−µ,k+1 +
�
I − Γ̂kΛ

�
X̂+

k = A
�
Γ̂k x̂+µ,k +

�
I − Γ̂kΛ

�
X̂+

k

�
+ BUk

Γ̂k x̂−µ,k+1 = AΓ̂k x̂+µ,k+(A−I)
�
I−Γ̂kΛ

�
X̂+

k

+ BUk.

Multiplying the left pseudoinverse Γ̂
†

k gives

x̂−µ,k+1 = Γ̂
†

k AΓ̂k x̂+µ,k + Γ̂
†

k(A − I)
�
I − Γ̂kΛ

�
X̂+

k + Γ̂
†

k BUk

= Aµ x̂+µ,k + Γ̂
†

k(A − I)
�
I − Γ̂kΛ

�
X̂+

k + BµUk (37)

effectively isolating x̂−µ,k+1. Equation (37) can be approximated
as follows:

x̂−µ,k+1 ≈ Aµ x̂+µ,k + BµUk

with error Γ̂
†

k(A−I)(I−Γ̂kΛ)X̂+
k . We can derive an upper bound

on this error induced by the infinity norm

‖Γ̂
†

k(A − I)(I − Γ̂kΛ)X̂+
k ‖∞ (38a)

≤ ‖Γ̂
†

k‖∞ · ‖A − I‖∞ · ‖I − Γ̂kΛ‖∞ · ‖X̂+
k ‖∞ (38b)

= ‖Γ̂
†

k‖∞ ·

 
max

i∈[1,...,N]

ˇ̌̌̌
ˇTs

τi
p

ˇ̌̌̌
ˇ
!
· ‖I − Γ̂kΛ‖∞ · ‖X̂+

k ‖∞ (38c)

=

 
max

( PN
i=1 γ̂

i
sPN

i=1(γ̂i
s)2
,

PN
i=1 γ̂

i
VPN

i=1(γ̂i
V )2

)!
·

 
max

i∈[1,...,N]

ˇ̌̌̌
ˇTs

τi
p

ˇ̌̌̌
ˇ
!

·

�
max

i∈[1,...,2N]

ˇ̌̌̌
1 −

γ̂i

N

ˇ̌̌̌
+

ˇ̌̌̌
γ̂i −

γ̂i

N

ˇ̌̌̌�
· ‖X̂+

k ‖∞ (38d)

where the upper bound vanishes as the sampling period
decreases (i.e., Ts → 0).

To prove the equivalence of the time update on the covari-
ance matrix, we first have

P−µ,k+1 = E
�
(xµ,k+1 − x̂−µ,k+1)(xµ,k+1 − x̂−µ,k+1)>

�
(39)

over the prediction. Multiplying Γ̂k to (39), we have

Γ̂kP−µ,k+1Γ̂>k

= Γ̂kE
h�

xµ,k+1 − x̂−µ,k+1

� �
xµ,k+1 − x̂−µ,k+1

�>i
Γ̂>k

= E
h
Γ̂k
�
xµ,k+1 − x̂−µ,k+1

� �
xµ,k+1 − x̂−µ,k+1

�>
Γ̂>k

i
= E

h�
Xk+1 − X̂−k+1

� �
Xk+1 − X̂−k+1

�>i
= P−k+1 (40)

which works out to be the sparse predicted process covariance
P−k+1 as calculated in (10b). Substituting (10b) into the right-
hand side of (40), we have

Γ̂kP−µ,k+1Γ̂>k = AΓ̂kP+
µ,kΓ̂

>
k A> + Qk.

Multiplying Γ̂
†

k , we have

Γ̂
†

k

�
Γ̂kP−µ,k+1Γ̂>k

� �
Γ̂
†

k

�>
= Γ̂

†

k

h
AΓ̂kP+

µ,kΓ̂
>
k A> + Qk

i �
Γ̂
†

k

�>
.

Utilizing the fact that Γ
†

kΓk = I (Lemma 1), we have

P−µ,k+1 =
�
Γ̂
†

k AΓ̂k

�
P+
µ,k

�
Γ̂
†

k AΓ̂k

�>
+ Γ̂

†

k Qk

�
Γ̂
†

k

�>
= AµP+

µ,kA>µ + Qµ,k.

This completes the proof. �
Remark 4: Though the proposed dense time update (30)

and (31) incurs certain error, as captured by Theorem 2,
it significantly reduces the FLOPs requirement. In fact, the
regular sparse time update requires a theoretical FLOP count
of 3N2+6N, whereas the proposed dense time update requires
only 53N + 26, due largely in part to many of the associated
dense matrices having constant size with respect to cell
number (see Section VII for more details).

B. Dense Measurement Update

Continuing with the dense model (28), its measurement
update equations are given by

Kµ,k+1 =
P−µ,k+1H>µ,k+1

Hµ,k+1P−µ,k+1H>µ,k+1 + Rµ,k
(41a)

x̂+µ,k+1 = x̂−µ,k+1 + Kµ,k+1
�
yµ,k+1 − hµ

�
X̂−k+1,Uk

��
(41b)

X̂+
k+1 = X̂−k+1 + Γ̂k

�
x̂+µ,k+1 − x̂−µ,k+1

�
(41c)

P+
µ,k+1 =

�
I − Kµ,k+1Hµ,k+1

�
P−µ,k+1 (41d)
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where Rµ,k = (Rk/N2), yµ,k+1 = (1/N)yk+1, and Hµ,k+1 ∈ R
1×2

as given by

Hµ,k+1 =
∂
� 1

N h(X,U)
�

∂xµ

ˇ̌̌̌
ˇ�

X̂−k+1,Uk

� . (42)

The two next lemmas connect the dense Kalman gain Kµ,k+1
and Hµ,k+1 to the sparse Kalman gain Kk+1 and Hk+1.

Lemma 3: The dense Jacobian Hµ,k+1 as computed by (42)
and the sparse Jacobian Hk+1 as computed by (15) satisfy

Hµ,k+1 =
1
N

Hk+1Γ̂k. (43)

Proof: For brevity, we opt for short-hand notation h :=
h(X,U) for derivations contained within this section. The
scalar (1/N) can be moved to the front of the expression
in (42) and the Jacobian can be evaluated

Hµ,k+1 =
1
N
∂h
∂xµ

=
h

1
N

PN
i=1

∂V i
∞

∂xµ(1) −
1
N
∂
PN

i=1 V i

∂xµ(2)

i
=

"
1
N

NX
i=1

∂V i
co

∂xµ(1)
−

1
N

N
∂xµ(2)
∂xµ(2)

#

=

"
1
N

NX
i=1

∂V i
oc

∂xµ(1)
−

1
N

N

#
=

�
1
N

�
∂V1

oc

∂xµ(1)
+

∂V2
oc

∂xµ(1)
+ · · ·+

∂VN
oc

∂xµ(1)

�
− 1
�
.

Recall from (22) that ∂xi(1)
∂xµ(1) = γ̂i

s, therefore

Hµ,k+1 =

�
1
N

�
γ̂1

s
∂V1

oc

∂x1(1)
+ · · ·+ γ̂N

s
∂VN

oc

∂xN(1)

�
− 1
�

=

"
NX

i=1

1
N
γ̂i

s
∂V i

oc

∂xi(1)
− 1

#
=
h

1
N

PN
i=1 γ̂

i
s
∂V i

co
∂xi(1) − 1

i
.

Now, multiplying (15) by Γ̂k gives

Hk+1Γ̂k =
h

∂V1
oc

∂x1(1) −1 ∂V2
oc

∂x2(1) −1 · · · ∂VN
oc

∂xN (1) −1
i

Γ̂k

=

"
NX

i=1

γ̂i
s,k
∂V i

oc

∂xi(1)
−

NX
i=1

γ̂i
V,k

#
.

Without loss of generality,
PN

i=1 γ̂
i
V = N. Hence,

1
N

Hk+1Γ̂k =
1
N

"
NX

i=1

γ̂i
s,k
∂V i

oc

∂xi(1)
− N

#
=
h

1
N

PN
i=1 γ̂

i
s,k

∂V i
oc

∂xi(1) −1
i

= Hµ,k+1.

This completes the proof. �
Lemma 4: The dense Kalman gain Kµ,k+1 as computed by

(41a) and the sparse Kalman gain Kk+1 computed by (16a)
satisfy

Kk+1 =
1
N

Γ̂kKµ,k+1. (44)

Proof: According to (41a) and (43) and the fact that Rµ,k =

(Rk/N2), we have

1
N

Γ̂kKµ,k+1 =
1
N

Γ̂k
P−µ,k+1H>µ,k+1

Hµ,k+1P−µ,k+1H>µ,k+1 +
1

N2 Rk

=
1
N

Γ̂kP−µ,k+1

� 1
N Hk+1Γ̂k

�>� 1
N Hk+1Γ̂k

�
P−µ,k+1

� 1
N Hk+1Γ̂k

�>
+ 1

N2 Rk

=
1
N

N
Γ̂kP−µ,k+1

�
Hk+1Γ̂k

�>�
Hk+1Γ̂k

�
P−µ,k+1

�
Hk+1Γ̂k

�>
+ Rk

=
Γ̂kP−µ,k+1Γ̂>k H>k+1

Hk+1Γ̂kP−µ,k+1Γ̂>k H>k+1 + Rk
.

Utilizing (40), we have

1
N

Γ̂kKµ,k+1 =
P−k+1H>k+1

Hk+1P−k+1H>k+1 + Rk
= Kk+1.

This completes the proof. �
Now we are ready to present the main result of this section

by introducing the following theorem that guarantees the
equivalence of (41) to the sparse measurement update outlined
in (16).

Theorem 3: The measurement update on X̂+
k+1 and P+

k+1
as computed by (41) is equivalent to the sparse measurement
update as computed by (16).

Proof: From (41c), we have

X̂+
k+1 = X̂−k+1 + Γ̂k

�
x̂+µ,k+1 − x̂−µ,k+1

�
= X̂−k+1 + Γ̂kKµ,k+1

�
yµ,k+1 − hµ

�
X̂−k+1,Uk

��
= X̂−k+1 + NKk+1

�
yµ,k+1 − hµ

�
X̂−k+1,Uk

��
= X̂−k+1 + Kk+1

�
Nyµ,k+1 − Nhµ

�
X̂−k+1,Uk

��
= X̂−k+1 + Kk+1

�
yk+1 − h

�
X̂−k+1,Uk

��
which establishes the equivalence of the state correction
of (41) with that of (16).

As for the covariance equation, begin with (41d) and
substitute (40) to get

P+
µ,k+1 =

�
I2×2 − Kµ,k+1Hµ,k+1

�
P−µ,k+1

Γ̂kP+
µ,k+1Γ̂>k = Γ̂k

�
I2×2 − Kµ,k+1Hµ,k+1

�
P−µ,k+1Γ̂>k

P+
k+1 = Γ̂k

�
I2×2 − Kµ,k+1Hµ,k+1

�
P−µ,k+1Γ̂>k .

Substituting (44) and (43) and simplifying further, we get

P+
k+1 = Γ̂k

�
I2×2−NΓ̂

†

k Kk+1
1
N

Hk+1Γ̂k

�
P−µ,k+1Γ̂>k

= Γ̂k

�
Γ̂
†

k I2N×2NmΓ̂k − Γ̂
†

k Kk+1Hk+1Γ̂k

�
P−µ,k+1Γ̂>k

= Γ̂kΓ̂
†

k

�
I2N×2N − Kk+1Hk+1

�
Γ̂kP−µ,k+1Γ̂>k

= Γ̂kΓ̂
†

k

�
I2N×2N − Kk+1Hk+1

�
P−k+1

= Γ̂kΓ̂
†

k P+
k+1 = P+

k+1.

Note that Lemma 2 is utilized to arrive at the last equality. �
Remark 5: In addition to the proposed dense measurement

update’s equivalence to the sparse measurement update, as
captured by Theorem 3, it significantly reduces the FLOPs
requirement. In fact, the proposed dense algorithm reduces the
FLOP count from cubic (16N3 + 32N2 + (4P + 14)N + 6M)
to linear [(6P + 76)N + 6M + 110] complexity. This major
reduction in computation time is owed mostly to the Kalman
gain, measurement Jacobian, and process covariance matrices
all having constant size in the dense measurement update. This
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fact confers a constant FLOP count on the dense state and
covariance updates.

C. Adaptive DEKF

Recall that Qµ,k = Γ̂
†

k QkΓ̂k. Therefore, Qµ,k must also be
computed at each time step since Γk changes with each time
step [recall its dependence on the cell currents as outlined
in (19), (20), and (22)]. While in the context of the regular
DEKF this would be the case, there are existing methods of
adaptive Kalman filtering [17], [30], [31] in which the dense
noise covariance matrices are not computed as a function
of Γ̂, but instead as approximate solutions to the optimization
problem Θ∗ = arg minQk ,Rk [J(Θ|YM)] s.t. Qk � 0,Rk � 0,
where J(Θ|YM) :=

Pk
i=k−M+1[ln |Σi|+ ν>i Σ−1

i νi], Θ :=
�
Qk Rk

�
,

the prefit residual νk := yk − ŷ−k assumes a Gaussian distri-
bution of N (0,Σk), M is an adjustable parameter describing
the size of the window of past measurements, and YM :=�
yk−M+1 yk−M . . . yk−1 yk

�
. A full derivation of the solution

can be located in [30, Appendix C], where suitable approxi-
mations of the optimal noise covariance matrices that maintain
positive definiteness are found to be

Q∗k = Kk

"
1
M

kX
i=i0

νiν
>
i

#
K>k (45)

R∗k =
1
M

kX
i=i0

�
εiε
>
i + HiP+

i H>i
�

(46)

where i0 = k − M + 1 and postfit residual εk := yk − ŷ+k . This
adaptive formulation of the covariance matrices is worked into
the DEKF, which is referred to as the DAEKF and is the
solution that generates the simulation results shown later in
Section VII.

Remark 6: The additional number of FLOPs incurred by
the dense with the adaptive extension is linear [(2P + 6)N +
6M + 21] and occurs in the time update when computing
Γ̂
†

k QkΓ̂k (recall that Γ̂k is a function of balancing currents).
The adaptive step is a function of window size M [more terms
to sum together for (45) and (46)] and P [must re-evaluate
polynomials for (48a)].

D. Complete DAEKF Algorithm

The proposed DAEKF algorithm can be divided into two
parts: the time update and the measurement update. The former
is summarized in Algorithm 1, and the latter in Algorithm 2.

First, we describe the time update portion of the DAEKF
algorithm. In particular, Lines 2 and 3 compute Γ̂k and Γ̂

†

k
given X+

k and Uk, which are then used to calculate Aµ,k and
Bµ,k as shown in Line 4. Lines 5–9 check if this particular
iteration of the DAEKF is the first one, in which case the
program initializes P+

µ,0, Qµ,0, and Rµ,0 in terms of sparse
covariances, Γ̂0, and Γ̂

†

0. Line 11 uses the results computed in
Line 4 and the corrected dense state x̂+µ,k from the previous
time step to generate the dense prediction x̂−µ,k+1. Line 12
uses the result obtained in Line 11 to predict the sparse state
X̂−k+1, which is a required computation since there is not yet a
known way to develop a compact Voc curve which is strictly a

Algorithm 1 DAEKF Algorithm: Time Update

Algorithm 2 DAEKF Algorithm: Measurement Update

function of xµ (see a more detailed explanation in Section VII).
Line 12 computes the predicted dense process covariance
P−µ,k+1. The results obtained from Lines 11–13 are outputs of
the procedure, which are passed onto the measurement update
function.

Starting the measurement update portion of the DAEKF
algorithm, Line 2 evaluates a least-squares fit of each cell’s
differentiated OCV (detailed explanation in Section VII)
as a function of sparse prediction X̂−k+1 to compute Hµ.
Line 3 utilizes this result, along with P−µ,k+1 and Rµ to compute
the dense Kalman gain Kµ,k+1. Line 5 corrects the prediction,
computing the difference between the measurement yµ,k+1 and
the predicted measurement and using that to calculate x̂+µ,k+1.
Line 6 computes the updated sparse vector X̂+

k+1 as a function
of Γ̂k and the differences in the result from Line 5 and the
predicted dense state. Line 7 simply computes the updated
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dense process covariance P+
µ,k+1 as a function of the results

from Lines 2 and 3, and the procedure input P−µ,k+1. Line 9 uses
the results of Line 2 and (48b) to approximate hµ(X̂+

k+1), which
the predicted measurement function evaluated over X̂+

k+1. This
result is applied in Line 10, which computes the dense postfit
residual εµ,k+1. Lines 11–14 consist of a conditional statement
that checks at least M − 1 iterations have elapsed. If such is
the case, Lines 12 and 13 will overwrite Qµ and Rµ with the
result of (45) and (46). Afterward, the updated dense state
x̂µ,k+1, updated dense process covariance P−µ,k+1, and update
sparse state X̂+

k+1 are fed back into the time update function
for the following iteration.

VII. SIMULATION RESULTS

A. Implementation Details and Methodology

This section elaborates on environment-specific details for
the DEKF implementation, the target CPU, as well as consid-
erations regarding the direct computation of FLOPs for each
step.

Recall that Hµ,k+1 is computed at each time step using (43)
that relies on the computation of sparse Hk+1, which requires
each cell’s OCV-SOC curve be stored in memory and its
derivative evaluated over X̂−k+1 at each time step. As mentioned
earlier, the OCV-SOC curve for any particular cell is typically
stored in a lookup table—the size of which is directly related
to the desired resolution. For a small number of cells, this may
be a viable method, but large memory requirements—and thus
poor scalability—become problematic as the number of cells
grows. Instead, this work devotes offline computation time to
calculating N least-squares polynomials of degree P

min
pi
‖S i pi − V i

oc‖
2
2, 1 ≤ i ≤ N (47)

each evaluated over high-resolution, OCV-SOC data from its
respective cell. In the case of (47), pi is a (P + 1)× 1 vector
of polynomial coefficients, S i is an L× (P+ 1) design matrix
computed from the SOCs of L samples from the ith cell’s
OCV-SOC curve, and V i

oc is the corresponding output vector
of size L×1. At each time step, the least-squares fit F i(s) and
its derivative Ḟ i(s) := (dF i/dsi) is evaluated to complete the
following steps of the DAEKF algorithm:

H−µ,k+1 =
∂hµ
∂xµ

ˇ̌̌̌
xµ=x̂−µ,k+1

≈

"
1
N
·

NX
i=1

γ̂i
s,kḞ i (xi(1)) − 1

#
.

(48a)

hµ(X̂−k+1) ≈
NX

i=1

�
F i(xi(1)) − Ri

oui
k − xi(2)

�
(48b)

hµ(X̂+
k+1) ≈ hµ(X̂−k+1) + H−µ,k+1

�
x̂+µ,k+1 − x̂−µ,k+1

�
(48c)

where (48a) and (48b) are derived from Ḟ i(s) and F i(s),
respectively, to compute the first-order Taylor approximation
of the measurement functions in (48c), which is used to
compute the postfit residual εµ,k+1 = yµ,k+1−hµ(X̂+

k+1) to update
Rµ as shown in (46). For this specific implementation, an
8◦ polynomial is used to approximate the OCV-SOC behavior
of each cell. A polynomial with such degree is common in
literature [28], [29].

Fig. 4. Pack characteristics over five cells.

In the context of computing theoretical resource con-
sumption, the considerations being made are the following:
1) structural redundancies of the matrices involved in the
calculation (i.e., full multiplications need not be performed for
matrices A and B as they are block-diagonal); 2) matrix mul-
tiplication of two arbitrary matrices Am×n and Bn×p requires
m× p×(2n−1) FLOPs, Horner’s rule is the method employed
for evaluating polynomials of degree P, which requires 2P
FLOPs to execute, a matrix’s pseudoinverse is computed
in accordance with its definition; and 3) double-precision
floating-point format is used to represent and store numerical
data in memory.

For each cell involved in the simulation, the following
electrical parameters are selected from Gaussian distributions
ηi ∼ N (0.9, 0.1),Ci ∼ N (5, 0.5) as a means of inducing het-
erogeneity unto the pack. For clarity, other circuit parameters
Rp = 2.2166 · 10−2, Cp = 1.9975 · 103, and Ro = 1.3435 · 10−3

are kept constant for all cells. Note that all battery parameters
are derived from [32], [33], and [34], which utilize a battery
model simulation in which each circuit parameter’s value is
determined from experiments and stored as lookup tables of
SOC and temperature. The constant values used are a result of
averaging each parameter’s value over the full range of SOCs
at a temperature of 15 ◦C. The sampling period used in all
experiments is Ts = 0.1 s. Lastly, the following simulation
results were obtained by running the DAEKF algorithm in
MATLAB on an Intel i7-9750H CPU with six cores, 8 GB of
RAM, and 12 MB of cache running at 2.60 GHz.

B. Results and Discussion

The cell current trajectories are selected to be an exponential
family of functions that are symmetric about a nominal battery
pack current uk := 4.6 A (see Fig. 4). As for the initial states,
the EKF initializes x̂i,+

k=0(1) = 1, x̂i,+
k=0(2) = 0 for i ∈ [1, . . . ,N],

and the DEKF initializes with the average values of the EKF’s
initial values: x̂+µ,k=0(1) = 1, x̂+µ,k=0(2) = 0. Furthermore, the
initial sparse process covariance, the standard deviations for
each cell’s process noise wi

k and the pack’s measurement noise
vk are initialized as a block diagonal matrix of 10−6, 10−4, and
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TABLE V

FLOP COMPARISON FOR DAEKF AND SPARSE ADAPTIVE EKF

Fig. 5. Comparison of SOC estimation error and predicted measurement error
between the sparse EKF and the DAEKF over five cells.

10−2, respectively, and as a result of (40) and the equations for
Qµ,k and Rµ,k given in Section VI, the initial dense covariance
matrices are Pµ,0 = [1.918 · 10−7, 0; 0, 1.999 · 10−7], Qµ,0 =

[9.198 · 10−9, 0; 0, 9.999 · 10−9], Rµ,0 = 4 · 10−6, N = 5, M =

15, and P = 8. The measured terminal voltage and the cell
currents are shown in Fig. 4. For 1800 s, Fig. 5 illustrates
the results of the simulation, which show that the DAEKF
exhibits good performance in estimating SOC over all five
cells with an average RMSE of 1.08 · 10−2, and the maximum
RMSE on predicted average terminal voltage hµ(x̂+k+1) being
within 20 mV (≈ 0.6% of its nominal value). As shown in the
third subplot, the DAEKF, and sparse EKF estimation error
follow closely to one another, exhibiting a similar performance

when estimating the SOC over five cells. However, there is a
minor separation toward the end of the 1800-s run time. This
separation is to be expected as expressed in (38).

In the context of FLOP count, a comprehensive comparison
between the dense and sparse adaptive EKFs is found in
Table V, where M is the size of the measurement window
from the adaptive step, N is the number of cells, and P is
the degree of the polynomials used to approximate OCV-SOC
characteristics. The most laborious step for the sparse AEKF
is the measurement update, where there are no structural
patterns that can be exploited in the computation of (16c).
Thus, the multiplication of two arbitrary, square matrices of
size 2N×2N yields an FLOP count proportional to N3. While
the measurement update is also the most laborious step for
the DAEKF, it only grows linearly with N as well as P. The
values of M, N, and P used to obtain the results for the 100-
cell problem in Fig. 6 can be borrowed to get an idea of the
FLOPs count for both estimators. Doing so yields an FLOP
count of 16 324 690 for the sparse and a mere 12 600 for
the dense, reinforcing the perceived intractability of the sparse
formulation of the adaptive EKF.

A simulation with N = 100, that is, with 100 cells,
is also performed. The initial covariance matrices are the
following, Pµ,0 = [9.781 · 10−9, 0; 0, 9.999 · 10−14], Qµ,0 =

[9.567 · 10−9, 0; 0, 9.999 · 10−9], Rµ,0 = 2.500 · 10−7, yielding
the results shown in Fig. 6, where, in comparison to Fig. 5,
the effect of a larger cell number on the measurement noise
can be observed in the RMSE curve of the predicted terminal
voltage. Specifically, the maximum prediction error for the
DEKF’s terminal voltage is around 25 mV, demonstrating a
greater noise attenuation as a result of more cells compared to
the sparse adaptive EKF. In addition to this, the covariance
matrices are intentionally initialized such that the model
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TABLE VI

SENSITIVITY OF DEKF’S AVERAGE RMSE TO ERROR IN ECM PARAMETER VALUES

Fig. 6. DAEKF and sparse EKF performance comparison over 100 cells.

predictions are favored greatly over the measurements. As a
result, the cumulative error is exhibited, but the DAEKF and
sparse EKF take on a nearly identical error trajectory. This
observation is reinforced by the plot of the absolute differences
between both filters’ RMSE curves, which exist on the order
of 10−4 – 10−6.

Keeping the initial covariance matrices, process noise, and
measurement noise the same as in Fig. 6, the next set of results
considers the sensitivity and scalability of the DAEKF in terms
of average error. To begin with, the differences between the
estimated values for the ECM parameters and their actual
values are difficult, if not impossible, to overcome completely
[35]. For this reason, it is worthwhile to investigate the SOC
estimation errors that arise from the DAEKF when these
disparities exist. In the case of N = 5, Table VI displays the
average SOC RMSE of the DAEKF as ECM parameters Cp,
Rp, and Ro deviate by ±5%, ±10%, and ±15% from their
values as listed in Section VII-A. Cp is the least sensitive of
the parameters as the largest error incurred by the DAEKF
for Cp is 8.1 · 10−3, a 3.85% increase from the baseline error.
As for Rp and Ro, the error is stable within ±5%, though the
9.8 · 10−2 error is too large to be useful. However, once Rp

and Ro deviate beyond ±5%, the error grows to be unstable,
even diverging for ≥+10%. The relative insensitivity of Cp

can be explained by recalling the definition of γi
V,k (20) and

observing τi
p(= Ri

pCi
p) in the denominator. The parent function

Fig. 7. Evolution of average RMSE in estimation and measurement prediction
across 20 trials over various cell numbers.

f (x) = (1/x) has the derivative f ′(x) = −(1/x2) with respect
to x. Thus, for changes in x � 1 (i.e., Cp) that occur, the
derivative function confirms that the added error is “small,”
while for x � 1 (i.e., Rp), the added error is “large.”

Fig. 7 plots the estimation error for the different number
of cells, where 20 simulation trials are run for each cell
number. The averages and standard deviations (the error bars)
for both the error of the predicted terminal voltage and the
estimated SOC are shown here. Observing Fig. 7, the average
SOC RMSE increases as more cells are introduced, but levels
off at ≈ 7 · 10−3 as N continues to grow. Meanwhile, the
average predicted measurement RMSE decreases with more
cells, starting at 8 · 10−3 and leveling off at about 3 · 10−3.
For both cases, the standard deviation decreases with more
cells, indicating that the DEKF performs more consistently for
larger N. Because the inclusion of more cells scales down the
measurement by a larger number, measurement noise is more
heavily attenuated, which results in the DAEKF weighing
measurements more favorably in its estimates. As a result,
estimates that rely less on the model are less prone to problems
of accumulated error, ergo smaller average error and smaller.

VIII. SPECIAL CASE WITH HOMOGENEOUS
CELL CURRENT

Up to this point, the calculation of Γ̂ has involved dynamic
balancing currents, requiring its computation to occur online.
However, the case of no balancing currents, that is, u1

k =

u2
k = . . . = uN

k , offers the conversion of the calculation
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to an exclusively offline format. Without loss of generality,
recall (19), where the SOC fitness factor is computed to be

γ̂i
s,k =

ηi

Ci ui
k

1
N

PN
i=1

ηi

Ci ui
k

=

ηi

Ci

1
N

PN
i=1

ηi

Ci

(49)

which is now constant with respect to time. Because cell
capacities and efficiencies are quantities known a priori, the
computation of each cell’s SOC RFF in the case of no
balancing currents can be relegated to an offline computation.
However, the same does not hold for the RFF for relaxation
voltage. Recalling how the voltage RFF is defined in (20), a
similar simplification to the one in (49) can be made if (V i

k/τ
i
p)

is sufficiently small

γ̂i
V,k ≈

ui
k

Ci
p

1
N

PN
i=1

ui
k

Ci
p

. (50)

However, computing γ̂i
V,k in this way incurs a certain amount

of error, which is derived in the following theorem.
Theorem 4: The error incurred in the computation of (2b)

over V i
k+1 is given byˇ̌̌̌
ˇ̌̌−Ts

τi
p

V̂ i,+
k +

Ts

Ci
p

ui
k

0B@1 −

PN
i=1

�
ui

k
Ci

p
−

V̂ i,+
k
τi

p

�
PN

i=1
ui

k
Ci

p

1CA
ˇ̌̌̌
ˇ̌̌ .

Proof: To assess the error involved in using the offline
approximation of γ̂i

V,k, we consider the difference between
the discrete-time voltage update equation (2b) and the voltage
update as recovered from multiplying γ̂i

V,k to the change in the
average (21b)

f1 :=

 
1 −

Ts

τi
p

!
V̂ i,+

k +
Ts

Ci
p

ui
k (51a)

f2 := V̂ i,+
k + γ̂i

V,k∆Vµ,k. (51b)

For brevity, we denote (51a) and (51b) as f1 and f2,
respectively. Substituting the approximation (50) and the actual
value for ∆Vµ,k as defined in (18b) and (51b) is expressed as
follows:

f2 = V̂ i,+
k +

ui
k

Ci
p

1
N

PN
i=1

ui
k

Ci
p

·
1
N

NX
i=1

 
Ts

Ci
p

ui
k −

Ts

τi
p

V̂ i,+
k

!

= V̂ i,+
k +

Ts
Ci

p
ui

kPN
i=1

ui
k

Ci
p

·

NX
i=1

 
ui

k

Ci
p
−

V̂ i,+
k

τi
p

!
. (52)

To compute the error, (52) is subtracted from (51a), and the
absolute value of the result is obtained

e = | f1 − f2|

=

ˇ̌̌̌
ˇ̌̌−Ts

τi
p

V̂ i,+
k +

Ts

Ci
p

ui
k

0B@1 −

PN
i=1

�
ui

k
Ci

p
−

V̂ i,+
k
τi

p

�
PN

i=1
ui

k
Ci

p

1CA
ˇ̌̌̌
ˇ̌̌ .

This completes the proof. �
Referring to Fig. 8, the conversion of computations involv-

ing Γ̂ to an offline format visibly reduces the DAEKF’s FLOPs
required for the time update by ≈ 77%. In particular, the

Fig. 8. Comparison of DAEKF FLOP count between the cases of balancing
currents and no balancing currents.

offline computations remove 41N − 4 FLOPs from the online
computation of the time update, since Γ̂k, Γ̂

†

k , Aµ,k, and Bµ,k
no longer change between time steps.

IX. CONCLUSION

In this article, the dense formulation of the EKF was intro-
duced to address the computational overhead and intractable
resource demands that hinder the sparse EKF. The DEKF’s
framework was developed from the theoretical standpoint,
its equivalence to the sparse formulation demonstrated, the
adaptive step appended to the general algorithm (DAEKF),
and its overall performance assessed from the perspective
of resource consumption as well as the ability to estimate
multiple cells’ state simultaneously. Comparing FLOP count,
the sparse method’s FLOP count exhibited poor scalability
insofar as its proportionality to the number of cells N cubed,
whereas the proposed dense method proved its superiority
with an FLOP count growing linearly with N. To this end,
a slight optimization of the DAEKF was introduced in the
scenario of no balancing currents, where the RFF matrix Γ̂

and adjacent computations can be performed offline. As for
estimating performance, the DAEKF maintained good SOC
estimation for not only the selected five and hundred-cell
cases but over a plethora of cell numbers, where the average
error in the predicted measurement as well as its standard
deviation gradually decreased for larger cell numbers. Future
work directions include: 1) validate the DAEKF’s estimation
ability through hardware experiments which include—but are
not limited to—degraded conditions of one or more cells
and different cell chemistries; 2) event-triggered methods that
employ streamlined methods for slowly changing balancing
currents; and 3) assessing the feasibility of a “dense” OCV-
SOC curve approximation.

APPENDIX

Proof for Theorem 1: First, we prove equivalence for the
SOC update equation. Substituting (18a) and (19) into (21a)

si
k+1 = si

k +

 
−

ηiTs
3600Ci ui

k

− 1
N

PN
i=1

ηiTs
3600Ci ui

k

! 
−

1
N

NX
i=1

ηiTs

3600Ci ui
k

!
= si

k −
ηiTs

3600Ci ui
k

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on June 05,2025 at 13:42:19 UTC from IEEE Xplore.  Restrictions apply. 



NUCULAJ AND CHEN: SIMULTANEOUS CELL STATE ESTIMATION VIA DENSE ADAPTIVE EKF 15

which reproduces (2a). As for the relaxation voltage update
equation, a similar substitution can be made by substituting
(18b) and (20) into (21b), where we get

V i
k+1 = V i

k +

ui
k

Ci
p
−

V i
k
τi

p

1
N

PN
i=1

ui
k

Ci
p
−

V i
k
τi

p

1
N

NX
i=1

Ts

Ci
p

ui
k −

Ts

τi
p

V i
k

= V i
k +

Ts

Ci
p

ui
k −

Ts

τi
p

V i
k =

 
1 −

Ts

τi
p

!
V i

k +
Ts

Ci
p

ui
k

which reproduces (2b). This completes the proof. �

Proof for Lemma 1: Writing out the full form of Γ as
defined in (25) gives

Γ =

�
γ1

s 0 γ2
s 0 . . . γN

s 0
0 γ1

V 0 γ2
V . . . 0 γN

V

�>
.

Observing the full form of Γ, for each nonzero element in a
given column, its corresponding element in the other column
is zero, and vice versa. For this reason, it is clear that the
column vectors of Γ are linearly independent as there is no
nontrivial linear combination of these vectors which equals
the zero vector. Such linear independence of the columns of
Γ guarantees the existence of a left pseudoinverse [36]. Next

Γ>Γ =

�
γ1

s 0 . . . γN
s 0

0 γ1
V . . . 0 γN

V

�
2666664
γ1

s 0
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V
...
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γN
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0 γN

V

3777775
=
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�
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0

PN
i=1(γi

V )2

#
which is symmetric positive definite. Therefore,

�
Γ>Γ

�−1
=
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PN
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�
γi

V

�2

#−1
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2664
1PN

i=1

�
γi

s
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0
1PN
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�
γi

V

�2

3775 .
Next, multiplying (Γ>Γ)−1 by Γ> from the right gives

Γ†

=
�
Γ>Γ

�−1
Γ> =
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1PN
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This completes the proof. �

Proof for Lemma 2: Retaining the definition of Γ† from
Lemma 1, the following is computed:

ΓΓ† =

26666666666666666664
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(53)

Note that ΓΓ† ∈ R2N×2N . For brevity’s sake, we prove
the equivalence of the first element of ∆X̃k. Performing the
computation with the result in (53) gives the following:

∆X̃k(1) =

NX
j=1

�
γ1

s

� �
γ

j
s

�
PN

i=1

�
γi

s

�2 ∆si
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j
s

�
PN

i=1

�
γi

s

�2 γ
j
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PN
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γ

j
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�2

PN
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�
γi

s

�2 ∆sµ,k = γ1
s∆sµ,k = ∆si

k = ∆X(1).

Following the same argument, it can be shown that
∆X̃k = ΓΓ†∆Xk. �
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