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Finally, the following inequality holds:
k−1∑

s=k0

ak−1−seT (s)e(s) ≤ λ2
k−1∑

s=k0

(ca)k−1−swT (s)w(s). (48)

Accumulating both sides of (45) from k = 1 to k = +∞ and
changing the order of summation yields

+∞∑

s=k0

eT (s)e(s) ≤ 1 − a

1 − ca
λ2

+∞∑

s=k0

wT (s)w(s). (49)

By similar analysis for k ∈ [kl + tl , kl+1), the above inequality
also holds. Thus, the l2 gain from the noise signal to the
estimation error is obtained as γ = √

((1 − a)/(1 − ca)) λ.
This completes the proof.
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Weighted Least-Squares Approach for Identification of a
Reduced-Order Adaptive Neuronal Model

Lingfei Zhi, Jun Chen, Peter Molnar, and Aman Behal

Abstract— This brief is focused on the parameter estimation
problem of a second-order adaptive quadratic neuronal model.
First, it is shown that the model discontinuities at the spiking
instants can be recast as an impulse train driving the system
dynamics. Through manipulation of the system dynamics, the
membrane voltage can be obtained as a realizable model that is
linear in the unknown parameters. This linearly parameterized
realizable model is then utilized inside a prediction error-based
framework to design a dynamic estimator that allows for rapid
estimation of model parameters under a persistently exciting
input current injection. Simulation results show the feasibility
of this approach to predict multiple neuronal firing patterns.
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Results using both synthetic data (obtained from a detailed
ion-channel-based model) and experimental data (obtained from
in vitro embryonic rat motoneurons) suggest directions for
further work.

Index Terms— Adaptive spiking behavior, characterization,
parameter estimation, quadratic integrate-and-fire, spiking
neuron.

I. INTRODUCTION

In the past decade, the spiking neuron model has been
extensively researched for computational efficiency. Although,
Hodgkin–Huxley models [1] with tens of ion channels
can accurately reproduce most types of neuronal behavior,
it is difficult to tune hundreds of parameters associated
with such models. Over the last few years, the efficiency
and versatility of spiking neural networks has been exten-
sively demonstrated in literature, e.g., [2]– [10]. However,
it is computationally prohibitive to simulate large networks
based on complex underlying neuronal models-this limitation
effectively restricts neuronal network simulations to only
a handful of neurons at a time [11]. Although a simple
integrate-and-fire model [12] is computationally tractable, it
can only produce a few types of firing patterns [13]. In
[11], a recovery variable is introduced to the simple spiking
model-this variable is intended to capture adaptation by
accounting for the activation of K+ ionic currents and inactiva-
tion of Na+ ionic currents. Such an adaptive quadratic spiking
model has the ability to qualitatively reproduce major types
of firing patterns and is computationally tractable for large
network simulation [13], [14]. Although the adaptive quadratic
spiking model has been discussed at great length in [11], [13],
and [14], a systematic technique to tune the parameters of
such a model to experimental data is, however, still needed.
The importance of characterizing the underlying neuronal
behavior is of critical importance to subsequent estimation of
the weights of a neural network that has one or more types of
spiking neurons as its building blocks. Specifically, [15] states
that the identification problem in a black-box formulation such
as a neural network is more likely to be efficient and successful
if the network parameters (i.e., weights) are estimated post
discovery of the underlying neuronal behavior parameters.

Generally, there are two approaches to match the proposed
model to experimental data - manual and automatic [16]. In
the manual approach, one can manually change the model
parameters to produce the desired biological behavior, e.g., in
[17], by hand-tuning each parameter individually, an adaptive
exponential integrate-and-fire neuron model is tuned to fit a
detailed Hodgkin–Huxley-based model. Although a manual
approach may yield good results, it is labor–intensive and
depends mainly on the researcher’s experience. Furthermore,
it is unrealistic to suppose that one could process all data
comparisons manually [18], thus, automatic parameter esti-
mation methods are necessary. In [19], a database of single-
compartment model neurons is constructed by exploring the
entire parameter space - this approach is only practical when
the parameter space has a low dimension. In [20], several
automatic parameter searching techniques, including conju-
gate gradient, genetic algorithm, simulated annealing, and

stochastic search, are reviewed and compared in fitting a
multidimensional model to experimental data. However, these
methods are computationally expensive since they require a
large number of evaluations of the model.

Motivated by the versatility and computational efficiency
of the adaptive quadratic model given in [11], we propose
a weighted least square based estimation method to automati-
cally estimate the parameters of the aforementioned model. By
casting the discontinuities in the state variables at the spiking
instants as an impulse train driving the system dynamics, the
model can be manipulated such that the neuronal output is
representable as a model which is linear in the unknown
parameters. Furthermore, the model is realizable in that it only
depends on filtered versions of the input current and the output
voltage at the cell membrane. Based on this novel formula-
tion of the model, a weighted least squares-based estimation
approach is able to asymptotically drive the parameter estima-
tion errors to zero even in the presence of measurement noise.

The remainder of this brief is organized as follows. In
Section II, we present the adaptive quadratic model and the
problem statement. Technical details for model manipulation
and the identification mechanism are provided in Section III.
Section IV provides detailed procedure for carrying out the
identification followed by simulation results and discussions.
Appropriate conclusions are drawn in Section V.

II. MODEL

A simple adaptive quadratic spiking model can be described
by the nonlinear state equations [11]

dv

dt
= k1v

2 + k2v + k3 − k4 (u − i) (1)

du

dt
= a(bv − u) (2)

with the post-spike resetting

i f v = Vp, then

{
v → c

u → u + d.
(3)

Here, v denotes the membrane potential and is the output of
the system while u is the immeasurable membrane recovery
state variable. The injected current and/or synaptic current
affect the system dynamics via the input variable i . At the
membrane potential peak Vp, the state variables are reset
according to (3) where c denotes the post-spike reset value of
the membrane potential while d denotes the amount of spike
adaptation of the recovery variable. The parameters k4 and a
denote the time scale of the two state variables, b is the level of
subthreshold adaptation, while k1, k2, and k3 are linked to the
spike initiation behavior of the neuron. The vector of unknown
parameters is defined as θo = (k1, k2, k3, k4,a, b, c, d) ∈ �8.
Our goal is to estimate θo such that the spiking pattern of
the quadratic spiking model of (1)–(3) with the estimated
parameters can replicate the spiking behavior observed in the
simulated/experimentally obtained data.

III. ESTIMATION TECHNIQUE

A. Discontinuities at Spike Times

Motivated by the desire to utilize a prediction error based
automatic estimation method, we first integrate the reset
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discontinuities given by (3) into the state equations of (1) and
(2)-this is done with the purpose of manipulating the system
dynamics into a form that is amenable to linear parameterized
(LP) model development. Since the resetting of the membrane
potential in (3) always happens at the time when v equals to
the peak value Vp , it can be considered as a jump of size
c − Vp , which can be modeled as a step input as follows:

v → v + (c − Vp)s(t − ts j ) (4)

where s(t − ts j ) denotes a unit step at the occurrence of the
j th spike at time ts j . By taking the time derivative of (4), and
combining with (1), one obtains

dv

dt
= k1v

2 + k2v + k3 − k4 (u − i)+ (c − Vp)δ(t − ts j ) (5)

where δ(t − ts j ) denotes a unit impulse at time ts j . Note that
(5) correctly represents the v dynamics ∀ ts j−1 < t < ts j+1 .
It is easy to see that the v dynamics valid over all spiking
instants can be obtained by introducing a train of impulses
into the dynamics as follows:

dv

dt
= k1v

2+k2v+k3−k4 (u − i)+(c−Vp)
∑

j

δ(t−ts j ). (6)

Similarly, the discontinuity in u at a spike instant ts j can also
be modeled as a step input of size d as follows:

u → u + ds(t − ts j ). (7)

Following arguments similar to those made above, and utiliz-
ing (2) and (7), the u dynamics valid over all spiking instants
can be compactly described as

du

dt
= −au + abv + d

∑

j

δ(t − ts j ). (8)

Thus, the dynamics of (1)–(3) have been compactly recast into
the dynamics of (6) and (8).

B. Linear Parameterization

The nonlinear dynamics of (6) and (8) can be further
developed to obtain a linear-in-parameters model that depends
only on measurable variables. By substituting the Laplace
transformation of (8) into that of (6), and applying a low pass
filter of the form

1

A
= 1

s2 + β1s + β0
(9)

to avoid the model dependency on the derivatives of the input
and the output [21], one can obtain the following expression
after rearranging terms conveniently:

V = k1(s + a)L(V 2)

A
+ k4(s + a)I

A
+ k3a

s A

+[(k2 + β1 − a)s + k2a + β0 − k4ab]V
A

+

[
(c − Vp)(s + a) − k4d

]∑
j

exp(−sts j )

A

+ (s + a)v(0)

A
+ k3

A
− k4u(0)

A

(10)

where L(·) denotes the Laplace operator, s denotes the Laplace
variable, while V and I represent the Laplace transform of v
and i , respectively. To reduce parameter dimensionality, the
signals presented in the last row of (10) can be excluded
from further analysis since they do not persist beyond an
initial transient. By a slight abuse of notation, a compact
representation for a LP realizable model is obtained as follows:

v = W
(
v, i, ts j

)
θ (11)

where W
(
v, i, ts j

) ∈ �1×9 is a realizable regression vector
which is defined as follows:

W =
[

s

A
L(v2),

1

A
L(v2),

s

A
V ,

1

A
V ,

1

s A
,

s

A
I,

1

A
I,

s

A

∑
j

exp(−sts j ),
1

A

∑
j

exp
(−sts j

)
] (12)

while θ ∈ �9 is an unknown parameter vector which is defined
as follows:

θ = [k1, k1a, k2 + β1 − a, k2a + β0 − k4ab,

k3a, k4, k4a, c − Vp, a(c − Vp) − k4d
]T

.
(13)

Note that the derived parameter vector θ is an overparameter-
ized by (1) function of the original parameter set θo.

C. Weighted Least Squares Algorithm

Based on the LP model derived above in (11), a prediction
error-based estimation algorithm can be developed. Since
measurement noise is inevitable when dealing with biological
systems, robustness to presence of noise is a primary con-
sideration when choosing an estimation algorithm. Therefore,
algorithms that are not robust under noise, e.g., adaptation laws
based on the gradient of the instantaneous prediction error,
are not considered for implementation. Since least squares
estimation is known to be robust to noise [21], it is pursued
here. We begin by defining a prediction error as follows:

e = v̂ − v = W (·)θ̂ − v (14)

where θ̂ ∈ �9 denotes the parameter estimate vector while v̂ =
W (·)θ̂ denotes the predicted output. The standard objective
function for least squares estimation is given as follows:

J =
∫ t

0
e2(r)dr =

∫ t

0

∥∥∥v(r) − W (r)θ̂ (t)
∥∥∥

2
dr. (15)

It is important to consider the fact that the behavior of the
neuron around the time of spike initiation is much more impor-
tant than its behavior at all other times since our objective
is to predict neuronal spiking patterns. However, since the
contribution of the spike in the function J is rather small
due to its short interval of occurrence compared with the time
of occurrence of pre- and post-spiking activity, the objective
function needs to be weighted. Thus, we redefine the objective
function as follows:

J =
∫ t

0
k(r)e2(r)dr =

∫ t

0
k(r)

∥∥∥v(r) − W (r)θ̂ (t)
∥∥∥

2
dr (16)

where k(t) denotes a weight term which can be chosen
appropriately near the time of spike occurrence. When the
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objective function is minimized (by setting its derivative with
respect to the parameter estimate vector to zero), we obtain

∫ t

0
k(r)W T (r)W (r)dr θ̂ (t) =

∫ t

0
k(r)W T (r)v(r)dr.

By defining

P =
[∫ t

0
k(r)W T (r)W (r)dr

]−1

(17)

one can easily obtain the dynamics for parameter estimation
as follows:

.

θ̂ = −k(t)P(t)W T (t)e (18)

Ṗ = −k(t)PW T (t)W (t)P. (19)

By defining θ̃ = θ̂ − θ ∈ �9 as the parameter estimation
error and utilizing (17) and (18), the time derivative of a
Lyapunov function V1 (t) � θ̃T P−1θ̃ can be found to be
V̇1 (t) = −θ̃T W T W θ̃ , which implies by uniform continuity
arguments and Barbalat’s Lemma [21] that

lim
t→∞ W θ̃ = 0. (20)

If the regressor matrix W is persistently exciting, it implies
that there must exist positive constants α1 and T such
that [21] ∫ t+T

t
W T Wdr ≥ α1 I9 ∀t ≥ 0. (21)

By premultiplying (20) with W T (·) and integrating the equa-
tion for T time units, one obtains

lim
t→∞

∫ t+T

t
W T W θ̃dr = 0 (22)

which implies from (21) that the only solution of (22) is
lim

t→∞ θ̃ (t) = 0.

Remark 1: If parametric drift is observed during estimation,
a robust modification such as σ -modification or projection
modification can be applied to the proposed algorithm.

IV. PROCEDURE AND RESULTS

A. Estimation Procedure

We have tuned the model to match four types of reference
data: 1) membrane voltage data from the adaptive quadratic
model itself-this is used to test the validity of our approach;
2) noisy version of membrane voltage data from the adaptive
quadratic model-this is to test the robustness of the proposed
method; 3) membrane voltage data from a detailed ion-
channel-based (Hodgkin–Huxley type) model; and 4) in vitro
experimental data collected in our laboratory from embryonic
rat motoneurons.

The injected current input i needs to be properly designed to
ensure the persistent excitation of the regression matrix W (·)
of (12), which is a prerequisite for the estimated parameters
to converge to their true values. Since a reference containing
a single sinusoidal frequency can estimate two parameters for
linear system dynamics [21], and the square nonlinearity in
the output generates extra excitation as well, a combination of
sinusoids at four different frequencies is utilized to estimate

the parameter vector of (13). Specifically, the waveform type
employed for generating the input i is given as follows:

i = I1 sin(ω1t)+ I2 sin(ω2t)+ I3 sin(ω3t)+ I4 sin(ω4t) (23)

where Ii and ωi ∀ i = 1, 2, 3, 4 denote the amplitudes and
frequencies of the underlying sinusoids, respectively.

Given the reference data generated through (23) and the
recorded output v, the data is processed to determine Vp and
the spike instants ts j . To obtain the regression signals (12), the
parameters for the low-pass filter of (9) are designed so that
the cut-off frequency of the low-pass filter is upperbounded
by the measurement noise in the system and lowerbounded
by the highest frequency of the input current. The estimation
algorithm is implemented according to (14), (18), and (19).1

The identification algorithm is switched on at t = 20 ms
in order to allow for the transient effects to pass as dis-
cussed below (10). After estimation, the original parameters
θo = (k1, k2, k3, k4, a, b, c, d) need to be retrieved from the
estimated-derived parameter vector θ̂ . According to (13), the
relationship between the original parameter and derived para-
meter θ can be represented as a nonlinear function θ = θ(θo).
A nonlinear equation solver or an optimization algorithm (e.g.,
nonlinear optimization toolbox in MATLAB) can be utilized
to select the best value for θo that minimizes the difference
between θ(θo) and estimated θ̂ . Finally, to evaluate the validity
of the estimated model parameters, either step or periodic input
currents are utilized to compare membrane voltage data from
actual and estimated system models.

B. Results from Quadratic Reference Data

In this section, we identify the model parameters based
on reference data generated by the quadratic model itself-
here, the membrane voltage measurements are assumed to be
noiseless. For the reference data generation, the parameters for
the injected current (23) are chosen as follows:

I1 = 3.9 I2 = 13 I3 = 9.1 I4 = 15.6
ω1 = 0.5 ω2 = 2.25 ω3 = 2.0 ω4 = 2.5

where the units of currents and frequencies are nA and
rad·ms−1, respectively. Given this reference input signal,
various sets of model parameters are utilized to generate
corresponding membrane potential waveforms in order to
demonstrate the versatility of the approach. We first present
identification results from a rapidly adapting receptor (i.e.,
receptor initially fires and then quickly stops firing in response
to steady input), data for which are generated by using model
parameters as follows:

θo = (0.04, 5, 140, 1, 0.02, 0.2,−65,−0.5).

Fig. 1(a) shows the output of the exact model to the
injected reference sinusoidal input current with the parameters
described above, as well as the predicted behavior in the
estimation process. The rapid convergence of parameters is

1As stated in [21], from an information theoretic perspective, P denotes the
estimation covariance matrix, thus, P(0) should be chosen to represent the
covariance of the initial parameter estimates. In the absence of this knowledge,
P (0) was chosen to be diagonal for simplicity.
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Fig. 1. (a) Spike trains of target data and prediction of a rapidly adapting
receptor during identification process. (b) Rapid convergence of estimated
parameters. (c) % estimation error of parameters.
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Fig. 2. Validation results. (a) Spike trains of target and prediction data for
the rapidly adapting receptor under step input. (b) Spike trains of target and
prediction data for a tonic bursting neuron under step input.

shown in Fig. 1(b) while relative parameter estimation errors,
defined as

(
θ̂/θ −1

)
× 100%, are shown in Fig. 1(c). The

convergence of the prediction error is clearly implied from
the significant similarity in the two spiking trains in Fig. 1(a).
For validation of our identified model, a step current i =
3.5 nA was applied to the exact and the estimated quadratic
models. Fig. 2(a) shows that the prediction emulates the rapid
adaptation behavior of the exact model as expected, in fact, the
prediction correctly estimates the firing pattern and the firing
rate.

We next considered another important firing pattern, namely,
tonic bursting, which can be found in the chattering neurons
in the cat neocortex [22]. To generate the reference data for
identification, the model parameters were chosen as follows:

θo = (0.04, 5, 140, 1, 0.02, 0.2,−50, 2).

To evaluate the efficacy of the identification, a 15-nA step
input current was applied to both models. The prediction in
Fig. 2(b) is shown to have a small delay as compared with
the reference, however, the prediction successfully follows the
pattern of target data. Furthermore, the information encoded
in the interspike frequency is conserved, both the target and
prediction show ∼20 bursts/s while the firing frequency within
a burst is ∼2.5 spikes/ms.

C. Results from Noisy Quadratic Reference Data

To simulate noise in a biological system, the reference
membrane potential data obtained from the exact quadratic
model was corrupted by adding white noise with an SNR of
40 dB. The result for a neuron which fires with decreasing
frequency is shown in Fig. 3. The model parameters were

θo = (0.04, 5, 140, 1, 0.02, 0.2,−65, 2).
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Fig. 3. (a) Spike trains of target data and prediction of a rapidly adapting
receptor under noise during the estimation process. (b) Rapid convergence of
estimated parameters. (c) % estimation error of parameters. (d) Spike trains
of target and prediction data under step input.

The sinusoidal input fed for identification is the same as
described above. A step input of i = 12.5 nA was injected for
validation. Fig. 3 shows that the proposed approach is robust
to noise although there is a slight amount of under-adaptation
in the prediction curve under step input. However, the firing
pattern and rate are successfully predicted with accuracy.

D. Results from Hodgkin–Huxley Model Data

In this section, the goal was to estimate quadratic model
parameters that would replicate spiking patterns from a
detailed ion-channel-based (Hodgkin–Huxley type) model [23]
with parameters from [24]. The injected current parameters for
generating reference data were chosen as

I1 = 2.1 I2 = 7.0 I3 = 4.9 I4 = 8.4
ω1 = 0.5 ω2 = 2.0 ω3 = 2.25 ω4 = 2.5

where the units of current and frequency are as before. The
weight term k defined in (16) was chosen to be time-varying
during the spiking intervals (weighted 2 initially and then
decaying proportional to the square of the spike number) while
it was chosen to be 1 everywhere else. Under sinusoidal input
injection given by (23), the rapid convergence of parameters
in the estimation process and the match between adaptive
quadratic model and detailed regular spiking model are shown
in Fig. 4. Evidently, the firing rate and pattern between the
target and the prediction are remarkably close. While the
prediction results are acceptable when the input waveform
used for validation is of similar type as in the identification,
we were not able to replicate the experimental behavior under
a step input. We discuss this issue at length in Section IV-F.

E. Results from Experimental Data

In this section, we show the ability of the estimated model
to replicate in vitro experimental data using embryonic rat
motoneurons. Primary cultures of embryonic rat motoneurons
were prepared according to NIH guidelines and in agree-
ment with the Institutional Animal Care and Use Committee
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Fig. 4. (a) Spike trains of target data from a detailed ion-channel based model
and prediction in the estimation process. (b) Rapid convergence of estimated
parameters. (c) Spike trains of target data and prediction during validation
process.
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Fig. 5. (a) Spike trains of target data from in vitro embryonic motoneuron
and prediction in the estimation process. (b) Rapid convergence of estimated
parameters. (c) Spike trains of target data and prediction during validation
process.

approved protocol. Voltage recordings were acquired by per-
forming conventional whole-cell patch clamp on the cultured
cells between days 7 and 14 in culture. The extracellular
solution was Neurobasal culture medium, with pH adjusted to
7.3. Patch pipets were filled with intracellular solution. Signals
were filtered at 3 kHz and digitized at 10 kHz with an Axon
Digidata 1322A interface. Data recording and initial analysis
were performed with pClamp 10 software (Axon). The injected
current parameters for generating the sinusoidal reference data
were chosen as

I1 = 0.075 I2 = 0.25 I3 = 0.175 I4 = 0.3
ω1 = 0.05 ω2 = 0.225 ω3 = 0.2 ω4 = 0.25

where the units of current and frequency are as before. The
weight term k was chosen in the same manner as described
above in Section IV-D. Fig. 5(a) shows the reference data
and the prediction during the model identification phase.
Fig. 5(b) shows rapid convergence of parameter estimates.
From Fig. 5(c), it is clear to see the match between the target
and prediction data during model validation. The target firing
rate and pattern are successfully reproduced. As was the case
in Section IV-D, we were unable to replicate the behavior of
the motoneuron under step input.

F. Discussion

The results for prediction of reference data generated from
the quadratic model itself show good prediction and robustness

under noise, which demonstrate the efficacy of the estima-
tion algorithm and approach. However, the prediction of the
detailed ion-channel model and experimental data merits more
discussion. Specifically, there are differences between the data
obtained from the detailed model and the assumptions made
by the quadratic model of [11]. For example, the downstroke
of the spike in the detailed ion-channel-based model is akin to
a downhill ramp toward its resting value instead of a hard reset
as assumed in the quadratic model. In fact, our observations
of the estimates suggest that the penultimate term in (12) is
appropriated by the estimator to match data from the upstroke
of the spike whereas its intended purpose in the quadratic
model is to capture the downstroke, or resetting. Furthermore,
the final term in (12) is appropriated by the estimator to
match data from the downstroke of the spike while its intended
purpose in the quadratic model is to capture adaptation effects
in the neuron. These observations suggest the need to do
one of the following: (1) to pre-process the output of the
detailed model to replace the ramp-like downstroke with a
hard reset - this is acceptable because we are interested merely
in replicating firing patterns and not subthreshold oscilla-
tion, or shapes, of action potential, however, this requires
a priori knowledge of the reset voltage; and (2) to replace
the hard reset term in (12) with a ramp-like term, however,
this would require an adjustment in the quadratic model to
suspend the original system dynamics during that interval.
Moreover, in addition to utilization of weights to enforce
good estimation of the behavior around the spike instants,
hard bounds could be enforced on estimates for parameters
whose signs are known a priori in order to ensure better
prediction, e.g., the parameter encoding for reset after a spike
should be upperbounded by zero. In general, we remark that
system identification theory states that the best approximate
(i.e., reduced-order) description of a system depends on the
particular type of input used [15]. Specific to the adaptive
quadratic model of [11], we remark that it can qualitatively
reproduce a slew of neuronal firing patterns, however, as stated
in [14], the model cannot quantitatively represent the upstroke
of a spike unless a voltage-dependence of parameters is
assumed.

We note that the exact spike time is highly sensitive to
parameter estimation error, i.e., the results suggest that even
small percentage errors in parameter estimation might cause
the spike location of the prediction and the reference to be
mismatched, however, the firing rate and patterns are not
very sensitive to parameter estimation. It is actually more
important to replicate the rate of firing and the pattern
since mean firing rate carries information about experimental
conditions, furthermore, a specific firing pattern may convey
significant behavioral information [25] and, for large net-
works of spiking neurons, the firing rate of each neuron in
the network is a function of the firing rates of all other
neurons [26]. In any case, due to inherent noise in experi-
mental environments, perfect estimation is nearly impossible.
Furthermore, it is more practical to determine a parameter
distribution, since experimental data under different condi-
tions suggest that there is a stochastic variable in neuronal
activity [27].
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V. CONCLUSION

In this brief, a weighted least squares approach to estimate
parameters in a quadratic spiking neuron model has been
proposed. Several tests were run to demonstrate the robustness
of this approach to noise. Results on detailed simulation and
in-vitro experimental data suggested directions for improve-
ment. Compared with existing methods, the proposed method
is systematic and computationally inexpensive, this was
expected to significantly speed up characterization for bio-
logically relevant neuronal models. Future work will focus
on model modification so it can explain detailed simula-
tion/experimental data under different input types.
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Complete Synchronization of Boolean Networks

Rui Li and Tianguang Chu

Abstract— We examine complete synchronization of two deter-
ministic Boolean networks (BNs) coupled unidirectionally in the
drive–response configuration. A necessary and sufficient criterion
is presented in terms of algebraic representations of BNs. As a
consequence, we show that complete synchronization can occur
only between two conditionally identical BNs when the transition
matrix of the drive network is nonsingular. Two examples are
worked out to illustrate the obtained results.

Index Terms— Boolean networks, complete synchronization,
nonsingularity.

I. INTRODUCTION

Boolean networks (BNs) have been used extensively as
abstract modeling schemes for complex systems such as gene
or protein webs, neural networks, and biological evolution
models [1]–[5]. In a BN, the state of each node is described
by a binary variable, where a value of 1 (resp., 0) means that
the node is ON (resp., OFF), and every node updates its state
according to a logical relationship, given in the form of a
Boolean function, with other nodes in the network. Although
BNs are rather simple models of real systems, they can provide
a general description of the behavior at system level in most
cases [6], [7]. It is therefore of interest to investigate BNs
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