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Abstract— The driving safety of automated vehicles is largely
dependent on accurately predicting the motions of surrounding
vehicles. However, the existing approaches invariably neglect the
impact of the ego vehicle’s future behaviors on the surrounding
vehicles and lack model explainability for the prediction results.
To tackle these issues, a hybrid trajectory prediction framework
based on long short-term memory (LSTM) encoding is proposed.
It introduces a reactive social convolution structure to model
the planned trajectory of the ego vehicle with the historical
trajectories of the surrounding vehicles to reduce uncertainty in
potential trajectories. Furthermore, a spatio-temporal attention
mechanism is presented to quantitatively describe the contri-
butions of historical trajectories and interactions among the
surrounding vehicles to the prediction results by appropriate
weights setting. Finally, the proposed scheme is comprehensively
evaluated based on the NGSIM and HighD datasets. The results
demonstrate that the proposed approach can elucidate the predic-
tion process from a spatio-temporal perspective and outperform
other state-of-the-art methods under different traffic scenarios.
The root-mean-square errors on the NGSIM and HighD datasets
are reduced to less than 3.65 m and 2.36 m over a time horizon
of 5 s, respectively. The qualitative analysis on the reliability and
reactivity is also presented.

Index Terms— Automated vehicles, interaction, long short-term
memory (LSTM), trajectory prediction.

I. INTRODUCTION

AUTOMATED vehicles (AVs) have emerged as a sig-
nificant trend in the automotive industry. In order to

operate safely and efficiently, AVs require accurate predic-
tion of the future trajectories of the surrounding vehicles.
Trajectory prediction acts as a bridge between the perception
and decision modules, allowing vehicle to better understand
its surroundings and make proper decisions about driving
behaviors [1], [2]. Despite the increasing interest in predicting
the trajectories of surrounding vehicles in autonomous driving
applications, ensuring prediction accuracy and reliability still
faces great challenges [3], [4].
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Fig. 1. Illustration of the traditional trajectory prediction and the proposed
trajectory prediction approach: (a) and (b) show the corresponding frameworks
and the corresponding driving performance in a dense traffic scenario,
respectively. Specifically, the ego vehicle with the traditional method struggles
to merge into the left lane since it cannot reason about how other agents
would react to its candidate trajectory, while the proposed trajectory prediction
method compresses the target agent’s free space and reasons that the target
agent would slow down, allowing it to perform a safe lane merge maneuver.

Many approaches adopt the “perception–prediction–
planning” workflow as illustrated in Fig. 1(a). In this
process, the perception module detects the motion states of
surrounding vehicles, the prediction module forecasts their
possible future paths, and the planning module creates a
collision-free trajectory based on the information collected by
the perception and prediction modules. However, this method
assumes that the behaviors of the ego vehicle have no impact
on other vehicles and neglects the interactions between
vehicles, which would remarkably compromise its efficacy in
dense traffic situations [5]. For instance, as shown in Fig. 1(a),
it is difficult for the ego vehicle to merge into the left lane
in heavy traffic conditions due to neglecting the influence of
the ego vehicle’s behaviors on the predicted paths of other
vehicles. On the other hand, human drivers always anticipate
potential actions of other drivers based on their maneuvers,
as indicated in Fig. 1(b). Thereby, forecasting future
trajectories can be regarded as a process of restricting the free
driving space of a vehicle, which is closely related not only
to the prediction accuracy [6], but also to the reactive quality
of the prediction. In addition, vehicle trajectory variations are
subject to the interactions with other surrounding vehicles in
addition to the vehicle’s historical trajectory. For instance, the
correlation of different surrounding vehicles for prediction
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cannot be efficiently generalized. However, analyzing and
quantifying such abstract concepts are lacking in the existing
literature, and this leads to poor model interpretability. In a
nutshell, the existing trajectory prediction methods still face
great challenges in improving prediction accuracy and model
interpretability.

To address these challenges, numerous studies have been
directed to developing enabling trajectory prediction meth-
ods that consider the interactions among multiple vehicles.
These can be generally categorized into three groups: model-
based, maneuver-based, and learning-based approaches [7].
Model-based methods use vehicle kinematic or dynamic mod-
els in conjunction with filtering algorithms, such as Kalman
filters, for trajectory prediction [8], [9], [10]. They are com-
putationally efficient and typically effective in predicting
trajectories in a time frame of one or two seconds. However,
these methods exhibit reduced accuracy over long prediction
horizons, which limits the autonomy of AVs in heavy traffic
situations. Maneuver-based methods segment vehicle motion
into longitudinal and lateral driving behaviors to achieve
multimodal predictions. The well-established methods mainly
include the Bayesian networks [9], Monte-Carlo method [10],
and hidden Markov models [11]. As maneuvers are manually
defined, they are often interpretable. However, the level of
detail involved in maneuver classification increases substan-
tially with the increasing complexity of traffic scenarios [12].
Consequently, it requires significant manual calibration and
enormous computational resources.

Many deep-learning-based methods have been developed for
vehicle motion prediction, including noninteractive prediction,
multiagent interaction modeling, and reactive prediction meth-
ods [13], [14], [15], [16], [17]. Given that vehicle behaviors
are interrelated especially in dense traffic scenarios, this study
proposes deep learning pattern-based methods to account for
these interrelationships. Noninteractive prediction methods use
recurrent neural networks and their derivatives, such as long
short-term memory (LSTM) networks, for sequence modeling
and generation [18], [19]. These methods can extract long-term
relationships between different features and model their mutual
reliance [20], [21]. While such methods have been proven
effective, they may struggle to capture the underlying inter-
actions in complex traffic scenarios. Assuming that vehicles
can influence each other’s behaviors, the prediction models
that consider intervehicle interactions treat vehicles as inter-
active agents to account for inherent motion uncertainty with
multiple agents while simulating their interactions through
proper neural network models. For instance, a social pooling
mechanism with multimode distributions [22], [23], [24] was
proposed to achieve high prediction accuracy. The interactions
among multiple agents were simulated through graph neural
networks in [25], [26], and [27]. Additionally, generative
adversarial networks (GANs) have made great progress in cap-
turing intractable high-dimensional probabilistic distribution.
On top of this, the social GAN [28], [29], [30] manipulated
social interactions among agents and the constraints from the
scene context via convolutional fusion operation retain the
spatial structure of agents. However, the game among multiple
vehicles and the correlation between two trajectories need

to be analyzed by using other methods. Hence, to fit the
correlations of different interactions in traffic, attention-based
mechanism schemes [31], [32], [33], [34] are extended based
on the structure of convolutional social pooling to analyze
traffic scenes by modeling interaction features among multiple
vehicles and incorporating multisource information including
soft and hard attention [35] and environment attention [36].
These structures are effective in improving prediction accuracy
but cannot provide quantitative descriptions about interrelated
trajectories and interactions among multiple vehicles, result-
ing in an insufficient model explanation. Reactive prediction
methods present several end-to-end planning frameworks that
integrate environmental perception, behavior prediction for the
target vehicle, and trajectory planning for the ego vehicle
in a comprehensive model to characterize their interactions
while efficiently reducing prediction uncertainty. These meth-
ods include semantic occupancy graphs [38], behavioral cost
graphs [39], and energy models [40]. Several studies [41], [42],
[43], [44], [45] have tried to incorporate the behaviors of the
ego vehicle into the trajectory prediction process. For example,
Huang et al. [44] developed a decision-making framework
using online learning for an interaction-aware motion pre-
diction model, resulting in high success rate. Furthermore,
Huang et al. [45] proposed a differentiable integrated pre-
diction and planning framework to obtain reactive trajectories
similar to those of a human driver. These findings imply that
decision-making performance is strongly influenced by the ego
vehicle’s future plans.

Although the combination of learning-based methods and
attention mechanisms have been periodically reported in the
literature, the potential impact of the interactions between the
ego vehicle and its surrounding vehicles on the prediction
system has not been sufficiently accounted for. This may
lead to ineffective assessment of different driving behaviors
and significant prediction errors especially in dense traf-
fic flows. Additionally, the existing methods rarely provide
the quantitative descriptions about the long-term information
embedded in historical trajectories, the impact of the ego
vehicle’s future plans, and the interactions among multiple
vehicles. These limitations can curtail prediction accuracy
and result in poor model interpretability. To address these
challenges, this study proposes a hybrid trajectory prediction
framework that uses a spatial-temporal attention mechanism
and incorporates the planning information of the ego vehicle.
The exclusive contributions of this study can be summarized as
follows.

1) A convolutional pooling model is proposed to model the
interaction between the planned trajectories of the ego
vehicle and the historical trajectories of the surrounding
vehicles. This can reduce the prediction uncertainty and
thus improve trajectory prediction accuracy by integrat-
ing the planned information into the prediction process,
especially in highly interactive traffic scenarios.

2) An attention mechanism is proposed to identify the
contributions of historical trajectories, target vehicles,
and surrounding vehicles at both temporal and spatial
levels to improve the accuracy and interpretability of
trajectory prediction. By emphasizing the key factors
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Fig. 2. Architecture of the proposed hybrid trajectory prediction method. A n × m grid is defined for the social interaction range among all vehicles associated
with the ego vehicle, with n denoting the distance in the longitudinal direction of the lane and m denoting the lateral distance perpendicular to the direction
of the lane. The target vehicle is set in the area centered on the ego vehicle (red square) during the input stage, followed by using the encoder to encode the
vehicle in the target-centered region to obtain the encoding information of each vehicle motion. These hidden states are then transmitted simultaneously to
two key modules: (a) reactive social convolution module, which learns the interactions of the ego vehicle with other vehicles and (b) spatial-temporal attention
module, which captures spatio-temporal interactions among vehicles. Further, the kinematic feature of the target vehicle is extracted by the FC layer. All the
encoding information is integrated into a final tensor V . Finally, the multimodal trajectory distribution is performed through an LSTM-based encoder-decoder
framework.

with significant contributions, this approach can lead to
more reasonable and accurate trajectory prediction.

3) The proposed hybrid trajectory prediction framework
explains the actions of other vehicles in response to the
future plans of the ego vehicle from a spatio-temporal
perspective, which allows for better understanding
of the driver’s decision-making process and informs
the development of more efficient automated driving
systems.

The remainder of this article is structured as follows.
Section II introduces the proposed prediction method that
includes the preliminaries, the reactive social convolution
model, and the attention mechanism. Section III provides the
primary experimental data and discusses the prediction results.
Lastly, Section IV concludes this article and discusses future
research directions.

II. HYBRID TRAJECTORY PREDICTION WITH AN
ATTENTION MECHANISM

Most existing methods for predicting the trajectories of
surrounding vehicles often assume that the ego vehicle is a
static traffic participant. However, AVs are controlled dynamic
participants in real traffic scenarios relative to the surrounding
vehicles, and their planned trajectories can affect the future
states of the surrounding vehicles, leading to significant errors
for the trajectory prediction of the surrounding vehicles.
To address this issue, a hybrid trajectory prediction frame-
work is proposed to describe how the ego vehicle interacts
with the surrounding vehicles during trajectory prediction
when it has a motion trend. It is established based on the
convolutional pooling model due to its inherent advantages
in capturing spatial interdependencies among multiple vehi-
cles. Additionally, a temporal-spatial attention mechanism is
designed for interpretable prediction, which quantifies the

interrelational features of trajectories and the interactions
among multiple vehicles by introducing appropriate attention
weights.

The schematic of the proposed prediction framework is
shown in Fig. 2. It comprises of the ego vehicle vego, the
target vehicle set V tar (see red box in Fig. 2), and the
neighboring vehicle set V nbrs (see nonred box in Fig. 2).
For the ego vehicle, the vehicle in its grid, whose trajectory
we are predicting, is regarded as the target vehicle. For the
target vehicle, the vehicles in its grid are considered as the
neighboring vehicles (including the ego vehicle) that interact
with it.

The vehicle’s trajectories are fed into the model via the
stack. The encoder first utilizes LSTM to obtain the hidden
state of the ego vehicle’s motion trend within the target-
vehicle-centered region and the hidden states of the historical
trajectories of the target vehicle and its neighboring vehicles.
These hidden states are then transmitted simultaneously to:
1) the reactive social convolution module (Section II-B) for
capturing the interactions among the planned trajectory of
the ego vehicle, the predicted trajectory of the target vehicle,
and the history trajectories of the neighboring vehicles and 2)
the spatio-temporal attention module (Section II-C) for char-
acterizing the spatio-temporal interaction features among the
involved vehicles. They calculate the contributions of the ego
vehicle’s historical trajectories at different moments and the
interactions among different vehicles to the current prediction.
At the same time, the encoded information of the target vehicle
is extracted by a fully-connected (FC) layer to represent its
kinematic features. Then the information of each module
is integrated into a final tensor V , and a maneuver-based
decoding is further utilized to generate multimodal trajectory
distributions in the future horizon (Section II-D). Specifi-
cally, the final tensor is transformed into longitudinal and
lateral driving behaviors using two linear transformations. The
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driving behaviors are the outputs in probability form using
a softmax function and their multiplication results in the
maneuver probability. The final tensor is also concatenated
with the maneuver probability to predict the trajectory for each
maneuver through the decoder. Finally, the details of the model
training and implementation are presented in Section II-E.

A. Preliminaries

1) Problem Formulation: The prediction framework
assumes that the ego vehicle can accurately detect or measure
the trajectories of its surrounding vehicles via sensors and
storage them as discrete series of waypoints. Therefore, the
objective of trajectory prediction is to forecast the future
movements of other vehicles in close proximity, which is
referred to as the target vehicle. Let

X tar
i =

{(
x tar

i , ytar
i

)
∈ R2
|i = −Tobs, . . . , − 1, 0

}
(1)

where X tar
i denotes the historical trajectory of a target vehicle

within a certain ego-vehicle-centered area Otar and an observ-
able time domain Tobs, including the longitudinal coordinate
x tar

i and the lateral coordinate ytar
i . The motions of neighboring

vehicles can also significantly influence the trajectory predic-
tion for a specific target vehicle, which can be formulated as

Xnbr
i =

{(
xnbr

i , ynbr
i

)
∈ R2
|i = −Tobs, . . . , − 1, 0

}
(2)

where Xnbr
i denotes the historical trajectories of the neigh-

boring vehicles within a target-vehicle-centered region Onbrs.
As there are frequent interactions between the target and the
ego vehicle, the influence of the ego vehicle’s motion trend
on other vehicles cannot be neglected [13]. Hence, the motion
trend of the ego vehicle is used as an informed feature, which
can be given by

Xego
i =

{(
xego

i , yego
i

)
∈ R2

∣∣i = 1, 2, . . . , Tpred
}

(3)

where Xego
i represents the vehicle’s trajectory composed

of longitudinal and lateral coordinates, which can also be
regarded as the planned trajectory of the ego vehicle in the
prediction horizon Tpred. The task of the prediction framework
is to calculate the future trajectory for the target vehicle in the
prediction horizon. Thus, the corresponding coordinates of the
predicted future trajectory are given by

Ŷ tar
i =

{(
x tar

i , ytar
i

)
∈ R2

∣∣i = 1, 2, . . . , Tpred
}

(4)

where Ŷ tar
i denotes the future trajectory of the target vehicle

in the prediction horizon.
Overall, the prediction framework is to simultaneously

obtain the posterior distribution P(Y |Xnbr
i , X tar

i , Xego
i ) of the

future trajectories Ŷ tar
i of multiple target vehicles, in which

the historical trajectory information of target vehicles and
neighboring vehicles and the planning information of the ego
vehicle are considered in the prediction process.

2) LSTM-Based Encoder-Decoder Network: LSTM can
effectively alleviate the long-term reliance on continuous
sequences. It incorporates three mutually coordinated gate
structures to propagate cell state, and thus avoids gradient van-
ishing or explosion when the information is back-propagated
in a sequence. Specifically, the forget gate f t retains the

Fig. 3. Schematic and calculation process of LSTM.

Fig. 4. LSTM-based encoder-decoder network architecture.

valuable state information in time series; the input gate i t

identifies the necessary information in the network propa-
gation and constructs a candidate vector for the subsequent
state; the output gate ot outputs the relevant information
valuable to the current state. An LSTM cell structure is shown
in Fig. 3. Their formulations are given by

f t = σ(W X f X t +W h f ht−1 + b f ) (5)
i t = σ(W Xi X t +W hi ht−1 + bi ) (6)

c̃t = tanh(W Xc X t +W hcht−1 + bc) (7)

ct = f t · ct−1 + i t · c̃t (8)
ot = σ(W Xo X t +W hoht−1 + bo) (9)
ht = ot · tanh(ct ) (10)

where σ is the sigmoid activation function; f t , i t , and ot are
the forget, input, and output gates, respectively; X t and ht−1
are the current input and previous hidden states, respectively;
and ct is the cell state that enables the information to be
forgotten or added in. The final output ht is obtained by
multiplying the elements of tanh(ct ). The parameters to be
learned are the weights and bias represented by [W∗, b∗].
LSTM has been widely adopted to solve practical problems
via an encoder-decoder architecture due to the ability to retain
temporal information. The encoder-decoder design extract
intrinsic representational information from input sequences
and maps them to unequal-length output sequences, making it
easy to implement vehicle trajectory prediction on highways.
As shown in Fig. 4, the encoder sends time sequence informa-
tion to LSTM, which produces the corresponding tensor and
calculates the encoded information ct and ht . The decoder
generates the predicted result OTobs+1 corresponding to the
current input Xobs based on the configured node parameters,
with the prediction process being recursive.
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Fig. 5. Schematic of the proposed reactive social convolution module. The
future trajectories of ego vehicles in the scope of social interaction are encoded
as the planning tensor with the historical trajectories of other vehicles as social
tensors. Both of them are placed in the corresponding grid cell to retain the
spatial relationships of all vehicles. Then the convolutional pooling structure
is further employed for fusion.

B. Reactive Social Convolution Module

For the purpose of tackling the interactions among multiple
vehicles, a reactive social convolution mechanism is developed
in this study. Specifically, the hidden states of all the involved
vehicles, which mainly include the embedding information of
V tar, the social interactions between V tar and V nbrs, and the
potential spatial occupation relationship between the planned
trajectory of vego and the predicted trajectory of V tar, are com-
prehensively considered here to predict the waypoint sequence
of the target vehicle. The overall architecture is depicted in
Fig. 5, and the details are given as follows.

First, the global coordinates of the planned and historical
trajectories of vego and V nbrs are preprocessed as relative
coordinates with respect to the target vehicle for calculation
simplification. To track the trajectory characteristics of the
input data as accurately as possible, these trajectories are
embedded by a nonlinear transformation to obtain independent
motion embeddings. Then the embedded trajectory informa-
tion is further encoded in the LSTM network to obtain the
hidden state h(·) that can be used as the motion encoding
to fulfill the prediction network requirements. It is worth
noting that the planned trajectories Xego are processed in
a reverse order to cooperate with the historical trajectory
sequence. Therefore, independent LSTM models with different
parameters are utilized to encode Xego, X tar, and Xnbr due to
their different time-domain characteristics. This process can
be formulated as

htar
t = LSTMenc

(
Emb

(
X tar

t

))
hego

t = LSTMenc
(
Emb

(
Xego

t
))

hnbr
t = LSTMenc

(
Emb

(
Xnbr

t

)) (11)

where Emb() is the FC layer that embeds x and y coordinates
into higher dimensions and LSTMenc() is the LSTM encoder
employed in this model; htar

t , hnbr
t , and hego

t denote the hidden

states corresponding to the target vehicle, neighboring vehicle,
and ego vehicle, respectively.

Second, the spatial interaction relationship is modeled
between the planned and historical trajectories. As mentioned
above, LSTM encoders are capable of capturing the temporal
structure of sequential trajectories; but they are insufficient in
characterizing the spatial interactions among participants in a
defined traffic scenario. Motivated by Deo and Trivedi [23]
and Hasan et al. [47], this study develops a hierarchical con-
volutional social pooling structure to model spatial interactions
among multiple vehicles. Since the planned and historical
trajectories belong to different time domains, this method
constructs two target-centered spatial grids and then places
the encoding vectors hnbr

t of the historical trajectories in the
corresponding grids of the lower branches, while the encoding
vectors hego

t of the planned trajectories are placed in the grids
of the upper branches (see Fig. 5), which are also labeled as
the planning and the observable tensor, respectively. Then the
kinematic information htar

t of the target vehicle is embedded
by the FC layer network to obtain the target tensor M , which
is given by

M t = FC
(
htar

t

)
. (12)

Finally, the planning and the observable historical tensor are
simultaneously combined to fully account for the motion trend
of the ego vehicle in the prediction process. The convolution
and pooling layers featuring retained local spatial structure
are employed to handle the planned and observable tensors in
parallel to obtain the social tensor, which can not only model
multivehicle interactions in terms of spatial properties, but also
concatenate the planned and observable tensors through a max-
pooling layer, which is given by

hrea
t = MaxP

(
Soc

(
hnbr

t , hego
t

))
(13)

where Soc() is a two-layer convolutional neural network; and
the corresponding two-layer maximum pooling layer is labeled
as MaxP().

Through the above operation, the merged social context
vector hrea can be combined with the motion encoding M
to realize a rough trajectory prediction. However, it can-
not intuitively explain the interaction differences between
vehicles.

C. Spatial–Temporal Attention Mechanism Modeling

In practical driving conditions, a competent human driver
can focus on essential information related to vehicle driving
safety and perform proper actions in response to environmental
changes. The attention mechanism is designed to imitate this
feature by combining it with an encoder-decoder to quickly
focus on the key information, which enables high-value fea-
tures to be extracted from the dynamic interactions among
multiple vehicles. That is to say, the prediction model can
automatically focus on key information impacting trajectory
changes for reasonable and accurate prediction [37]. As men-
tioned above, the LSTM-based trajectory prediction method
can obtain the corresponding encoded information from the
input trajectories of the involved vehicles. This allows the
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attention module to evaluate the degree of interaction among
multiple vehicles by correlating different encoded information
for interpretable prediction. However, the decoupled attention
model cannot sufficiently capture the spatio-temporal corre-
lated information due to simplifying the embedding part of
the process.

To achieve an explainable prediction for driving behaviors,
this study incorporates a spatio-temporal-coupled attention
mechanism into the prediction model. Specifically, for every
vehicle vi,tar in V tar, the influence of historical and planned
trajectories of its V nbrs is adjusted by the spatio-temporal
learned attention weights. In this work, the attention weights
at the temporal level are utilized to analyze the impact of
historical trajectories of V tar on prediction. Meanwhile, the
attention weights at the spatial level are capable of explaining
the impact of the encoding information of V tar and V nbrs
(including the planning information of vego) on prediction.
Notably, the spatial grid size utilized here aligns with the
reactive social convolution module to ensure that the attention
weights can be provided at the correct spatial grid locations.
The details are presented as follows.

1) Temporal-Level Attention: At time step t , the inputs of
the LSTM encoder are the historical trajectories Xnbr

t and X tar
t

of the neighboring and target vehicles within Tobs steps, and
the hidden state is generated by

Evi
t =

{
hvi

t−Tobs+1, . . . , hvi
j , . . . , hvi

t

}
(14)

where Evi
t ∈ Rd×Tobs denotes the hidden state of each vehicle

vi ; and d is the length of the hidden state. Due to high
nonlinearity, it is hard to directly obtain the correlation of tra-
jectories through a specific measurement technique. Therefore,
a linear transformation is employed to learn the interrelation
of the trajectory, and then the softmax function is introduced
to maximize the temporal attention of the high-contribution
historical moments. The temporal attention weights can be
expressed as

K vi
t = softmax

(
tanh

(
Wα Evi

t
))

(15)

where K vi
t = {α

vi
t−Tobs+1, . . . , α

vi
j , . . . , α

vi
t } represents the

temporal-level attention weights associated with each vehicle
vi in the historical horizon; and Wα represents the learnable
weight.

The context vectors containing temporal information can
be obtained by multiplying the original hidden states and the
corresponding weight coefficients, which can be indicated by

Hvi
t =

t∑
k=t−Tobs+1

α
vi
k hvi

k . (16)

Notably, the temporal weights are calculated from the
corresponding hidden states, and thus the correlation of the
trajectory can be explicitly obtained through the temporal
context vector. As the temporal attention weights K vi

t can
significantly affect the spatial attention weights [34], the value
of the grid cell associated with vi can also be represented
by Hvi

t to calculate the spatial-level attention weights and
be further engaged in the trajectory prediction of the target
vehicle.

2) Spatial-Level Attention: The presented framework is
developed based on the target-vehicle-centered grid. Therefore,
the values of all grid cells at time step t can be represented
by

Lt =
{

l1
t , l2

t , . . . , l N
t

}
(17)

where N represents the total number of grid cells. It should
be noted that when there is a vehicle in the corresponding
grid cell, ln

t needs to be placed on the corresponding grid;
otherwise, 0 is assigned. Consequently, it can be calculated
by

ln
t =

{
Hvi

t , if the vehicle vi locates at grid cell n
0, otherwise.

(18)

For the grid cell of vego, a max-pooling layer is employed to
merge all the information since it is capable of featuring both
historical and planned trajectories. In this way, the planning
information of the ego vehicle can be incorporated at this
stage. To ensure that the weights scales of each neighboring
vehicle and the target vehicle are the same, the spatial attention
weight St is calculated by

St = softmax(tanh(Wβ Lt )) (19)

where Wβ represents the learnable weight; and St =

{ε1
t , ε

2
t , . . . , ε

N
t } represents the weights of the grid cells within

the grid scope. Through the above definition, all the informa-
tion from the target and neighboring vehicles are combined as
a fused tensor, which is given by

Qt =

N∑
n=1

εn
t ln

t . (20)

The fused tensor Qt integrates the trajectory-related hid-
den states, which allows it to be utilized for implementing
predictions through the decoder. Consequently, the fused
spatial-temporal tensor Qt , the merged social context vector
hrea and the motion encoding M are fused as

V t = wQ Qt + wh hrea
+ wm M (21)

and it is fed into the prediction framework to obtain the
predicted trajectory with the spatio-temporal characteristics.
The whole process is illustrated in Fig. 6.

D. Multimodal Future Trajectory Prediction

A maneuver-based decoder is developed to describe the
uncertainty and multimodal properties of different driving
behaviors, which characterizes the distribution of six pre-
defined maneuver classes M = {mk |k = 1, 2, . . . , 6}. The
maneuver classes consist of three lateral behaviors (driving
straight, left lane change, and right lane change) and two
longitudinal behaviors (constant speed and deceleration). The
encoding information V t of the target vehicle is mapped with
the probabilities of the lateral and longitudinal maneuvers
via two softmax functions, which are further multiplied to
obtain the probability P(mk |X) of each complete maneuver.
Furthermore, the involved hidden states of the target vehicle
are concatenated with the one-hot vectors corresponding to the
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Fig. 6. Schematic of the proposed spatio-temporal attention module.

driving behaviors, and then the new combined hidden states
are passed through an LSTM decoder to obtain the predicted
trajectories for each maneuver class. To best describe the
motion uncertainties of the target vehicles in the prediction
horizon, the bivariate Gaussian distribution is employed to
output the probability distribution of the predicted trajectories
instead of the absolute accurate positions, which can be
defined as

Ŷ tar
t =

(
x̂ tar

t , ŷtar
t

)
∼ N

(
µtar

t , σ tar
t , ρ tar

t

)
(22)

where Ŷ tar
t is the predicted trajectory coordinates of the target

vehicle; µtar
t ∈ R2, σ tar

t ∈ R2, and ρ tar
t ∈ R represent the mean

value, the standard deviation, and the correlation coefficient
of the Gaussian distribution at timestamp t ∈ (1, 2, . . . , Tpred),
respectively. Consequently, the posterior probability for all
target vehicles’ future trajectories can be deduced as

P
(
Ŷ tar

t | X
)
= P

((
x̂ tar

t , ŷtar
t

)
| X

)
=

|M |∑
k=1

P2

((
x̂ tar

t , ŷtar
t

)
|mk , X

)
P(mk | X)

(23)

where 2 = [2t+1, 2t+2, . . . ,2t+Tpred ] denotes the Gaussian
parameters over all future time steps for the target vehicles,
corresponding to the means and variances of future locations
and velocities.

E. Training and Implementation Details

Following the strategy to compute loss in [23], the proposed
algorithm is trained by minimizing the negative log-likelihood
(NLL) between the predicted and the ground-truth trajectories
for all target vehicles, which can be given by

−log(P2(Ŷ tar
|mreal , X)P(mreal|X )) (24)

where mreal denotes the true class of driving maneuvers with
X = {Xnbr, X tar, Xego

}. The complete process is summarized
as Algorithm 1.

Algorithm 1 Training Algorithm
Input:

1 ne ← epoch_number; nb ← batch_size;
2 X tar, Xnbr

← historical trajectories of the target vehicle
and neighboring vehicles within the grid scope;
Xego
← the future trajectories of the ego vehicle in the

prediction horizon; Y tar
← ground truth of the target

vehicle’s future trajectory;
3 for i = 1, i ≤ ne do
4 for j = 1, j ≤ nb do
5 Input Xnbr, X tar, Xego to the LSTM encoder for

acquiring historical trajectory encodings
h(Xnbr), h(X tar) and motion feature h(Xego)

of the planned trajectory of the ego vehicle
via Eq.(11);

6 Input [h(Xnbr), h(Xego)] to the reactive social
convolution module to acquire hrea according
to the Eq.(13);

7 Input [h(Xnbr), h(X tar), h(Xego)] to the
attention module to acquire tensor Qt
according to the Eq.(20);

8 Get the dynamics encoding M of the target
vehicle by the FC layer through the Eq.(12);

9 Get the final fused tensor V t by performing
concatenation operation hrea, Qt and M via
Eq.(21), and feed it into the maneuver-based
decoder;

10 Output the maneuver probabilities P(mk |X )

and the corresponding future trajectory Ŷ tar,
and calculate temporal weights K t and spatial
attention weights St according to Eq.(23);

11 Update the NLL of the future trajectories by
descending its gradient for all the target vehicles:
∇2[− log(P2(Ŷ tar|mreal , X)P(mreal|X ))]

For data configuration, each data in the public dataset
specifies a vehicle as vego, and thus the vehicles within the ego-
vehicle-centered areas Otar are defined as the target vehicles.
Similarly, the target-vehicle-centered area Onbrs of each target
vehicle gets the same definition as Otar. For the grid size,
a larger grid size can provide more effective information,
but it may also compromise computational efficiency [15].
Following similar settings proposed by previous studies [23],
[42], the spatial grid in this study is discretized as a 25 ×
5 grid with an actual size of 200 × 35 ft. In practical
application of AVs, trajectory prediction can only be carried
out based on current planning cycle. Hence, a limited number
of waypoints from the actual future trajectory of the ego
vehicle can be applied to represent the planning input Xego.
In the training process, the planning input Xego is derived
from its downsampled actual trajectories for better understand-
ing of the ego vehicle’s motion trends [13]. Furthermore,
a fitted quintic polynomial profile based on actual future
trajectory is implemented for evaluation, which contributes to
its deployment in intelligent transportation systems. Notably,
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Fig. 7. Convergence process of the loss function during training. The two
curves indicate the change in the mean square and NLL errors, respectively.

TABLE I
PARAMETERS AND SIZE IN MODEL TRAINING

rel-pos is adopted as input in the training process. It is a
relative position coordinate referencing the last frame in the
historical trajectory. rel-pos has smaller values than abs-pos
(absolute position coordinates), making it numerically stable
and enabling the model to converge to a smaller range. It also
implies the vehicle’s velocity information, and helps the model
learn hidden features related to velocity [42].

Adam optimizer [48] is used to train the model in an end-
to-end fashion. The batch size is set as 128. Furthermore, the
prediction model is built in the Python environment with a
PyTorch backend and with an Intel Core i9-12900KS CPU
and an NVIDIA GeForce GTX 3090 GPU. The convergence
process of the loss function in the model training process is
shown in Fig. 7, in which the overall downward trend of
the two loss functions demonstrates the convergence of the
proposed model. Some key parameters are listed in Table I.

III. EXPERIMENTAL EVALUATIONS

The effectiveness of the proposed scheme is evaluated based
on the public driving datasets described in Section III-A. The
quantitative comparison results between the proposed scheme
and the state-of-the-art methods (Section III-B) are presented
in Section III-C. Different driving maneuvers of target vehicles
in diverse traffic scenarios are predicted, and comprehensive
driving scenarios are simulated and evaluated to demonstrate
the efficacy of the proposed method. Moreover, a conventional

model-based approach [49] is utilized to generate diverse
planned trajectories in the prediction horizon, with more
results provided in Section III-D for further analysis.

A. Datasets and Metrics

Two public benchmark datasets that record vehicle trajec-
tories in real-world scenarios are employed to examine the
accuracy and generalization ability of the proposed method.

1) NGSIM: The NGSIM dataset [50] includes the US-101
and I-80 freeway traffic data recorded by multiple overhead
cameras in 2005 and has been widely used in trajectory
prediction studies. It is worth noted that each dataset contains
abundant interaction scenarios including mild, moderate, and
congested traffic with a sampling frequency of 10 Hz.

2) HighD: The HighD dataset [51] includes the real-world
vehicle data recorded by camera-equipped unmanned aerial
vehicles at a frequency of 25 Hz on German freeways in
2017 and 2018. It includes more than 110 000 vehicles with a
total traveling distance of about 45 000 km.

The two datasets were divided into 70% training, 10%
validation, and 20% testing subsets, respectively [23]. The
trajectories of each vehicle were composed of 8-s segments,
each of which consisted in 3 s of historical and 5 s of predicted
trajectories. Moreover, each segment was downsampled to
obtain 5 frames/s for complexity reduction.

3) Evaluation Metrics: To quantitatively analyze the accu-
racy of the prediction model, two common error metrics are
introduced [24].

a) RMSE: The RMSE error between the predicted tra-
jectories and the ground truth is used to evaluate the prediction
accuracy, which is given by

RMSE =

√√√√ 1
Tpred

Tpred∑
t=1

∣∣Ŷ tar
t − Y tar

t

∣∣2
(25)

where Ŷ tar
t and Y tar

t are the predicted and ground-truth location
at time step t within a prediction horizon of 5 s.

b) NLL error: The NLL error is adopted to measure the
similarity between the two probability distributions [35].

B. Baseline Models

The proposed model is compared with the state-of-the-
art methods that mainly include the kinetic-based prediction
models and the prediction models considering multiagent
interactions.

1) CV: A representative constant velocity Kalman filter [7]
is employed for trajectory prediction.

2) S-LSTM: The social LSTM [22] utilizes a social model
that considers interactive agents to output the uni-modal
distribution of future locations.

3) CS-LSTM: The convolutional social LSTM [23] con-
structs a vehicle-centric grid with a convolutional
pooling model to output multimodal prediction results.

4) MATF: The multiagent tensor fusion GAN [30] handles
the social interactions among multiple agents and scene
context constraints through a spatial feature map.
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TABLE II
QUANTITATIVE RESULTS OF THE PROPOSED AND BASELINE METHODS ON THE NGSIM AND HIGHD DATASETS. ALL THE RESULTS ARE

REPORTED IN RMSE OVER A 5-S PREDICTION HORIZON IN METERS. ALL THE MODELS TAKE AS AN INPUT 3 S. NOTE THAT THE
BEST RESULTS ARE MARKED BY BOLD NUMBERS

TABLE III
QUANTITATIVE RESULTS ON THE NGSIM AND HIGHD DATASETS

USING NLL METRICS

5) MHA-LSTM: The multiagent attention LSTM [31] com-
bines the partial and global attention paid to the
surrounding vehicles to generate a multimodal solution.

6) NLS-LSTM: The nonlocal social pooling LSTM [46]
employs a nonlocal multiheaded attention mechanism to
model the interactions among vehicles.

7) PiP-LSTM: The planning-informed prediction
LSTM [42] treats the planning information as an
informed condition to generate maneuver-based
multimodal trajectories.

8) TS-GAN: The spatio-temporal GAN [15] introduces a
multivehicle collaborative learning framework with a
spatio-temporal tensor fusion mechanism for vehicle
trajectory prediction.

C. Quantitative Evaluation

The proposed approach is trained and evaluated based on
the NGSIM and HighD datasets, respectively. The evaluation
results are listed and compared to the baseline methods in
Table II. For the models with multimodal prediction distri-
butions, RMSE is calculated from the predicted trajectories
with the highest probability maneuver P(mk). The results are
presented in Table II. Observing the results, the proposed
scheme exhibits higher accuracy at different time steps on the

HighD and NGSIM datasets. In comparison, the model-based
CV method exhibits the largest error. This is because it utilizes
the current speed of the model to predict future trajectories,
which makes it difficult to obtain reliable results in long-term
predictions. S-LSTM focuses more on pedestrian trajectory
prediction and thus cannot sufficiently address vehicle tra-
jectory prediction problem. CS-LSTM improves S-LSTM by
using convolutional pooling layers to achieve higher prediction
accuracy and to enable multimodal prediction. As a stochastic
model, MATF exhibits high accuracy due to its generator
and discriminator mechanisms. NLS-LSTM and MHA-LSTM
introduce different attention mechanisms to achieve high pre-
diction accuracy by capturing spatial interactions between
vehicles. PiP-LSTM achieves competent prediction accuracy
by considering the motion trend of the ego vehicle. TS-GAN
uses the social convolution and spatio-temporal mechanisms
to model the interactions among multiple vehicles. In con-
trast, the proposed method not only considers the future
planning information of the ego vehicle, but also introduces
the attention mechanisms to capture the interrelated features
among trajectories. It exhibits excellent potential in improving
prediction accuracy and model explainability. Moreover, the
prediction error can be effectually limited within a certain
range even with elongated prediction horizon. In addition,
RMSE may fail to reflect accuracy for distinct maneuvers due
to its limitations in evaluating multimodal prediction. Thereby,
this study utilizes the NLL of the true trajectories under the
prediction results generated by either uni-modal or multimodal
distributions, which includes the most related baseline methods
reported by NLL, i.e., S-LSTM, CS-LSTM, and PiP-LSTM,
as shown in Table III.

It can be seen in Tables II and III that the RMSE values
obtained based on the NGSIM dataset are larger than those
based on the HighD dataset due to their different numbers
of involved vehicles. To be specific, the larger number of
vehicles and the smaller data noise of the HighD dataset
contribute to improving the performance of the proposed
scheme. Furthermore, the quantitative results under different
grid sizes are represented in Table IV. It can be seen that the
grid size of 25 × 5 demonstrates the best prediction accuracy.
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Fig. 8. Visualized results on NGSIM predicted by the baseline method [23] and the proposed method. The green shaded area represents the variance of
the distribution, and the trajectory color is proportional to the maneuver probability of the corresponding trajectory. (a) Predicted results for the ego vehicle
scheduled to go straight. (b) Predicted results for the ego vehicle scheduled to turn right.

TABLE IV
QUANTITATIVE EXPERIMENTAL ANALYSIS ABOUT DIFFERENT GRID

SIZES USING RMSE IN METERS ON THE NGSIM DATASET

D. Qualitative Analysis

The performance of the proposed algorithm in terms of
prediction accuracy, general applicability, reactive prediction,
attention mechanism, and computation time is further dis-
cussed in this subsection. In addition, the prediction results
on real-world data are also evaluated.

1) Comparison With Benchmark: To comprehensively
examine the performance of the proposed method in various
traffic scenarios, the typical method in [23] is compared with
the proposed method in terms of prediction distribution in
the same traffic situation, as they both generate multimodal
trajectories through maneuver-based decoding. As shown in
Fig. 8, the historical trajectories are represented by black
solid lines, and the real trajectories are represented by blue
solid lines. The vehicles with different background colors
represent the ego vehicle and target vehicles, respectively, and
the vehicles without color backgrounds represent neighboring
vehicles. Further, the ground truth, planned and predicted
trajectories are displayed as sets of waypoints with a time
interval of 0.2 s. Note that only the predicted trajectories with
maneuver probabilities larger than 10% are presented here.

In Fig. 8(a), the target vehicle (the vehicle with orange
backdrop) in the left-rear position of the ego vehicle generates
two predicted trajectories with different probabilities [see top
of Fig. 8(a)]. In contrast, the proposed method [see bottom
of Fig. 8(a)] focuses more on the lane-changing maneuver
based on the larger probability. This is because the planned
trajectory of the ego vehicle over the future time domain is
specified as keeping straightforward driving in its original lane,

which means the target vehicle is informed that it has sufficient
space to make a right-turning maneuver. In Fig. 8(b), the target
vehicle under the conventional prediction method generates
two types of maneuvers (more than 10% probability), i.e.,
straightforward driving and left-turning, while the proposed
method accurately predicts that the target vehicle would keep
straightforward driving due to the negligible probability of
other maneuvers. This is because the ego vehicle will gently
merge into the right lane, which would create a potential
collision risk for the target vehicle to make a left-turning
operation in the future time domain. That is, the planned
trajectory of the ego vehicle compresses the feasible space of
the target vehicle, thus making it closer to the real trajectory.
Such results show the superiority of the proposed method
in terms of multimodal uncertainty reduction and prediction
accuracy enhancement due to the consideration of future states
of the ego vehicle.

2) Traffic Flow Prediction: Considering the nonlinear rela-
tionship between prediction accuracy and scene complexity,
the performance of the proposed prediction model in various
traffic flows should be equally noteworthy. The US101 traffic
flow data in NGSIM are determined for trajectory prediction.
These data were collected from 07:50 to 08:05 A.M., 08:05 to
08:20 A.M., and 08:20 to 08:35 A.M., corresponding to traffic
flows of 2169, 2017, and 1915 vehicles. The more complex the
scene, the more quickly the prediction error would increase.
Consequently, the time period of 08:05–08:20 A.M., during
which the traffic is in between uncongested and congested
conditions during the time period and is termed as moderate
congestion, was first considered. Fig. 9(a) and (b) illustrates
the overall prediction results when the planning module turns
off and on, respectively, where the parts indicated by the
orange dashed boxes are presented in Fig. 9(c) and (d).
The definition of each part in Fig. 9 is the same as that
in Fig. 8. Therefore, the predicted trajectories generated by
the LSTM-based social convolutional network model without
the planning module and attention mechanism are denoted by
purple dotted lines, which can also be described as LSTM-only

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 22,2024 at 23:59:37 UTC from IEEE Xplore.  Restrictions apply. 



6188 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 10, NO. 3, SEPTEMBER 2024

Fig. 9. Prediction results and attention distribution during the time period of 08:05–08:20 A.M. on highway US101. (a) and (c) Prediction results for the
neighboring vehicle trajectory and the further enlargement trajectory when the planning module is turned off. (b) and (d) Corresponding results when turning
on the planning module. (e) and (g) Changing trend of the temporal attention weight. (f) and (h) Spatial attention distribution of the target vehicle in the two
cases.

prediction. The trajectories predicted by the proposed method
are shown by green solid lines. Notably, all the neighbor-
ing vehicles that interacted with the target vehicle are not
presented together in Fig. 9(a). For convenience, one of
the target vehicles, vehicle ID-2088, is chosen to show the
detailed attention weight distribution. The temporal attention
distribution of the target vehicle ID-2088 in the current
prediction period is given in Fig. 9(e) and (g). The spatial
attention weight distribution of the target vehicle and the
neighboring vehicles’ contribution to the predicted trajectory
in the prediction process are represented in Fig. 9(f) and (h).

According to Fig. 9(a) and (c), the proposed method has bet-
ter prediction accuracy in predicting the trajectories of target
vehicles, with the overall prediction trend remaining consistent
with the real trajectory. This is because the spatio-temporal
attention mechanism can effectively divide the influence
weights of vehicles around the target vehicle and capture the
key information affecting the predicted trajectories, as shown
in Fig. 9(e) and (f). Consequently, the attention mechanism can
capture the features between the trajectory data of interacting
vehicles through the trained network model and provide a more
reasonable and interpretable interactive prediction method.
In contrast, the prediction results of the LSTM-only network
have a significant bias in the lateral direction, especially for the
target vehicles ID-2088 and ID-2093, as shown in Fig. 9(b);
the predicted trajectory of the target vehicle ID-2088 gradually
deviates to the left with time, while the predicted trajectory of
the target vehicle ID-2093 demonstrates a tendency to move
to the right, both of them exhibiting large prediction biases.
As shown in Fig. 9(f), the weight of the target vehicle ID-2088
in the prediction process reaches 83% while the weight of
the neighboring vehicles is 17%, which reveals that the future
trajectory of the target vehicle strongly relies on its own state.
To better visualize the distribution of neighboring vehicles,

the weights of neighboring vehicles are normalized and recon-
structed in a 25 × 5 grid, and it can be seen that the vehicle
with the largest weight on the trajectory prediction of the target
vehicle ID-2088 is its left-rear vehicle, which is over 50%,
while the weight of the ego vehicle, as one of the neighboring
vehicles for the target vehicle, is negligible. Since the planned
trajectory of the ego vehicle cannot be obtained in advance,
it cannot provide further information to act on the predicted
trajectory of the target vehicle. As shown in Fig. 9(b) and (d),
by cooperating with the planning module of the ego vehicle,
the proposed method can generate more accurate predicted tra-
jectories for the target vehicles, especially for ID-2088 and ID-
2093. Moreover, the predicted trajectories are almost the same
as the actual trajectories in the 3-s prediction horizon, and only
a small deviation occurs in longer prediction horizons. This
can be attributed to the fact that the attention distribution of
both the target vehicle itself and the surrounding vehicles has
been changed due to the engagement of the planning infor-
mation of the ego vehicle, which is shown in Fig. 9(h). The
predicted trajectory of the target vehicle with the assistance of
the planning module is closer to the actual trajectory.

For LSTM-only prediction, since the spatio-temperal atten-
tion distribution and the planning information of the ego
vehicle are not considered, it exhibits unsatisfactory per-
formance when the external environment changes. For
the temporal attention weight distribution, as indicated in
Fig. 9(e) and (g), the contribution of the historical trajectory
at different timestamps to the prediction decreases nonlin-
early with the increasing distance from the current position.
In particular, the trajectory at the last time step has the largest
influence on the prediction with more than 55%, except for
the trajectories within 0.5 s, and the historical trajectories
away from the current moment have an approximate weight
of 0. Overall, the historical trajectories within 0.5 s have large

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 22,2024 at 23:59:37 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: HYBRID TRAJECTORY PREDICTION FRAMEWORK FOR AVs WITH ATTENTION MECHANISMS 6189

Fig. 10. Prediction results and attention distribution during the time period of 07:50–08:05 A.M. on highway US101. (a) and (c) Prediction results for the
neighboring vehicle trajectory and the further enlargement of the trajectory when the motion trend module is turned off. (b) and (d) Corresponding results of
turning on the planning module. (e) and (g) Changing trends in the temporal attention weight. (f) and (h) Spatial attention distribution of the target vehicle
in the two cases.

influence on the prediction result, which aligns well with the
intuition. For the spatial attention weight distribution, the two
predicted spatial attention distributions for the target vehicle
ID-2088 are shown in Fig. 9(f) and (h). It can be observed
that the weight of the influence of the target vehicle’s own
state on the predicted trajectory decreases after the planning
module is turned on, while the weights of the neighboring
vehicles are increased. To better show the distribution of
attention weights of the neighboring vehicles, their weights
are normalized. It can be observed that the proportion of the
ego vehicle in the spatial attention weight of the target vehicle
increases from close to 0% to 29.5%. This change in spatial
attention weight also reflects the real traffic situation, which
illustrates that when the ego vehicle has driving intention, the
surrounding vehicles would pay attention to the changes and
have the tendency to compromise or compete. Collectively,
the introduction of the attention mechanism and the planning
information of the ego vehicle reduce the uncertainty of
prediction in a certain degree, resulting in improved prediction
accuracy and better explainability.

3) Prediction in Mix Traffic Flow: To illustrate the gen-
eralization ability of the proposed method in different traffic
flows, the prediction results for the data segments from the
congestion situations from 07:50 to 08:05 A.M. are presented
in Fig. 10. The definitions of the parts in Fig. 10 are the
same as those in Fig. 9. From Fig. 10(a) and (c), it can
be observed that when the planning module turns off, there
are significant lateral prediction errors for the target vehicles,
especially for the target vehicles ID-2171 and ID-2173. The
LSTM-only prediction method retains a similar trend with the
real only with a slightly larger error. Observing the spatial
attention distribution in Fig. 10(f), the weight of the target
vehicle still holds a decisive role in the weight distribution
for the current prediction of the target vehicle, which reveals

that the future trajectory of the target vehicle largely depends
on its own driving status. In addition, it can be found from
Fig. 10(f) that the attention weights of the vehicles on both
sides of the target vehicle are almost the same, which has little
effect on the prediction result, and the target vehicle pays
more attention to the front neighboring vehicles. As shown
in Fig. 10(c) and (d), when the planning module turns on,
the magnitude of the errors has been significantly reduced.
From the perspective of spatial attention distribution, as shown
in Fig. 10(h), the incorporation of the planning information
increases the interaction between the ego vehicle and the target
vehicle. At this point, the weight of the target vehicle itself is
reduced from 77% to 74%, while the weight of the neighboring
vehicle is increased to 26%. The reason for the change may be
that the driver needs to pay more attention to the motion states
of the neighboring vehicles in a more dense traffic flow sce-
nario to avoid collision at any unexpected situation. As can be
observed in the normalized weight distribution of neighboring
vehicles, the weight of the ego vehicle is greatly increased to
44%, and this further compresses the prediction space of the
target vehicles ID-2171 and ID-2173, especially for the target
vehicle ID-2173. This can be attributed to the right lane change
tendency of the ego vehicle, which causes the target vehicle
ID-2173 to avoid ego vehicles and thus the predicted trajectory
has a tendency of right-turning motion. The proposed method
has higher prediction accuracy compared with the results of
turning off the motion trend module in Fig. 10(a). As shown
in Fig. 10(e) and (g), the temporal attention distribution in the
congested scenario maintains a consistent trend compared to
the moderate congested scenario, where the future trajectory
of the vehicle is more dependent on the decisions near the
last moment. This may be due to the fact that in denser
traffic flows, drivers must pay increased attention to the current
moment for safe driving.
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Fig. 11. Reactive prediction results reasoned from the ego vehicle’s behavior. (a) and (b) Prediction results for the target vehicle and the further enlargement
of the trajectory when the planning module is turned on. (c) and (d) Corresponding results when the ego vehicle is turning right in an aggressive manner.
(e) and (f) Corresponding results when the ego vehicle is turning right in a mild manner. (g)–(i) Spatial attention distributions of the target vehicle with
different plans of the ego vehicle.

In summary, the proposed method combines a trajectory
prediction method with a planning module and an attention
mechanism. It can significantly improve the prediction accu-
racy and quantify the impact of the target vehicle on its
own and neighboring vehicles on the predicted trajectory.
Specifically, the planning module is integrated to improve
the prediction performance under congestion conditions. The
attention mechanism can explicitly analyze the temporal and
spatial distribution information that dominates the current
prediction, and extract the driving characteristics of the target
and neighboring vehicles under different operating conditions.

4) Reactive Trajectory Prediction: The trajectory planning
module usually generates multiple future planning trajectories.
To illustrate the flexibility of the proposed scheme to deal with
different planning behaviors, the prediction results derived
based on the NGSIM dataset are presented in Fig. 11. The
definition of each part in Fig. 11 is the same as that in Fig. 10.
As seen from Fig. 11(a) and (b), it achieves higher prediction
accuracy when the planning module turns on compared to
the LSTM-only approach, in which the planning information
of the ego vehicle is obtained based on its future trajectory.
Considering more significant noise with the NGSIM data, the
quintic polynomial curves are generated for comparison by
fitting the real trajectories of the ego vehicles with different
driving behaviors, which are simplified in this study as mild or
aggressive considering the dynamic characteristic. As shown in
Fig. 11(c) and (d), it is assumed that the ego vehicle performs a

right-turning maneuver aggressively, which would disturb the
normal driving of the target vehicles ID-2497 and ID-2500.
It can be seen that the predicted trajectory of the target vehicle
located in the right lane decelerates compared to the predicted
trajectory of the ego vehicle’s normal driving behavior, and
the gap is illustrated with a yellow dashed line in Fig. 11(d).
The reason is that the ego vehicle’s maneuver is captured
and reacted by the planning module of the proposed scheme,
which allows the target vehicle to keep driving in its lane
while slowing down to avoid possible collision. As shown
in Fig. 11(e) and (f), it is assumed that the ego vehicle
performs a right-turning maneuver in a mild manner. As the
ego vehicle leaves enough space for the target vehicle, the
collision risk between the target and the ego vehicle is signif-
icantly reduced, and thus the predicted trajectory is basically
consistent with the actual driving behavior. In contrast, the
LSTM-only method demonstrates the same results against dif-
ferent planning trajectories of the ego vehicle because it fails
to consider the reasonable information including the planning
information of the ego vehicle. The evolutions of the spatial
attention weight of the ego vehicle in three cases are shown in
Fig. 11(g)–(i) while the weight of the target vehicle remains
around 76%. In addition, it can be seen that the attention
mechanism captures the feature when the planned trajectory of
the ego vehicle is obtained based on the real trajectory with
the weight of 28.9%. However, when the ego vehicle turns
right in an aggressive manner, its weight increases rapidly to
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Fig. 12. Trajectory prediction results based on the HighD dataset.

around 35% due to the potential collision risk between the
target and the ego vehicle, as shown in Fig. 11. Furthermore,
the weight of the ego vehicle declines to the normal level
when the ego vehicle turns right in a mild manner. In a
nutshell, the proposed approach can respond to various future
behaviors of the ego vehicle and demonstrates reasonable
maneuver intentions while quantifying the influence of the
neighboring vehicles on the target vehicle. This effectively
contributes to efficient decision-making to improve driving
safety.

5) Generalization Ability: To demonstrate the generaliza-
tion ability of the proposed method, the results under dynamic
traffic flow obtained from the HighD dataset are shown in
Fig. 12. The line shapes and colors are consistent with those
in Section III-D1. The orange boxes mark the two regions
corresponding to the enlarged trajectories of the target vehicles
on both sides of the ego vehicle, namely, ID-964, ID-971,
and ID-968. As shown in Fig. 12, the proposed scheme still
achieves good prediction performance for the target vehicles
on the HighD dataset. The predicted trajectories generated by
the proposed model outperform those generated by the LSTM-
only method. For simplicity, Fig. 13 shows the temporal and
spatial attention distributions of the target vehicle ID-968.
For the temporal attention distribution, the temporal attention
distribution is consistent with that in the aforementioned case,
and the minute difference is that the temporal attention is more
biased toward the weight at the last moment, accounting for
approximately 80%. It indicates that the driver would greatly
reduce the influence of the historical trajectory and pay more
attention to the trajectory at the last moment to ensure smooth
driving when the target vehicle is driving at high speeds.
As shown in Fig. 13(b), the weight of the target vehicle itself
is 75%, which is consistent with the general case. For the
neighboring vehicles, the proportion of the ego vehicle in the
spatial attention weight of the target vehicle exceeds 80%. This
may be due to the fact that the target vehicle ID-968 has a
tendency to move to the right, and the planning information
of the ego vehicle ID-966 compresses the feasible space. This
also reflects the real traffic scene information and characterizes
the compromise or competition relationship of target vehicles
when the ego vehicle has a driving intention.

Fig. 13. Temporal and spatial attention distributions on the HighD dataset:
(a) temporal attention distribution; (b) spatial attention distribution.

6) Discussion on Computation Efficiency: Computation
efficiency is a crucial performance indicator for AVs. The
computation time of the proposed algorithm is evaluated and
listed in Table V. For a fair comparison, the code of CS-LSTM
[23]1 is downloaded and run on the workstation to calculate its
computation time. Table V shows that CS-LSTM takes 0.15 s to
predict the trajectories of 1000 vehicles when the batch size is
128, while the proposed algorithm takes 0.33 s to perform the
same task. In the scenario of autonomous driving applications,
the resources are limited and the batch size can only be set to 1.
The last column of Table V shows that the proposed method
runs 2.8 times faster than CS-LSTM, which is attributed to
the fact that the proposed method can simultaneously predict
the trajectories of all observed target vehicles within the ego

1https://github.com/nachiket92/conv-social-pooling
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TABLE V
COMPUTATION TIME

vehicle-centered region while CS-LSTM can only predict one
object. Such results reveal that the proposed method can meet
the real-time deployment requirements of autonomous driving
systems.

IV. CONCLUSION

This paper presents a hybrid trajectory prediction framework
for automated vehicles. The framework combines the historical
trajectories with the planned trajectories of the ego vehicle to
improve prediction accuracy and reduce uncertainty. It can also
deduce the reasonable interactive reactions among multiple
traffic participants to minimize collision risk. Moreover, the
proposed scheme is combined with a spatial-temporal attention
mechanism to visualize the correlation between the historical
trajectories of the ego vehicle and the target and neighboring
vehicles on the prediction results by fitting the interactive
features of massive trajectory data through the network. This
expands the influence scale of the key elements and provides
interpretable prediction results. Experiments based on the
HighD and NGSIM datasets verify the effectiveness of the
proposed scheme.

In future work, we will consider incorporating more detailed
information, such as map information and other types of traffic
participants, into the prediction model, and design a generic
framework for environment representation to further improve
prediction performance and generalization ability in diverse
traffic scenarios.
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