
HIGHWAY MERGING CONTROL USING MULTI-AGENT REINFORCEMENT
LEARNING: EXPLORING CENTRALIZED AND DECENTRALIZED SCHEMES

by

ALI SAEED IRSHAYYID

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL AND COMPUTER ENGINEERING

2024

Oakland University
Rochester, Michigan

Doctoral Advisory Committee:

Jun Chen, Ph.D., Chair
KaC Cheok, Ph.D.
Micho Radovnikovich, Ph.D.
Darrell Schmidt, Ph.D.

© by Ali Saeed Irshayyid, 2024
All rights reserved

ii

To my father, my mother, my siblings Ameer, Mohammed,

Tabarak, Hussein and Zain,

Without your unconditional love and support, this would

have never been possible. This is for you.

iii

ACKNOWLEDGMENTS

The author wishes to express his profound gratitude and heartfelt appreciation to

Jun Chen, Ph.D., my esteemed advisor, for the invaluable mentorship, support, and insightful

guidance provided throughout this academic journey. Your expertise and high standards

have consistently challenged me to push beyond my limits and strive for excellence. Your

mentorship has been instrumental in shaping both this dissertation and my growth as a

researcher, instilling in me a rigorous work ethic and a passion for quality research. Thanks

are also due to committee members KaC Cheok, Ph.D., Micho Radovnikovich, Ph.D.,

Darrell Schmidt, Ph.D. for their contributions to this dissertation. Likewise, acknowledgment

should also be extended to peers Zhaodong Zhou, Christopher Rother, Hussein Alawsi, and

Luke Nucalaj.

Last but not least, I want to thank the amazing friends I made while studying abroad.

Their support and understanding during this journey meant the world to me.

Ali Saeed Irshayyid

iv

ABSTRACT

HIGHWAY MERGING CONTROL USING MULTI-AGENT REINFORCEMENT
LEARNING: EXPLORING CENTRALIZED AND DECENTRALIZED SCHEMES

by

Ali Saeed Irshayyid

Adviser: Jun Chen, Ph.D.

This dissertation addresses critical challenges in autonomous vehicle (AV) control,

focusing on complex highway merging control during lane reduction using multi-agent

reinforcement learning (MARL). Both centralized and decentralized approaches are presented.

For the centralized approach, Proximal Policy Optimization based approach is employed

to learn optimal merging policies for a fixed number of vehicles in two platoons. To scale

up for the large number of AVs in a typical highway scenario, a decentralized approach is

investigated, where each AV acts independently based on local observations. Furthermore,

as the number of AVs in a traffic flow can vary, a self-attention network is used to handle the

varying number of AVs. Several reward functions are explored and compared, including

global speed, local speed, fuel consumption, and ride comfort. Novel quantitative metrics

are introduced to evaluate the fairness and efficiency of the learned merging strategies.

Both proposed MARL approaches consistently outperform benchmark RL method and a

rule-based zipper merge strategy across various metrics, including up to 60.14% improvement

in traffic flow at higher speeds, among many other advantages. Finally, the generalizability

of the framework is demonstrated by training the MARL model using low speed scenario

and testing the learned policy using high speed scenario.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv

ABSTRACT v

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER ONE
INTRODUCTION 1

CHAPTER TWO
PRELIMINARIES AND PROBLEM FORMULATION 6

2.1. Preliminaries on Reinforcement Learning 6

2.2. Preliminaries on Multi-Agent Reinforcement
Learning 8

2.3. AV Merging Problem Formulation 12

CHAPTER THREE
LITERATURE REVIEW ON RL-BASED AV MERGING
AND PLATOONING 14

3.1. Scenarios for RL-based Control 14

3.1.1. Highway Lane Change 14

3.1.2. Highway Ramp Merging 19

3.1.3. Platooning 23

3.2. RL Algorithms 26

3.2.1. Deep Reinforcement Learning Algorithms 26

3.2.2. Multi-agent Reinforcement Learning 28

3.2.3. Curriculum Learning 30

vi

TABLE OF CONTENTS—Continued

3.2.4. Representation Learning 31

3.3. Action Space 32

3.3.1. Continuous Action Spaces 33

3.3.2. Discrete Action Space 35

3.3.3. Safety Modules 39

3.4. State Space 41

3.4.1. State Information from Surrounding
Vehicles 43

3.4.2. End-to-End State Space 46

3.4.3. Temporal Information 48

3.5. Reward Function 49

3.5.1. Safety 49

3.5.2. Efficiency 52

3.5.3. Comfort 53

3.5.4. Adaptability 55

3.6. Summary 56

CHAPTER FOUR
AV MERGING CONTROL USING CENTRALIZED RL 58

4.1. Simulation Environment 61

4.1.1. Vehicle Platoon 61

4.1.2. Vehicle Model 63

4.1.3. Longitudinal Control 64

vii

TABLE OF CONTENTS—Continued

4.1.4. Lateral Control 65

4.2. Proximal Policy Optimization Algorithm 66

4.3. RL-based Merging Strategy 68

4.3.1. States Observation and Action Space 68

4.3.2. Reward Functions 71

4.3.3. Maskable PPO 74

4.4. Numerical Results and Discussion 76

4.4.1. Single Objective RL 76

4.4.2. Multi-Objective RL 84

4.5. Summary 85

CHAPTER FIVE
MARL-BASED AV MERGING CONTROL 89

5.1. Problem Definition and Proposed Approach 90

5.1.1. Environment Overview 92

5.1.2. Reward Functions 95

5.1.3. MARL Algorithm 95

5.2. Reward Functions 102

5.2.1. M1: Local Speed with Safety Optimization 103

5.2.2. M2: Global Speed with Safety Optimization 104

5.2.3. M3: Local Speed with Jerk Minimization 104

5.2.4. M4: Local Speed with Fuel Consumption
Minimization 105

viii

TABLE OF CONTENTS—Continued

5.3. Results and Discussion 106

5.3.1. Simulation Setup 107

5.3.2. Training Convergence Analysis 107

5.3.3. Merging Performance Comparison 111

5.3.4. Merging Strategy Visualization 114

5.3.5. Fairness Comparison 117

5.4. Summary 121

CHAPTER SIX
MARL-BASED AV MERGING CONTROL WITH DECENTRALIZED
TRAINING 124

6.1. DTDE-based AVs Merging Control 124

6.2. State and Action Spaces 126

6.3. Reward Functions 128

6.3.1. R1: Local Speed with Safety Optimization 128

6.3.2. R2: Local Speed with Jerk Minimization 129

6.3.3. R3: Local Speed with Fuel Consumption
Minimization 129

6.4. Results 130

6.5. Summary 130

CHAPTER SEVEN
CONCLUSION AND FUTURE WORK 135

REFERENCES 137

ix

LIST OF TABLES

Table 3.1 State of the art articles on autonomous vehicle
maneuvers control using reinforcement learning 15

Table 3.2 State of the art articles on autonomous vehicle
maneuvers control using reinforcement learning
- Continued 16

Table 3.3 Studies organized by automated driving scenario 17

Table 3.4 Studies organized by RL algorithms 26

Table 3.5 Studies organized by the action space used 34

Table 3.6 Studies organized by state space scheme used 42

Table 3.7 Studies organized by reward functions 50

Table 4.1 State of the art articles on platoon control maneuvers 60

Table 4.2 Simulation Parameters 77

Table 4.3 Evaluation results of different single objective
RL models 78

Table 4.4 Evaluation results of the multi-objective RL
with different weights 85

Table 5.1 MARL Approaches for AV Control in Various
Highway Merging Scenarios 91

Table 5.2 Overview of the Four RL Models Evaluated
in This Chapter. 106

Table 5.3 Evaluation Results of M1-M4 Models with
10 m/s Maximum Speed. 111

Table 5.4 Evaluation Results of M1-M4 Models with
20 m/s Maximum Speed. 112

Table 5.5 Summary of Merging Styles and Fairness. 118

x

LIST OF FIGURES

Figure 2.1 CTCE RL: Centralized policy processes all
vehicles’ observations and outputs all vehicles’
actions. The input block is repeated by n times,
where n is the maximum number of AVs, and
the output is a vector of the length same as
the maximum number of AVs. 9

Figure 2.2 DTDE RL: Each ego AV processes only local
observations and outputs single action. 11

Figure 3.1 Illustration of the Lane-changing highway scenario.
18

Figure 3.2 On-ramp traffic scenario in the presence of
HDVs. 20

Figure 3.3 High level action space. 37

Figure 3.4 Limited vs extensive surrounding vehicle detection
ranges. Where d represents the detection range
of the AV. 44

Figure 4.1 Platoons initial configuration. 61

Figure 4.2 Illustration of gap generation. 62

Figure 4.3 Schematics of the vehicle dynamics model. 63

Figure 4.4 Lane changing cubic Bézier curve. 65

Figure 4.5 Data flow diagram of the PPO algorithm. 67

Figure 4.6 Observation space measurements. 69

Figure 4.7 Free Body Diagram of the vehicle. 71

Figure 4.8 Comparison of training progress of MPPO and
PPO. 75

xi

LIST OF FIGURES—Continued

Figure 4.9 The training plot of the energy as a reward function. 79

Figure 4.10 The training plot of the time as a reward function. 80

Figure 4.11 The training plot of the speed as a reward function. 82

Figure 4.12 The training plot of the average jerk as a reward
function. 83

Figure 4.13 The training plot of the maximum jerk as a
reward function. 84

Figure 4.14 The training plot of the multi-objective reward
function (Case 1). 86

Figure 4.15 The training plot of the multi-objective reward
function (Case 2). 87

Figure 5.1 The AVs merging scenario in SUMO simulation
environment, where each vehicle on the bottom
lane is an RL agent. The goal is to learn an
optimal merging strategy for each vehicle on
the bottom lane so that the overall long term
return is maximized. Note that the number of
vehicles in the merging zone varies within a
single episode, making the RL problem challenging
as the number of agents is not fixed. 91

Figure 5.2 Illustration of the local observation space for
an AV. Each AV can observe neighboring vehicles
within a total 16-meter range. 94

Figure 5.3 CTDE Actor-Critic MARL Architecture adopted
in the proposed merging control framework. 96

Figure 5.4 Actor network architecture. 100

Figure 5.5 Critic network architecture. 101

xii

LIST OF FIGURES—Continued

Figure 5.6 Baseline network architecture. 102

Figure 5.7 Convergence comparison of the proposed method
(M1) and the benchmark MAPPO method. 108

Figure 5.8 Convergence comparison of the proposed method
(M2) and the benchmark MAPPO method. 109

Figure 5.9 Convergence comparison of the proposed method
(M3) and the benchmark MAPPO method. 110

Figure 5.10 Convergence comparison of the proposed method
(M4) and the benchmark MAPPO method. 111

Figure 5.11 Heat-map of vehicles merging point for each
MARL model. The intensity of the red color
indicate high frequency that each MARL model
decides to merge. 116

Figure 5.12 Comparison of starting and final positions for
M1 model. Top: the x-axis represents the
order in which vehicles pass the reduction point,
and the y-axis denotes the vehicle entering
sequence. Bottom: the final formation after
passing the lane reduction point. 120

Figure 5.13 Comparison of starting and final positions for
M2 model. Top: the x-axis represents the
order in which vehicles pass the reduction point,
and the y-axis denotes the vehicle entering
sequence. Bottom: the final formation after
passing the lane reduction point. 121

Figure 5.14 Comparison of starting and final positions for
M3 model. Top: the x-axis represents the
order in which vehicles pass the reduction point,
and the y-axis denotes the vehicle entering
sequence. Bottom: the final formation after
passing the lane reduction point. 122

xiii

LIST OF FIGURES—Continued

Figure 5.15 Comparison of starting and final positions for
M4 model. Top: the x-axis represents the
order in which vehicles pass the reduction point,
and the y-axis denotes the vehicle entering
sequence. Bottom: the final formation after
passing the lane reduction point. 123

Figure 6.1 Learning curve for R1 reward function. 131

Figure 6.2 Learning curve for R2 reward function. 132

Figure 6.3 Learning curve for R3 reward function. 133

xiv

CHAPTER ONE

INTRODUCTION

Autonomous vehicles (AVs) promise major benefits in terms of safety, efficiency,

and accessibility [1–4]. However, developing reliable control policies for AVs remains an

immense challenge [5]. A key difficulty involves handling scenarios, where AVs must

interact safely and efficiently both among themselves and with human drivers having

diverse driving styles [6]. Highway merging maneuvers, such as on-ramp merging, road

reduction, and lane changes are among the most complex and safety-critical scenarios for

AVs [7]. Road reduction scenarios, where multiple lanes merge into fewer lanes, present

significant challenges for traffic flow and safety. These bottlenecks often lead to congestion,

increased travel times, and a higher risk of accidents. Highway merging maneuvers is

challenging even for human drivers [8] and is responsible for around 40-80% of congestion

in the United States [9].

However, as AVs become more prevalent, there is an opportunity to address these

challenges through intelligent coordination and control strategies. Improper merging can

lead to collisions, traffic disruptions, and reduced throughput, undermining the potential

benefits of AVs [10]. Developing effective merging control strategies for AVs poses

several key challenges. One of which is the inherent uncertainty in predicting the

actions of other vehicles, particularly those driven by humans [11–13]. Human drivers

exhibit a wide range of behaviors and decision-making styles, which can be influenced

by factors such as experience, age, and cultural background [14]. AVs must be able to

anticipate and respond to these diverse behaviors, while also adhering to traffic rules and

ensuring the safety of all road users [15–17]. Another challenge lies in the complexity

of the merging task itself. Merging scenarios often involve coordinating multiple AVs

1

and human-driven vehicles simultaneously, requiring sophisticated multi-agent control

algorithms [18, 19]. Cooperation and communication between vehicles can improve

coordination with the cost of additional complexities. Additionally, merging decisions must

be made in real-time, taking into account the dynamic traffic conditions, vehicle kinematics,

and safety constraints [20].

Several approaches have been proposed in the literature to address the challenge of

AV highway merging [21, 22]. These methods can be broadly categorized into rule-based

approaches, intent modeling of the host vehicle, and optimization-based techniques.

Rule-based approaches for AV merging depend on predetermined sets of if-then conditions

or heuristics to make decisions. These decisions are usually based on factors such as vehicle

positions, speeds, and gap sizes. For example, the authors in [23] introduced a cooperative

merging strategy that relies on mainline vehicles slowing down to create sufficient gap

space for on-ramp vehicles to merge. In [24], the researchers employed gap-acceptance

theory and driving rules to model the decision-making process for on-ramp merging in

urban expressway scenarios. Furthermore, work conducted by [25] developed a slot-based

merging algorithm, which determines a slot’s occupancy status based on the speed,

position, and acceleration or deceleration behavior of mainline vehicles. Similarly, [26]

used a slot-based approach, identifying potential merge slots between mainline vehicles.

The approach evaluates the feasibility of each slot using a rule-based planner, and the

ego-vehicle attempts to merge into the most suitable slot using a motion planner.

Rule-based techniques can manage simple traffic issues, but they may not be

able to handle complex ones. This limitation has motivated intent modeling approaches,

which aim to predict the behavior of the host vehicle to make merge decisions. Authors

of [27] proposed a probabilistic graphical model to estimate the host vehicle’s intent

to yield based on features including its velocity and time-to-arrival at the merge point,

assuming a fixed merge point. Intent modeling can provide insight into vehicle behaviors,

2

but it cannot capture the complexity of multi-vehicle interactions. Researchers have

also examined optimization-based approaches that formulate the merging problem as an

optimal planning and control planning problem. For example, [28] proposed a centralized

optimal control scheme for coordinating merging vehicles, assuming the availability of

vehicle-to-vehicle communication, and researchers in [29] used model predictive control

(MPC) for decentralized merging. While optimization-based approaches can generate

optimal merging trajectories, they face challenges in real-world implementation because

of model accuracy and real-time computation issues as the number of interacting vehicles

increases [30, 31].

To address these limitations, recent research has explored the application of deep

reinforcement learning (DRL) to learning AV merging policies that map observations to

actions [7, 32]. DRL has emerged as a robust learning-based approach that combines the

strengths of RL with deep neural networks, and it has attracted significant attention in recent

years due to its ability to achieve remarkable performance in complex tasks, e.g., surpassing

human performance in playing board games such as Go, Chess, and Shogi [33, 34]. By

leveraging deep multi-layer neural networks as policy approximators, DRL can handle

large state and action spaces [35], making it well-suited for applications such as automated

merging in AVs. The learning capacity of DRL is enhanced by its ability to learn from

interactions with the environment over millions of time steps during training, eliminating

the need to explicitly model the environment’s complex dynamics. Such a model-free

approach allows DRL agents to learn optimal actions that maximize long-term rewards,

even in highly complex environments. With the increasing availability of affordable

high-performance computing resources for training, DRL has found successful applications

across various domains, demonstrating near-optimal control performance compared to

traditional methods like model predictive control (MPC) [36] while requiring minimal

computation time during deployment.

3

Building upon the challenges and potential presented by AVs in highway merging

scenarios, this dissertation addresses critical challenges AVs control, focusing on complex

highway merging scenarios, particularly road reduction. The research aims to develop

and evaluate DRL approaches for AV merging control, investigating both centralized

and decentralized multi-agent reinforcement learning (MARL) methods. The primary

contributions of this dissertation are:

• Applying RL to highway merging control due to lane reduction, presenting all of

Centralized Training and Centralized Execution (CTCE), Decentralized Training

and Decentralized Execution (DTDE), and Centralized Training and Decentralized

Execution (CTDE) Multi-agent RL frameworks.

• Developing a MARL CTDE framework capable of handling a variable number of

agents, addressing the limitations of current approaches.

• Exploring multiple reward models, including global speed optimization, local speed

optimization, fuel efficiency, and ride comfort, to comprehensively evaluate merging

strategies.

• Introducing quantitative metrics to assess the fairness and efficiency of learned

merging behaviors.

The remainder of this dissertation is organized as follows. Chapter 2 provides

background on RL, MARL, and formulates the AV merging problem. Chapter 3 presents

a comprehensive literature review of related work on RL for autonomous vehicle control,

focusing on different merging scenarios, algorithms, action spaces, state spaces, and reward

function designs. Chapter 4 presents a case study on cooperative platoon merging control

using a CTCE approach. Chapter 5 explores a CTDE multi-agent RL framework for

highway merging scenarios with a dynamic number of agents. Chapter 6, further evaluates

4

CTDE approach by presenting the DTDE approach for the highway merging scenarios with

a dynamic number of agents. Finally, Chapter 7 concludes the dissertation and discusses

directions for future research.

5

CHAPTER TWO

PRELIMINARIES AND PROBLEM FORMULATION

2.1 Preliminaries on Reinforcement Learning

This section briefly reviews the fundamentals of RL. For more details, please refer

to [35]. At its core, RL algorithms are designed to solve problems that can be modeled as

Markov decision processes (MDPs), a mathematical framework that describes how agents

interact with an environment to select the most suitable actions based on observations for

maximizing a long term return [37].

In an MDP, the environment is represented by a tuple (S,A, p,r,γ), where S is the

state space, A is the action space, p is the transition probability matrix, r is the immediate

reward, and γ is the discount factor [35]. The agent interacts with the environment over

multiple time steps, aiming to learn a policy, π , that maximizes the cumulative discounted

rewards, i.e.,

max
π

J(π) = Eπ

[
∞

∑
t=0

γ
trt

]
. (2.1)

RL algorithms generally fall into two main categories: value-based methods and

policy-based methods. Value-based methods focus on learning the value function, which

estimates the expected return from a given state, and deriving a policy from this function.

Policy-based methods, on the other hand, directly learn the policy without explicitly

computing/estimating the value function [35].

One effective approach that combines the strengths of both value-based and

policy-based methods is the actor-critic methods [38]. This approach combines two key

components: an actor, which learns the policy, and a critic, which evaluates the policy’s

performance. The actor-critic method aims to simultaneously improve the policy and its

value estimation, leading to more efficient learning.

6

Actor-critic algorithms can be implemented using various approaches. One

prominent method is the policy gradient technique, which directly optimizes the policy

by estimating the gradient of expected cumulative rewards with respect to the policy

parameters [39]. In policy gradient methods, the actor objective function, J, can be defined

as:

J(πθ) = Eπθ

[
∑
t

logπθ (at |st)∗At

]
, (2.2)

where πθ (at |st) represents the probability of taking action at in state st under the policy

parameterized by θ . The objective is to change θ to increase the probability of choosing

actions that lead to higher advantages. The advantage function, At , is defined as:

At = Qπ(st ,at)−Vπ(st), (2.3)

where Vπ(st) is the expected return from st and acting according to policy π and Qπ(st ,at)

is the expected return starting from st and taking action at (also termed as Q-value).

The advantage function (2.3) quantifies the benefit of choosing action at at state st

compared to the expected return of following the policy π from state st . The advantage At

can be approximated using the temporal difference (TD) error:

At = rt + γVπ(st+1)−Vπ(st), (2.4)

where rt is the immediate reward received. The critic network, parameterized by weights

φ , is used to estimate Vπ(st), where φ is updated to minimize the following loss function:

L(φ) = E
[(

rt + γVπ(st+1)−Vφ (st)
)2]

, (2.5)

Both the actor parameter θ and critic parameter φ are updated after collecting the

experiences or trajectories, training episodes, from the environment.

7

2.2 Preliminaries on Multi-Agent Reinforcement Learning

The application of MARL to multiple AV highway merging has evolved

significantly in recent years, with various approaches exploring different levels of

centralization and decentralization among agents. These approaches can be broadly

categorized into three main schemes: Centralized Training Centralized Execution (CTCE),

Decentralized Training Decentralized Execution (DTDE), and Centralized Training

Decentralized Execution (CTDE).

CTCE involves a central learner that gathers information from all agents to learn

a global policy, which helps mitigate issues of partial observability and non-stationarity.

When designing a CTCE algorithm, a fixed maximum number of agents must be defined,

and if the environment has a fewer number of agents, a padding vector is used, as shown in

Fig. 2.1 where the input to the policy network contains n blocks and the output is a vector

of length n, with n being the maximum number of AVs . In [40] a centralized RL approach

is introduced to control multiple AVs in a simple merging scenario. While the authors

did not explicitly state a maximum number of controlled vehicles, their approach used a

centralized policy to control a small fraction of AVs. This approach is expanded in [41],

where a centralized RL is applied to both small and large-scale scenarios. For example, the

centralized RL approach was scaled up for the I-696 highway merge scenario to control

up to 30 AVs. This test demonstrated the potential for centralized RL to handle larger,

more complex traffic situations. However, challenges with the growing state and action

spaces was noted. Specifically, the authors identified three main challenges. First, the state

and action spaces grow exponentially with the number of controlled vehicles, significantly

increasing computational demands. Second, there is a significant time lag between an AV’s

action and its effect on the system’s average speed and outflow, resulting in delayed reward

feedback for the learning algorithm. Finally, in larger networks, the relationship between

the centralized agent’s actions and the overall system performance becomes less direct,

8

Figure 2.1: CTCE RL: Centralized policy processes all vehicles’ observations and outputs
all vehicles’ actions. The input block is repeated by n times, where n is the maximum
number of AVs, and the output is a vector of the length same as the maximum number of
AVs.

resulting in noisier reward signals. Which is because many vehicles in the network are

more influenced by their own local conditions than by the centralized controller. These

centralized approaches, as mentioned above, allow for coordination between controlled

AVs, potentially leading to cooperative agents. However, they often lack of scalability

in environments with continuous state and action spaces, which are common in driving

scenarios. Due to the “curse of dimensionality,” the learned policy tends to be sub-optimal

[42].

9

To address the scalability limitation of CTCE, researchers have proposed the DTDE

approach, which is a fully decentralized framework where both the training and execution

phases are independent. Each agent independently learns its policy using only its local

observations and rewards, without access to global state information or the actions of

other agents. See Fig. 2.2. This approach differs from CTCE in that it does not rely

on a central controller, allowing for greater scalability and flexibility in the number of

agents. However, DTDE may struggle with coordination among agents and can lead to

suboptimal solutions in scenarios requiring cooperative behavior. Several studies have

explored the use of DTDE in highway merging scenarios. In [43], a multi-agent Q-learning

was employed in a simplified two-vehicle merging scenario. In particular, a taper-type

highway on-ramp with only two vehicles was considered, where one vehicle tries to merge

and the other one stays in-lane. The authors proposed a simplified mathematical model

to simulate fundamental interactions between the merging vehicle and the in-lane traffic

vehicle, essentially creating a two-player grid-world with finitely discretized state and

action spaces. A subsequent study extended this approach to continuous state and action

spaces, using a decentralized multi-agent Deep Deterministic Policy Gradient (DDPG)

algorithm to control vehicle acceleration [44].

DTDE-based merging control, as discussed above, offer improved scalability

compared to CTCE methods, as they don’t require a central controller and can adapt to

varying numbers of agents. However, they face several challenges: (1) DTDE approach

may not achieve the optimal coordination among agents, particularly in scenarios requiring

highly cooperative behavior; (2) The scalability of DTDE approach, though better than

CTCE, may still be an issue when the number of agents is large [45]. This is primarily

due to the lack of experience sharing among agents, which introduces additional sample

complexity during training; and (3) As each agent treats all other agents as part of

10

Figure 2.2: DTDE RL: Each ego AV processes only local observations and outputs single
action.

the environment, whose dynamics are constantly changing since all agents are learning

concurrently, Markov stationary property can be violated, leading to instability [46].

The third major approach in MARL for AV highway merging is CTDE. This

approach is considered more practical as it attempts to balance the advantages of both

CTCE and DTDE approaches. CTDE is particularly suited to real-world applications,

leveraging the benefits of centralized learning while maintaining the scalability and

11

flexibility of decentralized execution. Typically, CTDE algorithms utilize an actor-critic

architecture, which separates policy and value estimations into distinct actor and critic

networks. The critic network is used exclusively during training to enhance the gradient

updates of policy networks, and multiple agents (i.e., actor network) are trained collectively

with a shared critic. After training, only the independent actors are necessary for

execution, enabling the agents to operate without further communication [47]. CTDE

addresses some of the limitations of both CTCE and DTDE. For example, it doesn’t

require a central controller during execution, which improves scalability and reduces

communication overhead in real-world applications compared to CTCE. At the same time,

CTDE mitigates the coordination issues often faced by DTDE approaches by incorporating

global information during the training phase.

2.3 AV Merging Problem Formulation

The AV merging problem in road reduction scenarios presents a critical

challenge for traffic management and safety. This dissertation explores two distinct yet

complementary merging scenarios: platoon merging and individual vehicle merging. Both

scenarios share key elements that must be addressed. First, state representation is crucial

for capturing relevant traffic information, including vehicle positions, speeds. Second, the

action space must define possible decisions for AVs. Third, reward design is essential

for incentivizing desired merging behavior that balances safety, efficiency, and passenger

comfort. Lastly, the learning approach must focus on developing effective merging

strategies that can adapt to dynamic traffic conditions. The first case study (Chapter 4)

examines platoon merging under CTCE control. This scenario represents a more structured,

cooperative environment with a fixed number of vehicles. In contrast, the second case

study (Chapter 5) investigates individual vehicle merging with CTDE control, simulating

a dynamic environment with a variable number of independent agents. This latter

12

scenario more closely resembles the complex, realistic highway merging situations. These

scenarios differ significantly in their problem formulations. The control scheme shifts

from centralized in the platoon scenario to decentralized in the individual vehicle scenario.

The number of agents changes from fixed to variable. The state and action spaces evolve

from platoon-level considerations to individual vehicle-level decisions. By exploring both

scenarios, this research aims to develop effective reinforcement learning-based strategies

across a spectrum of road reduction situations. This progressive development allows for

the extraction and understanding of critical information about merge scenes, enabling more

intelligent control strategies.

13

CHAPTER THREE

LITERATURE REVIEW ON RL-BASED AV MERGING AND PLATOONING

This chapter provides a comprehensive review of reinforcement learning (RL)

approaches for AV control, with a particular focus on highway scenarios. The review is

structured to systematically examine key aspects of RL applications in this domain.

3.1 Scenarios for RL-based Control

This section discusses three major scenarios studied in the relevant literature,

namely highway lane change, highway ramp merging, and platoon coordination, as shown

in Table 3.3.

3.1.1 Highway Lane Change

Lane changing on highways is an important and challenging task for AVs. Several

studies have investigated using DRL to train AV agents to perform safe and efficient lane

changes in highway environments. A common scenario studied is an agent controlling

a single AV that needs to execute a lane change maneuver on a multi-lane highway

segment in the presence of surrounding traffic [48, 60]. The highway environment is

typically simulated using tools like SUMO (Simulation of Urban MObility) [48], VISSIM

or custom cellular automaton models [64], with the RL agent controlling actions like

lateral movement, acceleration, and deceleration. For instance, authors in [48] trained

a policy using proximal policy optimization (PPO) to have an AV perform discretionary

lane changes on a congested highway simulated in SUMO. Another example is [60],

where the authors also studied an agent making a single lane change on a highway but

used a deep Q-network (DQN) algorithm. Similarly, [84] used a double deep Q-network

(DDQN) algorithm incorporated with a model of human lane-changing decisions as a safety

14

Table 3.1: State of the art articles on autonomous vehicle maneuvers control using
reinforcement learning

References Scenario State Space Action Space Software RL Method Rewards

[48] Lane changing
Raw sensors data

(acc., pos., and speed) Three discrete actions SUMO PPO
Comfort, efficiency,

and safety

[49]
Navigate congested

highway

Ego vehicle and
surrounding raw

sensors data

Discrete combinations of
acceleration and
steering angle

SUMO Policy Gradient
Fast and safe

driving

[50]
Platoons at non

signalized intersection
AV and its surrounding

motion values
Discrete set of

the acceleration SUMO PPO Average speed

[51] Platoon in freeway
Leader, ego vehicle, and

its preceding vehicle
Acceleration
(continuous) SUMO CommPPO Fuel consumption

[52] Highway on-ramp
Relative speed and

position of surrounding
vehicles

Discrete high
level decisions

Highway-env
[53] Novel MARL

Collision, merging cost,
speed, and time headway

[54] Highway on-ramp

Relative speed and
position of surrounding

vehicles and the
Road layout

Discrete high
level decisions

Highway-env MARL Safety

[55] Highway on-ramp
Traffic state and

vehicle motion information
Three discrete

actions SUMO STDQN
Efficiency, goal,

driving comfort, and safety

[56]
Highway

navigation

Self, connected agents
and infrastructure

observations (location,
velocity and acceleration)

Discrete high
level decisions CARLA [57]

Constrained
MARL

Maximize speed of
every agent

[58] Lane changing
Relative speed and

position of surrounding
vehicles

Discrete high
level decisions TORCS

Discrete high
level decisions

Collision, comfort,
speed, and time headway

[59]
Enter/Exit highway

merge

The relative speed of
surrounding vehicles, the

position of the
ego vehicle, and
the road layout.

Discrete high
level decisions Highway-env MADDQN Safe altruistic behavior

[60] Lane change
The relative distance to
the surrounding vehicles

and detected lane.

Continuous steering
and

longitudinal speed.
Python DDPG

Security, comfort,
and efficiency

[61]
Lane change

The relative distance and
absolute speed

of front vehicles.

To change lane
or to stay

MATLAB &
VISSIM [62] DQN

Safety and
efficiency

Car-following

The relative distance and
absolute speed of the front

and back vehicles and
the ego vehicle speed
and maximum speed

Six different speeds
to choose from

MATLAB &
VISSIM DQN

Safety, comfort,
and efficiency

[63] Highway on-ramp
Speed, position,

heading angle, and
lateral offset to the lines

Continuous acceleration
and steering angle

Simulation
of real world

data
DQN

Safety, Smoothness,
and timeliness

[64] Lane changing
Ego and surrounding

vehicles dynamics, and
road curvature

Continuous yaw
acceleration

Not mentioned DDPG
Large action changes,

Maneuvering time, and
lateral deviation

[65] Lane changing
Speed and position

of the ego vehicle and
its surrounding vehicles

Discrete high
level decisions

Udacity
simulator DQN Safety and Speed

[66]
Highway work

zone

Speed and acceleration
grid maps and neighboring

vehicles information

Acceleration and
deceleration

VISSIM SAC
Safety, comfort,
and traffic flow

[67] Platoon maneuvers
Speed, acceleration and

position of ego, front
and rear vehicles

Brake, throttle
and steering

CARLA SAC
Safety, comfort,

smoothness and headway

15

Table 3.2: State of the art articles on autonomous vehicle maneuvers control using
reinforcement learning - Continued

References Scenario State Space Action Space Software RL Method Rewards

[68]
Platoon in a stop-

and-go traffic

Headway, acceleration
and speed of ego and

front vehicles

Continuous
acceleration

SUMO SAC
Safety, efficiency, and
oscillation dampening

[69] Platoon forming
Speed, acceleration and

headway
Full-speed
headway

Not mentioned DDPG Velocity and headway

[70]
Platoon Longitudinal

Control

Relative distance,
ego vehicle speed,

preceding vehicle speed,
and the distance gap error

Continuous
acceleration

SUMO DDPG
Gap regulation, comfort

speed consensus,and safety

[71] Highway-on ramp
Speed and position of

AVs and HVs, merging
vehicle, and road layou

Continuous
acceleration and
steering angle

OpenAI Gym
Multi-agent

A2C

driving safety, traffic
flow efficiency, and

socially desirable behaviors

[72] Highway-on ramp
Speed and position of

AVs and HVs, merging
vehicle, and road layout

Discrete high
level actions

OpenAI Gym
Multi-agent

A2C

traffic throughput, safety,
and individual driving

comfort

[73] Highway merging

Egos speed & acceleration,
surrounding vehicles relative

speed & distance, and
distance to both

conflict zone and goal

Discrete high
level actions

Not mentioned DQN Efficiency and comfort

[74] Highway merging
Egos kinematics, surrounding

occupancy and speed map,
priority, and driver type

Discrete actions Custom simulator A-C MARL
Safety, flow,

efficiency, and success

[75] Highway merging
Egos local information,

position, motion, & Gaps
between surrounding vehicles

Discrete actions NGSIM A2C
Speed and successful

merge

[76] Highway merging
Egos kinematics and
position and speed

of surrounding vehicles

Continuous
acceleration

SUMO A2C
Collisions, braking,

and successful merge

[77] Lane changing

Egos kinematics and
position ,speed, heading

angle, and size of
surrounding vehicles

Continuous
acceleration

and steering angle
Not mentioned FSM and SAC

Risk penalty, approach
reward, and comfort

[78] Lane changing
Egos kinematics and
position & speed of
surrounding vehicles

Discrete actions Julia [79] DQN
Safety, efficiency,
and lane changing

[80] Highway merging
Ego vehicle, road geometry,

and surrounding traffic
Discrete actions Custom simulator DQN Average speed

[81] Highway merging
Distance to the merge point,
velocity, acceleration, and

cooperation parameter
Discrete actions Julia DQN

Collision, goal,
and time penalty

[43] Highway on-ramp
Closing gap and speed,

time to position,
and position of the ego

Discrete actions Python Q-learning
Safety, comfort,

and energy

[82]
Platoon coordination

management

Platoon state,
states of AVs in the platoon,

and environment state.
Discrete actions PLEXE [83] DRG-SP Driving strategy

[84] Lane changing
Velocity and relative distance of

surrounding vehicles,
and ego kinematics.

Discrete actions CARLA DDQN
Safety, speed,

and lane centering

16

Table 3.3: Studies organized by automated driving scenario

Scenario References

Highway Lane Change
Simple surrounding [48, 60, 84]

Complex surrounding [58, 64, 65]

Lane merging [66, 77, 78, 81]

Highway Ramp Merging
Multi-agent merging [43, 52, 54, 55, 59]

Cooperative merging [71–74, 76]

Using real-world traffic data [63, 75, 85]

Platooning
Cooperative speed control [50, 67–69]

Safe coordination [51, 56, 82]

Platoon joint [70]

supervisor to train AVs to drive safely in a 2-lane highway. The agent waited for a suitable

gap before changing lanes and maintained lane keeping after the maneuver.

More complex highway scenarios with continuous lanes and dynamic surrounding

traffic have also been explored as illustrated in Fig. 3.1. Ref. [64] used deep deterministic

policy gradients (DDPG) to train an agent to make lane changes on a 3-lane highway

with entering and exiting traffic modeled with an intelligent driver model (IDM). Same

authors [65] also studied an agent controlling a vehicle that needed to change lanes to

pass slower cars on a 3-lane highway simulated using an open-source self-driving car

simulator provided by Udacity. Additionally, the study [58] considered multiple AVs and

human-driven vehicles (HDVs) in a two-lane highway. The scenario starts with the AVs

and HDVs randomly spawned on the highway with different initial speeds. As the vehicles

drive on the highway, the AVs will try to make lane changes to overtake slower HDVs,

while cooperating with each other and reacting to the HDVs. Similarly, the authors in [77]

proposed a hybrid finite state machine (FSM) and RL approach for AV merging. The FSM

handled gap selection while the RL policy executed the final merge maneuver.

17

Figure 3.1: Illustration of the Lane-changing highway scenario.

In addition to discretionary lane changes, mandatory lane changes such as merging

have been studied. In Ref. [66], a highway work zone merge scenario is simulated where

the right lane is closed and vehicles in the right lane have to move into the left lane. In

the scenario, there are multiple independent agents, each of which is a vehicle in the closed

right lane. The highway consists of three zones: two metering zones and one merging zone.

In metering zones, vehicles in the right lane use RL to optimize their longitudinal positions

but do not change lanes. In the merging zone, vehicles merges based on their longitudinal

positions. Research presented in [78] specifically examined dense traffic merging using a

level-k reasoning model for surrounding vehicles. A common evaluation approach is to

initialize episodes with different traffic densities and vehicle configurations and assess the

trained policy based on metrics such as success rate, collision rate, and trip time [50,64,76].

On the other hand, study presented in [81] proposed a Cooperative Intelligent Driver Model

(C-IDM) to simulate the longitudinal driving behavior of the main lane vehicles . It adds

a cooperation level parameter to the basic Intelligent Driver Model (IDM). The scenario

is initialized by simulating the main lane vehicles for 10–20 seconds to create a realistic

dense traffic situation. The main lane has 10-14 vehicles initially, with a randomized initial

velocity of 4-6 m/s. The ego vehicle then starts driving in the merge lane, observing the

main lane vehicles.

18

While the core task is similar, studies have explored various unique scenario

variants. The studies incorporated different elements in their highway lane change

scenarios to evaluate their RL policies under varying conditions. The work in [48]

specifically focused on congested highways to test discretionary lane changes in dense

traffic. In [64], the simulated scenario involves one RL ego vehicle agent that is learning to

perform lane change behaviors, interacting with other vehicles on a three-lane highway.

In each episode, the ego RL vehicle starts randomly in the middle lane and travels

approximately 80 meters before a lane change command to either the left or right is issued.

A gap selection module picks a target gap for the RL vehicle to merge into. The RL agent

then attempts to execute a smooth lane change maneuver into this target gap. There are two

conditions that will terminate the episode: if the RL vehicle deviates more than one full lane

width from the center of the target lane, or if the lane change maneuver exceeds 10 seconds.

When an episode ends, the next one begins with the ego RL vehicle respawned in a new

random position on the middle lane. Through this training approach of placing the learning

vehicle in diverse situations across many episodes, the goal is for the RL agent to learn

an optimized policy for completing commanded lane changes properly despite realistic

highway traffic. The methodology outlined in [65] leveraged an open source simulator to

evaluate lane changes for passing slower vehicles. Ref. [77] included a finite state machine

for higher-level planning in their hybrid approach. The work in [78] is unique in using

level-k reasoning for surrounding vehicles to model imperfect human drivers. The diversity

of conditions and approaches highlights the complexity of the lane change problem and the

need for adaptable RL solutions.

3.1.2 Highway Ramp Merging

Various approaches have been proposed for AVs to safely and efficiently merge

onto highways amidst surrounding traffic using RL. A common scenario studied is an AV

19

Figure 3.2: On-ramp traffic scenario in the presence of HDVs.

starting on a highway on-ramp that must merge onto an adjacent multi-lane highway before

a predefined merge point. The highway has surrounding HDVs or AVs that the merging

vehicle must coordinate its actions with. Fig. 3.2 depicts such a scenario.

Several studies have employed multi-agent reinforcement learning (MARL)

algorithms for this merging task. Research presented in [43] presents a MARL approach

where tabular Q-learning is used, comparing single-agent and multi-agent formulations,

to learn policies that capture the complex interactions between vehicles during merging.

Authors demonstrate that a multi-agent approach considering joint actions can achieve

lower collision rates compared to single-agent policies. Additionally, paper [52] developed

a MARL approach with discrete actions, safety measures like action masking, and a reward

function considering metrics like collisions. The proposed MARL algorithm incorporates

two safety measures. Firstly, it employs an action masking technique to eliminate any

invalid actions. Secondly, a novel priority-based safety supervisor is introduced to evaluate

safety by predicting the future movement of vehicles for a defined number of steps. Work

in [54] extended Chen et al.’s, [52], problem where multiple agents (AVs) are randomly

placed on the merge lane.

20

Other work has focused on DRL that utilize spatiotemporal information. Due to

the limited information that the current step sensor observations provide, using only the

current observations as inputs to the learning agent is not enough to accurately determine

surrounding vehicles’ intent. Researchers have looked into using a temporal series of

data as inputs to enrich the agent’s representation and reasoning of the dynamic traffic

environment. This is intended to incorporate more contextual information regarding the

past behaviors and interactions of relevant participants. By utilizing these additional

spatiotemporal insights, the agent can achieve greater awareness and foresight regarding

the potential trajectories and actions of other vehicles. In [55], authors proposed a

spatiotemporal deep Q network (STDQN) that processes current and prior observations to

find the optimal action. However, the raw sensor data collected from the traffic environment

is likely very high-dimensional and contains a lot of redundant or irrelevant information.

Hence, instead of having the observations fed directly to the network, a set of the current

and prior observations will go through a spatiotemporal information extraction module to

extract only valuable information, which will be sent to the network. The information

extraction model consists of a long short-term memory neural network with an attention

mechanism (AttenLSTMNN) and a graph convolution network (GCN) to encode spatial

and temporal structure in the traffic data. In [59] DRL is also adopted but focused on

the robustness of AVs in a mixed-traffic environment to different human-driven vehicle

behaviors. Furthermore, a decentralized reward function that can promote different social

value orientations (SVO), such as altruistic or egoistic behaviors, is used. As a result,

altruistic AVs learn to account for other vehicles’ interests safely, such as accelerating or

decelerating to allow human drivers to exit or merge on the highway.

Enabling altruistic and cooperative actions has been another area of focus.

Investigation from [71, 72] simulated AVs learning to coordinate with each other and yield

to a human-driven merging vehicle. The scenario involves a highway with multiple lanes

21

and a merging ramp. The scenario starts with all vehicles initialized at random positions on

the highway and a single HV on the merging ramp trying to merge into the highway traffic.

The goal is for the AVs to learn altruistic behaviors to coordinate with each other and allow

the merging vehicle to safely merge into traffic without collisions. In contrast, study in [73],

focuses on the problem of AV merging in environments with multiple interacting agents

such as highways or unsignalized intersections. The key element studied is the uncertainty

in predicting whether other vehicles will cooperatively create gaps or not. The authors

simulate an ego vehicle approaching a merge point and interacting with up to 16 randomly

behaving surrounding vehicles. Some agents are set as cooperative, slowing down to allow

merging, while others are non-cooperative.

Some studies have concentrated on the development of decentralized policies and

interaction-aware decision making for merging vehicles. In [76], researchers focused

on learning fully decentralized policies for smooth and safe merging based on local

observations. The merging problem encompasses a rich set of scenarios, challenges, and

approaches using RL for AV control. Continued progress in areas like interaction-aware

MARL, handling complex dynamics, and testing in realistic traffic conditions will further

advance capabilities in this critical domain. The following work, [74], proposed a model

named IDAS that handles negotiating and leveraging cooperation from surrounding human

drivers. The primary goals are to enable an AV to strategically leverage human drivers’

cooperation and negotiate smooth merging maneuvers via multi-agent interactions. The

scenario involves the interaction of a total of eight autonomous and human-driven vehicles.

To teach the agent general policy, various driver behaviors are used at random - some

drivers are more cooperative when merging than others.

Finally, approaches using real traffic data have been explored. Analysis conducted

in [75] extracted over 400 real highway merging scenarios from the NGSIM dataset [85] to

train and test an ego vehicle. However, this mean that the surrounding vehicles follow

22

their recorded trajectories from the NGSIM data without responding to the ego agent.

The ego agent must learn to safely merge into gaps between host vehicles based on local

observations of surrounding vehicles. On the other hand, Ref. [63] combined LSTM (Long

Short-Term Memory) and DQN to learn optimal policies while addressing challenges like

balancing exploration/exploitation and avoiding local optima. In particular, the authors

used a LSTM architecture to model the interactive environment and incorporate historical

driving information. The LSTM is pre-trained in a supervised manner on real-world driving

data to represent the interactive environment. The DQN is then trained via deep Q-learning

using the simulated scenarios. This method recognizes the importance of temporal context

in decision-making and leverages real-world driving data to train the model. However,

it should be noted that while this approach is effective, it may introduce complexity and

computational overhead.

3.1.3 Platooning

Vehicular platooning has emerged as an essential research topic for enabling

cooperative and automated driving behaviors. A vehicle platoon consists of a company

of coordinated vehicles traveling together. The vehicles maintain close proximity to

one another in order to decrease aerodynamic friction and increase roadway throughput.

There may be both AVs and HDVs in the platoon. Maintaining safe longitudinal and

lateral control of platoon vehicles, responding to perturbations, and performing split/join

maneuvers to modify platoon composition are crucial technical challenges. If vehicles can

be controlled in a safe, seamless, and coordinated manner, platooning has the potential

to increase traffic flow stability, improve mobility, and decrease energy consumption. This

encouraged research into RL techniques for training vehicle controllers capable of handling

the unique difficulties of platoon coordination in mixed traffic.

23

A common scenario is a mix of AVs, controlled by a centralized RL agent, and

HDVs following simple car-following models. A major focus has been on using RL to

enable cooperative acceleration and speed control in platoons. The human unpredictability

stresses the RL agent’s ability to handle unknown dynamics. In [69], the platoon consists

of 8 vehicles, with vehicles 1, 3, 5, 7 being autonomous and 2, 4, 6, 8 being human-driven.

HDVs cause randomness and unknown dynamics for the DRL algorithm to handle. The

scenario starts with the platoon trying to catch up to the lead vehicle, which starts

much farther ahead. The goal for the DRL agent is to learn to coordinate the AV

accelerations to help the whole platoon steadily catch up to the lead vehicle. Authors of [67]

developed a novel DRL algorithm, platoon sharing deep deterministic policy gradient

algorithm (PSDDPG), which outperformed traditional methods in smoothing traffic flow

and robustness. The PSDDPG is used to train three different networks: the lane-changing,

car-following, and decision-making networks. So, for different networks, the authors

designed different reward functions to achieve good cruising, overtaking, and obstacle

avoidance strategies. In [68] RL is applied to dampen stop-and-go oscillations in vehicle

platoons by training cooperative longitudinal control policies. The authors train RL agents

using real driving data, collected from German highways using drones, demonstrating the

applicability of RL to improve existing adaptive cruise control systems. Using RL for

autonomous lead vehicles to enhance intersection flow in mixed traffic was studied by [50].

Ensuring safe and efficient coordination is another key challenge. Authors in [56]

incorporated safety constraints and spatial-temporal modeling of the environment for CAV

coordination. The authors proposed using multi-agent reinforcement learning (MARL)

for CAVs facing problematic driving scenarios in mixed traffic, such as vehicles running

red lights and sudden brakes on the highway. The authors designed a safety shield

module that uses control barrier functions and quadratic programming to loop through all

candidate actions to check the safety of each action and mask unsafe actions. Research

24

presented in [51] proposed a multi-agent algorithm, CommPPO, that uses a specialized

communication protocol to avoid common multi-agent RL issues and improve platoon

energy efficiency. Therefore, the proposed communication protocol only transmits valuable

information explicitly designed for the leader-follower platoon topology. Also, a more

explicit and representative reward for each agent is used to avoid lazy agent issues.

Recent work has also focused on integrated longitudinal control combining speed

regulation, spacing, and platoon joining/leaving. Using DDPG, the authors of [70] created a

unified DRL solution that manages split/join maneuvers, gap regulation, and speed control

all within the same framework. Precisely controlling vehicle platoons involves balancing

multiple objectives such as maintaining a constant speed, fixing gaps between vehicles, and

smoothly joining/leaving the platoon. This paper formulates a multi-task DRL framework

to jointly learn all these platoon behaviors, which is first trained using only two vehicles:

the ego vehicle being controlled and the lead vehicle in front of it. The two vehicles are

spawned with random initial speeds and inter-vehicle gaps. This small scenario allows

the agent to learn longitudinal control behaviors like gap regulation and speed tracking

through trial-and-error experience. After the training is complete, the controller is then

tested in a more complex situation with one lead car and seven follower vehicles driving

behind it. This larger platoon more realistically evaluates the scalability and performance

of the trained control policy on factors like string stability, robustness to perturbations,

speed consensus among followers, and inter-vehicle gap errors. Moving from logitudinal

control to wider platoon management, [82] proposes a hybrid deep reinforcement learning

and genetic algorithm called DRG-SP for smart platooning AVs. The key objectives are

to intelligently control the leader AV to make optimal platooning decisions, effectively

form platoons, and maintain balanced platoon structures. The environment is a four-lane

highway populated with AVs. Each platoon has one lead AV (captain AV) and a number

of follower AVs. Initially, some AVs are on the highway driving individually but as the

25

Table 3.4: Studies organized by RL algorithms

RL Algorithms References

Single Agent RL

DQN and DDQN [61, 63, 65, 73, 78, 80, 81, 84]

PPO [48, 50]

DDPG [60, 64, 69, 70, 76]

Others (SAC, A2C, etc.) [43, 49, 68, 75, 77, 82]

Multi-Agent RL
Centralized training [56, 67, 74]

Decentralized training [52, 58, 59, 71, 72]

Curriculum learning [51, 64, 74, 78]

Representation learning [55, 56, 63, 74, 80]

simulation progresses, these individual AVs send join requests to the captain AV of a

platoon. The captain AV decides whether to accept or reject these requests based on the

platoons current state. The simulation ends after sufficient time has elapsed to evaluate the

platoon management strategies.

3.2 RL Algorithms

RL has become a dominant technique for training autonomous agents to optimize

behaviors and policies through trial-and-error interactions with an environment [86, 87].

The past decade has witnessed remarkable advances in RL algorithms, enabling agents

to achieve superhuman performance across complex domains like games, robotics, and

autonomous driving. This section synthesizes key developments in modern RL algorithms

based on recent research papers in this growing field, as summarized in Table 3.4.

3.2.1 Deep Reinforcement Learning Algorithms

Recent research in RL for autonomous driving has explored both single agent

and multi-agent approaches. Within single agent methods, deep Q-networks (DQN) have

26

emerged as a widely adopted algorithm, leveraged for tactical decision making tasks like

lane changing and merging [61, 65, 73, 78, 80, 81]. In [61], Deep Q-Network (DQN) is

used to train two different policies: the lane-changing policy and the car-following policy

in mixed traffic. First, Q-learning is used to estimate the Q values (expected rewards) for

each state-action pair, which are stored in a table. Then use the Q values from the table to

train neural networks to approximate the Q function. The DQN agent in [65] learns to map

traffic states to optimal lane change actions. Actions are selected using an ε-greedy, [35],

approach to balance exploration and exploitation.

While adopting DQN as the core algorithm, differences exist in the specific DQN

extensions used, with papers selecting double DQN [88], dueling DQN [89], prioritized

experience replay [90], etc. based on their needs. Some works integrate DQN with safety

mechanisms like action masking or trajectory checks to override unsafe decisions made

by the DQN policy. As an example, in [65], the DQN outputs high-level lane change

decisions, but before executing the action, rule-based safety checks are performed. If the

DQN decision is unsafe (will cause a collision), it is overridden. The car is forced to

stay in the current lane instead. This prevents the DQN from choosing actions that lead

to crashes which means that the agent will not learn to not select unsafe actions because

these unsafe actions will not be executed. Similarly, reference [63] proposed dividing the

reinforcement learning into two components - an LSTM network to model the interactive

driving environment’s history, and a DQN for estimating Q-values and action selection. The

LSTM handles the non-Markovian aspect and history modeling, while the DQN provides a

way to learn an optimal policy from scratch. In [80], the authors uses DQN enhancements

such as Double DQN and Dueling DQN to improve the merging agents performance and

stability. Additionally, Convolutional Neural Network (CNN) is used for handling the

image-based state space.

27

Other papers have explored alternative single agent RL algorithms such as, PPO

[48, 50], DDPG, [60, 64, 69, 70, 76], SAC [68], Vanilla policy gradient [49], and A2C

[75]. For instance, the framework proposed by [49] adopted a vanilla policy gradient

approach with a neural network policy representation to learn optimal acceleration and

steering on highways. Policy gradient methods can directly optimize policies, unlike

value-based techniques like DQN. Meanwhile, the methodology outlined in [68] applied

Soft Actor-Critic (SAC), an off-policy actor-critic algorithm well-suited for continuous

action spaces like vehicle acceleration control. Compared to DQN, SAC provides increased

stability and sample efficiency stemming from its focus on entropy maximization. In

[50], authors propose using PPO with an adaptive KL penalty to optimize the policy for

controlling multiple AVs at a non-signalized intersection.

3.2.2 Multi-agent Reinforcement Learning

Instead of having all the agents controlled by a centralized RL policy, a multi-agent

technique is used. In multi-agent reinforcement learning (MARL), each agent, i.e., each

AV, is controlled by its own policy. There are multiple themes to build MARL algorithms

based on what the agents can share between each other and how this shared information is

used [91]. Centralized training and a decentralized execution scheme is often preferred in

multi-agent reinforcement learning (MARL) because agents communicate and coordinate

their actions during training, but when it comes to execution, they act independently. This

can be seen as a more realistic scenario in many real-world applications where perfect

communication is not realistic. Several papers utilize decentralized execution with a

centralized critic to enable training across agents’ experiences. In [67], a novel DRL

algorithm named platoon sharing deep deterministic policy gradient algorithm (PSDDPG)

is proposed to overcome the problem of low efficiency of continuous action space

exploration. It allows connected vehicles to jointly learn a shared policy network through

28

a centralized training process. Instead of taking the local observations of all the vehicles as

an input and generating multiple outputs, the PSDDPG receives the observations of the ego

vehicle and its preceding vehicle and generates only one action. simultaneously, all vehicles

use the network to get actions, and all vehicles experiences are used to train the network.

In addition to decentralized value critics, the framework proposed by [74] employs a

centralized action-value critic. Other works focus on fully decentralized approaches which

is scalable to varying fleet sizes in contrast to decentralized execution with a centralized

critic. For instance, employ a multi-agent advantage actor-critic (MA2C) with shared

parameters and multi-objective rewards. As an example, two studies [52, 58] employ a

multi-agent advantage actor-critic (MA2C) with shared parameters and multi-objective

rewards. Similarly, [59], the main RL method used is a multi-agent version of the

Double Deep Q-Network (DDQN). The problem is formulated as a partially observable

stochastic game (POSG) with decentralized agents (AVs) that receive local observations

and rewards. On the other hand, the study in [56] adapt constrained MARL with

decentralized training. A decentralized A2C variant with independent actors and critics

is proposed in [71, 72]. While authors in [51] presented CommPPO which adapts PPO for

platoon-based multi-agent coordination. In the CommPPO algorithm, each vehicle in the

platoon is treated as an agent that can learn and interact with the environment and other

agents. The agents share the same neural network parameters and update them based on

the collective reward and the policy gradient method. The communication protocol of the

CommPPO consists of two parts:

• State transmission part: shares state information between agents based on a

predecessor-leader follower topology of the platoon.

• Reward transmission part: A new reward communication channel is proposed

propagates rewards to avoid issues like spurious rewards and lazy agents.

29

A key challenge in MARL is the credit assignment problem—how to allocate

rewards or blame to each agent when there are joint rewards or complex interactions.

Most papers use simple techniques like local rewards [59, 71], but this can fail in complex

cooperative settings. Research in [74] employed a counterfactual baseline in the centralized

critic to address this issue [92]. The counterfactual compares the joint Q-value to the

Q-value obtained if the agent did not take the action which helps calculate the agent’s

contribution. Another limitation of current MARL algorithms is the assumption of a fixed

number of agents (AVs). All of the papers discussed have a fixed number of agents during

the whole episodes for training and evaluation. However, real-world traffic scenarios

involve varying numbers of vehicles entering or leaving the environment. The ability

to handle a dynamic number of vehicles during training and execution remains an open

challenge for MARL scaling.

3.2.3 Curriculum Learning

Curriculum learning is an important technique used in several papers to improve

the training process and performance of RL agents for autonomous driving. For instance,

in [78], curriculum learning is implemented by gradually exposing the DQN agent to more

sophisticated and diverse driving behaviors. Training begins against simple rule-based

drivers at lower levels of reasoned decision making. As training progresses, higher level-k

opponents with more complex learned policies are introduced to increase task difficulty

and variability. This continuation method provides a smoother task progression for the

agent to master.In [51], the proposed framework also leverage curriculum learning for

their multi-agent platoon coordination task. They begin training with small platoon sizes

of just 2-3 vehicles and incrementally increase the platoon length as training advances.

This prevents initial collisions that could occur with large platoons and allows for an

easier-to-harder task curriculum. In contrast, in [74], the curriculum learning is employed

30

when designing the reward function. The agent started with individual rewards before

adding multi-agent joint rewards. Additionally, the study in [64] took a similar approach

by splitting training into two stages. First, an easy lane keeping task is learned. Once the

agent can reliably perform lane following, the harder lane changing skills are trained on

top of those basics. The platform skills learned in early curricula lead to faster training on

more complex tasks. Curriculum learning has several benefits for RL-based autonomous

driving:

• Smoother task progression prevents the agent from getting overwhelmed early on

• Platform skills in early curricula accelerate later training stages

• Gradual exposure allows for unsafe exploratory actions to be filtered

The schedule and implementation of curriculum learning remains an open research

area. Adaptive curricula based on agent progress seem promising. Overall, curriculum

learning is an effective technique for managing the training process of RL driving agents.

3.2.4 Representation Learning

Existing state-of-the-art RL algorithms still require millions of training examples

in order to learn a decent or near-optimal policy for completing a given task. This plays

a notably critical role in real-world implementations in industries, whether in robotics or

other complex optimization problems related to decision-making or optimal control. In

DRL, the agent’s policy directly maps sensory input to action, requiring simultaneous

learning of representation and control. Learning useful representations is key for AD, as

raw sensor inputs like camera images are high-dimensional and unstructured [93].

A common approach is to manually extract features like distances to lane markings,

surrounding vehicles, speed, etc. based on domain knowledge of useful driving information

[43, 48–52, 54, 61]. Using engineered features can make it easier for the RL agent to

31

learn by reducing the state dimensionality and simplifying the manually specified domain

knowledge. However, this requires significant feature engineering effort and may miss

useful patterns that could be automatically learned from raw data. It limits the system

to what humans can manually identify as relevant. Once the features are extracted,

conventional fully connected neural networks are commonly used to represent the policy

and value functions [49, 69].

On the other hand, papers like [56] propose using graph neural networks (GNNs) to

encode spatial relationships between vehicles and extract structured state representations.

GNNs can capture complex dependencies better than fully-connected layers [94]. Also,

convolutional neural networks (CNNs) are widely adopted to process visual inputs and

extract hierarchical spatial features [74, 80]. This takes advantage of CNNs abilities for

translation invariance and local connectivity. Attention mechanisms are being increasingly

incorporated [55] to focus neural networks on relevant parts of the observation for decision

making, as opposed to treating all inputs uniformly.

Lastly, recent works propose decoupling representation learning completely from

policy learning for reinforcement learning agents by using a trained external module to

extract key features that will then be fed to the RL agent. For instance, [63], uses real-world

driving data (video of a bird’s eye view of the highway merge) to train the LSTM module,

in a supervised learning fashion, to process sequential observations and extract relevant

historical driving context.

3.3 Action Space

The research papers examined in this review employed a variety of action spaces, as

summarized in Table 3.5, to train RL agents for AD tasks like lane changing, merging, car

following, and platoon coordination. In particular, the RL actions can be either continuous

or discrete, or both, and can include safety modules to ensure the safety during RL training.

32

The choice of action space plays an important role in determining the flexibility and

performance of the trained agent. A key distinction is between continuous and discrete

action spaces. Continuous action spaces allow fine-grained control over vehicle actuators

like steering angle and acceleration/deceleration [95]. This supports smoother driving

behavior. However, continuous spaces can be more challenging to learn due to their

high dimensionality [96]. Discrete action spaces, on the other hand, simplify the learning

problem but reduce control flexibility [97]. Hybrid approaches combining both continuous

and discrete actions are a useful compromise, with discrete actions for high-level decisions

and continuous actions for lower-level control.

3.3.1 Continuous Action Spaces

Several studies utilized continuous action spaces directly controlling longitudinal

acceleration and lateral steering angle [63, 76, 77]. This enables precise vehicle control

for maneuvers like merging and lane changing. However, directly outputting raw control

values from the policy network can result in jerky trajectories. Constraining the maximum

per-timestep change in acceleration and steering helps smooth the motion [77]. In contrast,

[64] used a continuous action of the derivative of the yaw rate only, which is referred

to as the yaw acceleration, to perform lane change maneuvers. But directly controlling

accelerations and steering angles requires extensive training data and tuning to ensure

safety. In [67], continuous actions are used for throttle/braking and steering control, while

discrete actions are used for high-level decision making like lane changes. For all networks,

a hyperbolic tangent activation is used to map the output to the interval of [−1,1]. For the

car-following network, to get independent control of acceleration and deceleration, the

output interval is divided into two subintervals [-1, 0] and [0, 1], where throttle values

range from 0 to 1 and brake values range from -1 to 0. For the lane-changing network,

the network output directly mapps to the steering angle using the tanh activation, ranging

33

Table 3.5: Studies organized by the action space used

Reference Action Type Number of Actions Safety Mechanism

[48] Discrete 6 Safety Intervention Module [98]

[49] Discrete 9 None

[50] Continuous 1 None

[51] Continuous 1 DRAC

[52] Discrete 5 Novel priority-based safety supervisor

[54] Discrete 5 None

[55] Discrete 3 None

[56] Discrete 5 Control barrier function

[58] Discrete 5 None

[59] Discrete 5 Time-to-collision (TTC)

[60] Continuous 2 None

[61]
Binary 1 None

Discrete 6 None

[63] Continuous 2 None

[64] Continuous 1 None

[65] Discrete 3 Rule-based constraints

[66] Continuous 1 VISSIM basic safety constraints

[67]
Continuous 2 None

Discrete 3 None

[68] Continuous 1 None

[69] Continuous 1 None

[70] Continuous 1 None

[71] Discrete 5 None

[72] Discrete 5 None

[73] Discrete 3 MPC constraints

[74] Discrete 7 Masking

[75] Discrete 4 Low-level controller constraints

[76] Continuous 1 None

[77] Continuous 2 Finite state machine (FSM)

[78] Discrete 5 Intelligent Driver Model (IDM)

[80] Discrete 3 None

[81] Discrete 7 None

[43]
Discrete 5 None

Discrete 25 None

[84] Discrete 5 Human decision-making model

34

from -1 to 1 (full left to full right steering). For the decision making network, the output

is divided into 3 discrete actions: [−1,−0.5] for left lane change, [−0.5,0.5] for no lane

change, and [0.5,1] for right lane change.

In [50], the RL agent only controls the acceleration of AVs to be within a specific

range of maximum deceleration and maximum acceleration values. In contrast, [51] used

a continuous action space between -3 m/s2 and 3 m/s2 for acceleration. Similarly, in

[60], a continuous action space was employed that enables control over both the steering

wheel angle and the longitudinal speed of the vehicle, which are essential for executing

lane-changing maneuvers. The use of a continuous action space allows for more delicate

actions to ensure safety and comfort while driving. In [68, 70], the action taken by the RL

agents is the (continuous) acceleration and deceleration of the ego vehicle, with bounds on

the maximum acceleration and deceleration. For example, [68] uses [−3 m/s2,2 m/s2]

while [70] uses [3.5 m/s2,−3.5 m/s2]. These range reflects the realistic acceleration

capabilities of regular passenger vehicles. The objective of the RL agent is to smoothly

regulate the ego vehicle’s speed and dampen any oscillations propagated from the lead

vehicle(s) by choosing appropriate accelerations.

3.3.2 Discrete Action Space

Many works selected discrete speed control actions that are converted to smooth

accelerations by lower-level controllers [80, 81, 84]. This simplifies learning compared to

directly outputting accelerations, while maintaining adequate control over speed changes

for tasks like cooperative merging. However, having only a few discrete speed options

reduces flexibility. In the research conducted by [48], the action space is composed of

six discrete actions categorized into longitudinal and lateral control. The longitudinal

control includes following the current lane leader or the target lane leader, while the lateral

control includes lane keeping, changing lane, and aborting the lane change. Each action

35

affects the ego vehicle’s speed and direction, resulting in six possible actions in the action

space. In a similar study conducted by [49], the action space that controls the ego vehicle’s

acceleration and steering is described. Each action at every time step is defined by two

values: steering angle and acceleration, both of which are discretized into three possible

values each, resulting in nine possible discrete combinations of steering and acceleration.

In many scenarios, the actions naturally correspond to high-level tactical maneuvers

like lane changes, while relying on lower-level motion planners to execute the actions

[52, 72, 75]. This simplifies the policy learning problem. However, performance depends

heavily on the capabilities of the downstream planner. If the planner cannot closely follow

the high-level policy, the end-to-end behavior will suffer. In [72], the paper defines a

high-level, discrete action space for each AV. The action space consists of the following:

• Lane change left: Move the AV left to the adjacent lane

• Lane change right: Move the AV right to the adjacent lane

• Accelerate: Increase the AVs speed

• Decelerate: Decrease the AVs speed

• Cruise: Do not change the AVs lane or speed

See Fig. 3.3 for more details. In [52, 58], the action space consists of high-level

discrete actions, such as turn left, turn right, cruising, speed up, and slow down, that control

both lateral and longitudinal vehicle dynamics. Similarly, in [55], high-level discrete

actions, such as keep straight, turn left, and turn right, are used. In a similar manner,

researchers employed high-level discrete actions for the lane change scenario, allowing

the vehicle to choose between merging or staying in the same lane [61]. In [56], the

authors also employ high-level discrete actions, such as keep lane speed, change lane left,

change lane right, brake, and a specified number of discretized throttle intervals. High

36

Figure 3.3: High level action space.

level action space is also used for platoon coordination management, [82] used a high level

action space taken by the captain AV which include accepting/rejecting requests from AVs

to join the platoon. Lastly, in [59, 84], high-level discrete actions such as change to the

right lane, change to the left lane, accelerate, decelerate, and idle are used. The agent

in [65], has a relatively simple action space, with only three discrete actions: stay in the

current lane, change lanes to the left, and change lanes to the right. Low-level steering

and acceleration are not directly controllable. The agent only makes a high-level decision

about whether to stay or change lanes to the left or right. Similarly, [43] set the action

space to be a set of accelerations for the each controlled vehicle. Which is discretized

into five values: high-decelerate, decelerate, no-decelerate, accelerate, high accelerate. For

the multi-agent setting, the Cartesian product of the ego and traffic vehicle accelerations.

The simple discrete action space reduces the complexity of the control problem for the

DQN. In [73], the action space for the RL agent consists of high-level maneuver decisions

that specify the operating mode for the lower-level motion planner. The available actions

are: progressive give-way, defensive give-way, and cooperative give-way These actions

37

correspond to different parameterized versions of the safe give-way maneuver that the

model predictive control (MPC) planner executes. The progressive option drives faster to

increase chances of merging, defensive stops more conservatively, and cooperative cruises

to gather more information. In [78], the action space consists of discrete longitudinal and

lateral actions, making six total discrete actions. Longitudinally, the action space consists

of three different speeds {0 m/s,3 m/s,5 m/s}. The longitudinal action is then converted

into a continuous acceleration using the Intelligent Driver Model (IDM). For the lateral

part, the agent chooses between staying in the lane and changing lanes. The lateral action

triggers a proportional-derivative (PD) controller to execute the lane change.

For platoon coordination, high-level actions like gap generation and role

re-assignment allow training cooperative merging policies, but require efficient platoon

maneuvers from the lower-level controllers. Some works avoided low-level vehicle control

entirely, instead using actions to set parameters of car-following models that generate

controls autonomously [69]. In [69], the action taken by the DRL agent is setting the

full-speed headway parameter for each AV. In other words, rather than directly controlling

accelerations, the DRL agent sets the headway distance parameter in the optimal velocity

model (OVM) of each AV. Lower headway parameters lead to higher accelerations, and

vice versa. The OVM model then converts the headway parameter to a corresponding

acceleration control signal for that vehicle. So the action is a vector of continuous headway

parameter values, one for each AV. The headway parameter values are bounded between

10-60m based on reasonable driving headways.

Overall, direct continuous control enables highly flexible policies at the cost of

complex training. Discrete and high-level actions simplify learning but constrain policies.

Hybrid action spaces help balance flexibility and tractability.

38

3.3.3 Safety Modules

Most of the papers focus on incorporating safety through careful design of the

reward function without using a separate safety module. That is, when the agent chooses

an unsafe action, a negative reward is applied to decrease the likelihood of choosing

this action at the current state, discussed in Section 5.2. Other studies handle safety

through basic constraints enforcement by the simulating the environment during training

[66, 78], or by designing and employing a separate module to classify and override unsafe

actions [51, 52, 56, 58, 60, 65, 73, 77]. While the specific implementations differ, some

key themes emerge in how these modules shape the action spaces of the RL agents. A

common technique is using the safety module as a filter on the policy’s outputs before

execution. Two studies [48, 77] evaluate candidate actions and replace unsafe ones with

safer alternatives. Ref. [?] used a finite-state machine (FSM) that determines the high-level

driving phase of the AV based on the risks associated with nearby vehicles. The FSM

consists of four phases: Ready, Approach, Negotiation, and Lane-change. Each phase has

a rule-based controller that ensures safety by calculating the minimum safe distances and

times-to-collision with the surrounding vehicles. This restricts the action space by only

allowing the subset of actions deemed safe by the module. This study, [52], proposed a

priority-based safety supervisor approach to improve the safety of the MARL algorithm

for CAVs during highway merging operations. The primary concept is the allocation of a

priority index, denoted as pi, to each CAV. This index is determined based on factors such

as the CAV’s position, distance from the merging point, and headway time. The priority

index of the ith CAV can be expressed as follows:

pi = α1 pm +α2 pd +α3 ph +wi, (3.1)

where, pm, pd ,and ph represent the merging lane priority, distance priority, and time

headway priority, respectively. α1, α2, and α3 are the tuning weights of each priority

39

metric. The variable wi is assigned a modest random value in order to prevent the

occurrence of identical priority indices. During each time step, the CAVs are arranged

in a list denoted as Pt based on their priority index. Beginning with the top CAV denoted as

Pt [0], its exploratory action is evaluated by making predictions about the future movements

of the CAV itself as well as the surrounding vehicles over the subsequent Tn time steps.

In the event that a collision is detected, the risky action is substituted with the action that

ensures the highest level of safety, determined by maximizing the minimum anticipated

safety distance. The process continues sequentially along Pt by checking lower priority

CAVs while using updated motions for higher priority ones. By prioritizing vehicles with

lower safety margins, this scheme significantly improves safety and learning efficiency. The

prediction horizon Tn allows foresighted decisions but should be tuned to balance efficiency

and uncertainty.

In contrast, the study in [60] embed safety directly into the policy network through

masking or priority-based coordination. This paper uses masking mechanisms in the policy

network to prevent the RL agent from taking unsafe actions that would violate kinematics

constraints, speed limits, or safe distances. Similarly, [51] uses the deceleration rate

required to avoid a crash (DRAC) to calculate the Maximum Conflict Acceleration (MCA).

If the DRAC between a CAV and its predecessor exceeds a threshold, indicating a crash

risk, the CAV’s acceleration is limited to MCA to avoid the crash. While more scalable

without a separate execution module, directly altering policy outputs may distort learning

and constrain the original task. The action space representation also impacts integration of

safety. Two studies [58,73] use discrete action spaces of high-level maneuvers, simplifying

safety evaluations but reducing control precision. The safety module is composed of two

parts: a trajectory planning module with hard constraints and a safety supervisor. The

trajectory planning module ensures that the AVs follow a safe and feasible trajectory that

satisfies the physical and environmental constraints. The safety supervisor monitors the

40

actions of the AVs and intervenes if they violate the safety rules or cause collisions. The

safety module works together with the policy, which is learned by reinforcement learning,

to achieve safe and comfortable driving behaviors.

Authors in [65] propose a rule-based constraint module to ensure the safety of the

lane change decisions. Specifically, after the DQN agent chooses a high-level lane change

action, the controller predicts the trajectories of the ego vehicle and surrounding vehicles

based on this action. If the predicted distance between the ego vehicle and a surrounding

vehicle drops below a predefined safe threshold at any time, the lane change decision

is deemed unsafe and overruled - the ego vehicle stays in the current lane. One of the

limitations is that it relies on accurate trajectory prediction, which may be difficult with

complex real-world dynamics. In the same vein, [84] use regret theory to model human

drivers lane-changing behavior. This model is integrated with the RL agent to assess safety

implications of the predicted actions of the agent. A key limitation is that only one drivers

behavior is used to train and validate the model. In contrast, [56] uses a parallel safety

module based on control barrier functions (CBFs), [99], to constrain their multi-agent

A2C policy learning. For each candidate action, the CBF safety check solves a quadratic

program to find a control input that keeps the system safe with respect to inter-vehicle

distance thresholds. If no feasible solution exists, the action is classified unsafe. This

provides formal safety guarantees based on control theory, avoiding reliance on accurate

modeling. However, constructing appropriate CBFs can be nontrivial for complex systems.

3.4 State Space

This section discusses the state space setups adopted in literature, which are also

summarized in Table 3.6. In RL, the state space plays a crucial role in determining the

behavior of agents. The state space determines what information the agent receives about

the environment to determine its actions. The state space should be able to describe

41

Table 3.6: Studies organized by state space scheme used

Reference
Current

time step Temporal
Real world

data
Extraction

module
Row sensor

data Surrounding vehicles

[48] ✓ 4 vehicles (leaders and followers at current and target lanes)
[49] ✓ 8 (all adjacent) vehicles
[50] ✓ 2 (immediately preceding and following) vehicles
[51] ✓ 2 (predecessor, and platoon leader) vehicles
[52] ✓ Nearest five Vehicles within 150 m
[54] ✓ Vehicles that are on the highway and on the merge ramp

[55] ✓
All surrounding vehicles

within 20-60 m
[56] ✓ ✓ 3-5 CAV vehicles
[58] ✓ All detected vehicles
[59] ✓ All detected vehicles
[60] ✓ All detected vehicles
[61] ✓ 3 (left, right, front)
[63] ✓ ✓ 2 (front, rear)
[64] ✓ immediate surrounding vehicles
[65] ✓ Vehicles within 60 m in front and 30 m rear

[66] ✓
3 (lead vehicle on current lane, and

(lead and lag) vehicles in target lane)
[67] ✓ ✓ Front vehicle
[68] ✓ 2 (front, rear) vehicles
[69] ✓ All vehicles within its V2V communication range
[70] ✓ Immediate preceding vehicle
[71] ✓ All vehicles within its V2V communication range
[72] ✓ All detected vehicles
[73] ✓ ✓ 16 vehicles
[74] ✓ All vehicles within 100m in front and behind
[75] ✓ ✓ 4 (2 front and 2 rear) vehicles
[76] ✓ 5 (2 leading, 2 following, and merging vehicle) vehicles
[77] ✓ 4 (leading, lagging, front-of-leading, and front) vehicles
[78] ✓ The 8 closest vehicles within 30m
[80] ✓ ✓ All vehicles on the on-ramp

[81] ✓ ✓
4 (front of ego, behind merge point, front and rear of ego

vehicle’s projection on main lane)
[43] ✓ 1 vehicle
[82] ✓ All AVs
[82] ✓ 4 (two front, two rear) vehicles

42

the important properties of the environment at the current time step. A well-designed

state space in RL should be compact, expressive, and general [100, 101]. It should be

minimal and only include the most important information needed for the task to enable

efficient learning while still containing enough expressive detail to capture key dynamics

and constraints for good decision-making. The state representation should focus on general

features of the environment (rather than specifics) to generalize learned behaviors to new

situations. In various studies in the field of vehicle automation, different approaches have

been taken to define the state space. The most common design choice is to include the ego

vehicle kinematics, such as longitudinal and lateral position, velocity, acceleration, and

heading angle [48–51, 69, 70]. This provides the most important information needed for

motion planning and control. The majority of papers also incorporate data on surrounding

vehicles, ranging from just the immediately adjacent vehicles [43,50,70] to more extensive

context including multiple lead and follow vehicles [48, 49, 55, 68, 69]. See Fig. 3.4. More

information about the environment makes it easier to predict and respond to other vehicles

behavior, but it also increases the complexity of the state space.

3.4.1 State Information from Surrounding Vehicles

The number of surrounding vehicles that are included into state space differs

significantly, ranging from just lead and follow vehicles to up to eight neighbors in [50,

70, 84] and [69, 78], respectively. More information on surrounding vehicles enhances the

environmental context for decision-making, but exponentially expands the state space and

increases the training difficulty. Some studies explicitly examine trade-offs between state

vector dimensionality and learning efficacy [68]. Another difference is the incorporation of

road geometry details, like lane curvature, to improve generalization [64, 82].

Most of the papers reviewed here have explored state space representations based

on ego vehicle kinematics and surrounding vehicle information, seeking to balance

43

Figure 3.4: Limited vs extensive surrounding vehicle detection ranges. Where d represents
the detection range of the AV.

44

compactness and expressiveness. An emerging alternative approach encodes a local

overhead perspective of the environment surrounding the ego vehicle in grid or image form.

This representation provides useful traffic context for decision-making while leveraging

the power of deep learning methods like convolutional neural networks. Authors in

[65] designed a grid encoding positions and speeds of nearby vehicles to support lane

change behaviors. Additionally, in [55], an occupancy matrix that captures the spatial

relationships among the vehicles and traffic information such as volume and density are

included in the network. Meanwhile, a study [80] used time-series grayscale images

to capture vehicle dynamics and road geometry from a first-person visual perspective.

In [52, 58], the authors took a hybrid approach, combining binary occupancy maps with

relative vehicle positions and speeds processed separately. Though distinct from the

previous egocentric representations, these local overhead view techniques share the goal of

supplying key environmental state information to guide the learning agent. Both egocentric

and allocentric representations have respective strengths in enabling efficient reinforcement

learning in AVs. The state space consists of four key observations that provide the

necessary context for the ego vehicle to learn effective driving actions in a platoon system:

• d(i−1,i),k: The actual longitudinal distance between the ego vehicle i and its

preceding vehicle i−1 at time step k.

• ei,k: The gap error between the desired gap distance dd and the actual gap distance

d(i−1,i),k. This lets the agent know how far off it is from the target gap distance:

ei,k = d(i−1,i),k−L−dd , (3.2)

where L is the length of each vehicle.

• vi,k: The current speed of the ego vehicle i.

45

• vi−1,k: The current speed of the preceding vehicle i− 1. This allows the agent to

observe the velocity of the lead vehicle it is following.

Together, these four components give the core state space that provides the

necessary observational context about gaps, speeds and gap errors for the agent to learn

effective acceleration actions. The gap error ei,k in particular gives a clear feedback signal

to the agent about how well it is tracking the desired gap. The use of the preceding vehicle’s

speed vi−1,k helps the follower learn to match velocities with its leader.

While most papers choose for an egocentric representation from the perspective

of the ego vehicle, a few adopt a more global view encoding the entire system state [69]

or the relative positions of all agents [74]. This facilitates the modeling of multi-agent

interactions, but it may restrict scalability. To explicitly model inter-agent cooperation,

some consider augmenting the state variables with non-physical data such as priority levels

[74] or collaboration indications [81]. In [81], two distinct observation areas were used.

In the first area, the ego vehicle can only detect the longitudinal position and speed of

four adjacent vehicles. In the second experiment, the ego vehicle, on the other hand, can

completely perceive the state of the surrounding vehicles, the distance to the merging point,

longitudinal velocity, acceleration, and cooperation level all correspond to a vehicle’s state.

The essential distinction here is the collaboration level, denoted as c, which is represented

by a binary value. When c = 1, the driver cooperates fully and yields to allow the merging

vehicle to enter. When c = 0, the driver fully ignores the merging vehicle and follows

conventional IDM [102].

3.4.2 End-to-End State Space

The direct use of raw sensor streams like cameras, LiDAR, and radar as the RL

state representation provides both benefits and challenges. On the positive side, this retains

maximum real-world details about the driving environment. Sensor data captures rich

46

information on road users, geometry, and dynamics that is otherwise lost with engineered

abstractions. For instance, image frames can encode semantic entities like road signs, lane

markings, pedestrians, etc. that are not present in simplified state variables [103].

However, using raw data for RL in AVs presents a number of challenges. First, the

volume of high-dimensional signals poses a risk of overwhelming the RL algorithm with

excessive noise and irrelevant details, which may slow down the learning process [104]. For

instance, the majority of pixel values in LIDAR point clouds or camera frames contain no

valuable information. Second, the native low-level sensor representations require additional

steps to derive the meaningful features and abstractions required for decision making

[105]. This increases engineering time and computing costs. Thirdly, interactions and

dynamics are not explicitly modeled, so the agent must infer them from observations [106].

Lastly, platform-specific sensor differences complicate the transmission of policies. Several

papers, such as [80] and [56], have chosen to represent the state space using raw sensor data.

This study [80] utilize grayscale images to provide information about the road environment

and the dynamics of surrounding vehicles. These images encode the positions, dynamics,

and road shape, offering a rich state representation. In contrast, Research presented in [60]

employ a more minimalist approach by defining the state space using relative distances

obtained from a single LiDAR sensor. This reduced representation still proves effective

for various driving tasks, emphasizing the adaptability of state-space design in autonomous

driving.

Overall, end-to-end RL from raw data remains an open challenge. While methods

like deep CNNs show promise for processing high-dimensional inputs [107–109], more

research is needed on efficiently learning core abstractions from sensor streams for

sample-efficient RL. Hybrid approaches that combine learned feature extraction with

structured representations may provide a promising direction.

47

3.4.3 Temporal Information

Some recent papers have explored encoding temporal context and history into

the state space for reinforcement learning in autonomous driving. An investigation [73]

explored the use of a k-Markov approximation for incorporating historical observations.

The findings revealed performance improvements when utilizing 2.4 seconds of prior data.

The authors of [67, 77] tailor their state representation to different control tasks by using

multiple frames of states, providing valuable time sequence information. Other studies

[59, 71, 72] use Velocity-maps history that capture successive observations to incorporate

temporal information into the state space. Meanwhile, work in [55] incorporate both

spatial and temporal information, including the speed and position of CAVs and HDVs

over multiple time steps. In [80], image-based state representation was chosen to provide

the agent with sufficient information. The state input is three grayscale images, 80 x 256

pixels, showing the road area, including the on-ramp and first lane of the main-lane. The

images cover the current time as well as 0.5 and 1.0 seconds in the past, which provides

information on the dynamics of the vehicles.

However, determining the optimal history length is challenging - too short loses

valuable context while too long risks overwhelming the model. Careful engineering or

architecture search is needed to balance efficiency and performance [110]. To address the

complexity of temporal data, extraction modules have been proposed to distill historical

information into useful state representations. For instance, raw trajectory data was used

to summarize interactive driving dynamics in [63], where an LSTM encoder was trained

through supervised learning. Similarly, in [56], a GCN-Transformer module is used to

utilize ego vehicle observation, shared observations, and infrastructure observations to

generate a spatial-temporal representation of the environment. These learned extraction

48

models aim to automatically determine the most relevant temporal signals, reducing manual

feature engineering [111].

However, challenges remain in constrained training of extractors and ensuring the

distilled states sufficiently capture all critical environmental details [112]. Architectural

choices introduce implicit biases that may overlook important signals. More research

is needed into unsupervised state extraction directly optimized for downstream policy

performance. Overall, temporal representations and extraction modules show promise but

require further analysis on their impact to sample efficiency and generalizability.

3.5 Reward Function

The design of the reward function is a critical component in RL for AV

applications. The summary of research papers highlights the variety of approaches taken

to formulate rewards that balance key objectives such as safety, efficiency, comfort, and

goal achievement. This section compares and contrasts the reward design of several papers

that apply RL to autonomous cooperative driving tasks, such as lane changing, merging,

intersection crossing, and traffic oscillation, with special attention assigned to the following

four aspects: safety, efficiency, comfort, and adaptability, as summarized in Table 3.7.

3.5.1 Safety

Safety is a paramount concern for AV, and it involves avoiding collisions or

near-collisions with other vehicles or obstacles. Most of the papers reviewed here include

some form of safety reward or penalty in their reward functions. However, the scale of

these penalties varies. Some impose only minor penalties for collisions [75, 76, 78, 81],

while others treat any collision as a terminating state with a large negative reward [68–70].

Similarly, [49] uses a negative terminating reward for encountering terminating events such

49

Table 3.7: Studies organized by reward functions

Rewards References

Safety
Speed-based penalty [51, 70, 77]

Distance penalty [52, 56, 60, 61, 63, 67, 84]

Action-based penalty [48, 50, 52, 55, 56, 58, 72]

Efficiency
Speed-based [48, 49, 51, 52, 58, 60, 63, 65, 68, 75, 77, 84]

Social utility [50, 55, 56, 59, 72, 74, 81]

Position-based or maneuver-based [73–76, 78, 80, 80]

Comfort

Jerk minimization [43, 48, 51, 60, 70, 73, 76, 77]

Control inputs smoothing [55, 64, 77]

Speed/distance tracking [49, 51, 67, 84]

Supplementary techniques [73, 77]

Adaptability [59]

as collisions or leaving the road. The safety reward can be represented as follows:

rt(a,st) =−100× (1− I(E)), (3.3)

where I(E) represents the indicator function of the event E that the agent has reached at the

end. I(E) of reaching terminating event (collision) is 0 and the reward is -100. Otherwise,

if E has reached the end of the episode (without terminating earlier), I(E) is 0 and the

reward is 0.

A more sophisticated way of calculating the safety penalty is used in Ref. [51].

Authors uses a risk measure based on the Deceleration Rate to Avoid a Crash (DRAC),

which penalizes the agent if it exceeds a maximum available deceleration rate (MADR),

as well as a penalty for exceeding acceleration limits. The safety reward is represented as

follows:

r =

−
(

a
amax

)2
−1, if gap > Lthreshold or a > aconflict

−
(

a
amax

)2
, else

, (3.4)

50

where gap is the headway distance of the ego vehicle, and amax is the acceleration bound.

On the other hand, [77] uses time to collision with a four seconds threshold to determine

what is considered unsafe. Similarly, in [61], the reward design encourages CAVs to change

lanes safely. It takes into account two important factors: the presence of other vehicles in

the adjacent lane and the availability of future driving space. If there are no other vehicles

in the same position on the adjacent lane, the reward function assigns a positive reward,

encouraging the CAV to change lanes safely. If other vehicles are present, a higher penalty

is imposed to discourage lane changes that would cause significant interference. The reward

function also takes into account the longitudinal distance between the target vehicle and the

vehicle in front of the selected lane, as well as the distance traveled by the vehicle in a future

time step.

Similarly, [70] penalizes unsafe speed differences between vehicles to prevent

collisions and oscillations. In [48], the safety objective is also evaluated by the risk

of collisions or near-collisions. Ref. [50] penalizes collisions with other vehicles or

pedestrians, while [52, 58] penalize collisions with other vehicles or lane boundaries.

Frequent lane changes is penalized in [55, 72], as they are associated with higher risks.

Ref. [56] penalizes getting too close to other vehicles, while [60] incorporates collision

avoidance and different expected lane-changing distances in its reward function. Ref. [63]

considers actions such as large acceleration/deceleration, small distance to surrounding

vehicles, and low speed under free flow conditions as unsafe actions and therefore incur

large negative rewards. Similarly, [52, 56, 58] penalize collisions and reward safe headway

time between vehicles. Specifically, a large weighting factor wc is applied for the collision

evaluation and a logarithmic function of the time headway is used to measure the safety

margin between vehicles, where a predefined time headway threshold is used to avoid

penalizing vehicles that maintain a safe distance. Ref. [67] employs a nonlinear function

that heavily penalizes collisions but provides an incentive for maintaining sufficient yet not

51

excessive headway distance. This balances the trade-off between safety and traffic flow

efficiency. Finally, in [73], safety is handled implicitly by the lower-level motion planning

layer.

3.5.2 Efficiency

Efficiency is another important objective that is incorporated in many reward

functions for autonomous driving. Efficiency generally refers to making progress towards

the driving goal in a timely manner without excessive delays. Some papers directly reward

higher speeds to encourage efficiency. For example, [55, 56, 60, 63] include components in

their reward function that reward higher speeds of the ego vehicle. [51] penalizes the agent

for having low speeds to avoid inefficient low-speed driving states. Similarly, [49, 68]

uses an immediate reward based on the difference between the agent’s current and desired

speeds.

Other papers focus on making progress towards a predefined goal position or

completing the maneuver itself. For example, [73, 74, 76, 78, 80] provide positive rewards

for successfully completing the merging maneuver. Ref. [75] rewards forward progress

along the road. In [80], the reward is only provided when the ego vehicle completes

the merge onto the main lane. In other words, no intermediate reward is given during

the merging process. Some papers also consider efficiency more holistically, looking

at the traffic flow overall [74]. For instance, [50] aims to maximize the average speed

of all vehicles at the intersection, while [56] rewards maximizing the average speed

of all CAVs. A social reward is included in [72] that accumulates the progress of all

vehicles, while [81] uses a time penalty factor to incentivize reaching the goal position

quickly. Similarly, [55] rewards maximizing the velocity of both CAVs and HDVs. Ref.

[59] rewards optimizing social utility, which involves cooperation among AVs to achieve

52

socially desirable outcomes. The reward of vehicle, i, can be defined as

Ri(s,a) = cos(φ)× rego
i + sin(φ)× rsocial

i , (3.5)

where rego
i is the specific reward of the AV (egoistic) and rsocial

i is the overall reward of

other vehicles (social) in relation to the ith.

The distance traveled or time taken to reach the goal position is also used as a

measure of efficiency in some works. Ref. [48] uses a reward function based on travel

time and distance to the target lane, and [65] rewards driving as fast as possible down the

highway. Finally, [77] rewards reducing the time taken to approach the target lane center,

while [52,58] reward reaching the target lane within a given time horizon. By incorporating

various efficiency-related rewards and penalties, each formulation above aims to obtain the

right balance between making timely progress and other objectives like safety and comfort.

The weights given to the efficiency components allow tuning this trade-off as per the needs

of the specific scenario.

3.5.3 Comfort

Comfort is a key criterion that needs to be optimized in AV to provide a smooth and

pleasant riding experience for passengers. Several papers approach this in different ways

through their reward function formulation, as detailed below.

3.5.3.0.1 Jerk minimization A common technique is to penalize large jerks and sudden

changes in accelerations/decelerations. This helps avoid abrupt starts and stops that reduce

comfort. For example, [48, 51, 70, 73, 76, 77] impose absolute or squared penalties on

the magnitude of jerk. In particular, [73] filters out jerks above a threshold so only large

uncomfortable jerks are penalized, while [51] penalizes exceeding acceleration limits.

[48] uses a comfort objective evaluated by the jerk in lateral and longitudinal directions,

53

while, Ref. [60] penalizes minimizing the angular velocity of the steering wheel and jerk,

represented as:

Rcomfort = kw× θ̇w + ka× j, (3.6)

where j represents the jerk, θ̇w is the angular velocity of the steering wheel of the agent,

and kw and ka are the weight coefficients.

3.5.3.0.2 Smooth control inputs Maintaining smooth steering and throttle/braking

control is also important. In this regard, [64] punishes large yaw rate and yaw acceleration

for smooth lane changes,

rs =−w1×|ωyaw|−w2×|alat|, (3.7)

where ωyaw represents the yaw rate, the alat is the yaw acceleration, and w1 and w2 are

the weight coefficients. while [77] penalizes large angular speeds of the steering wheel.

Finally, [55] also penalizes acceleration, deceleration, and jerk that exceed a threshold.

3.5.3.0.3 Speed and distance regulation Comfortable speed control and maintaining

safe distances from other vehicles helps avoid sudden braking scenarios. To achieve

this goal, [49] rewards speed tracking accuracy, while [51] penalizes going slower than

acceptable speeds. Similarly, [67] rewards matching lead vehicle speed when headway is

large. It also uses a nonlinear headway reward that incentivizes sufficient but not excessive

distance between vehicles. The reward can be described as follows:

Rewardheadway =

−100, if x≤ 0,

−100(1−
√
(1− (x−1)2)), 0 < x≤ 1,

0, x > 1.

(3.8)

54

where x represent the time gap between the front and ego vehicle. It is limited to a

maximum of 100 to prevent very large headway values from degrading the training.

3.5.3.0.4 Supplementary techniques Some papers use supplementary techniques in

addition to reward design to improve comfort. For instance, [73] handles collisions at a

lower level so comfort can be prioritized in the reward, while [77] adapts weights based on

proximity to the mandated lane change point.

3.5.4 Adaptability

Adaptability is another aspect of AV that involves adjusting to different behaviors

and traffic conditions. It involves learning from experience and generalizing to new

situations. Among all the papers reviewed here, only one paper [59] explicitly includes

an adaptability component in its reward function. In particular, rewards AVs for adjusting

to different behaviors and traffic conditions using an implicit learning approach. Authors

define an adaptation error (Aerror) that explicitly rewards adaptability of the trained AVs to

new scenarios. This is calculated as:

Aerror = ws× (C)+we×
(
1− DT

DTmax

)
, (3.9)

where:

• C is the percentage of episodes with a crash when tested in the new scenario

• DT is the average distance traveled by AVs in the new scenario

• DTmax is the maximum possible distance in that scenario

• ws and we are weights for the safety and efficiency terms

Lower adaptation error indicates the AVs are adjusting well to the new conditions.

The safety term penalizes crashes more heavily with a higher weight ws. The AVs are

55

trained using decentralized multi-agent reinforcement learning, with each AV, i, optimizing

its own reward function:

Ri(s,a) = Rego +Rsocial, (3.10)

where the ego reward is defined as:

Rego(s,a) = cos(φi)ri(s,a), (3.11)

where the ego reward ri(s,a) encourages progress of the ego vehicle based on traffic metrics

like speed. The angle φi controls the weight on the ego vs social reward. The social reward

contains terms for both cooperation with other AVs and sympathy for the human drivers:

Rsocial = sin(φi)

[
∑

j
rAV
i, j (s,a)+∑

k
rHV
i,k (s,a)

+∑
k

rM
i,k(s,a)

] (3.12)

The rM term accounts for completing the assigned mission (merging, exiting), while

rAV and rHV reward altruistic consideration of other AVs and humans respectively.

3.6 Summary

This chapter reviewed the state-of-the-art RL AV control in various scenarios,

such as lane changing, ramp merging, and platooning. Existing problem formulations,

RL algorithms, simulations, and metrics studies have been analyzed in terms of their

design choices, benefits, and challenges. RL-based AV control, especially in highway

conditions, has significant benefits to improve our society, such as enabling cooperative

and altruistic behaviors, handling complicated dynamics and uncertainties. In addition,

the limitations and gaps of current methods are discussed, including balancing state-space

dimensionality and expressiveness, assuring safety and robustness, and testing under

realistic traffic conditions. This survey’s findings can guide future research toward the

56

development of more effective and generalizable RL solutions for automated driving in

complex environments.

57

CHAPTER FOUR

AV MERGING CONTROL USING CENTRALIZED RL

This chapter presents a case study on cooperative platoon merging in a road

reduction scenario using a Centralized Training Centralized Execution (CTCE) approach.

We investigate the merging behavior of two platoons of connected and automated vehicles

(CAVs) as they navigate a lane reduction. Vehicle platooning is a promising road

management system to reduce congestion, fuel consumption, and accidents [113]. In

a platoon, multiple partially or fully automated vehicles are arranged in a train-like

formation, coordinated to move at the same speed while maintaining a desired inter-vehicle

distance [114]. In some road situations, the platoon has to perform lateral transitional

maneuvers essential for safety and driving efficiency, such as joining, merging, and leaving

the platoon [115]. However, platoon merging for CAVs remains challenging due to various

factors including multi-vehicle interactions, real-time control requirements, and potential

interference from unintentional vehicles [116] [117] [118].

Several approaches have been proposed to address the challenges of platoon

merging. Table 4.1 summarizes key articles that addresses platoon maneuver problems,

including merging scenarios. For instance, the merging of heterogeneous vehicular

platoons was studied in [119], where the authors concluded that the proposed controllers’

performance is satisfactory, but a more complicated scenario is needed for testing. A

distributed MPC was proposed to generate the merging trajectories, while a linear quadratic

regulator (LQR) controller was designed to create a gap for the merging platoon. Reference

[120] proposed a novel PID controller for heavy-duty vehicle platoon maneuvers, while

the authors of [121] showed that using cooperative adaptive cruise control (CACC) for

highway-merging scenarios improves traffic-flow stability and efficiency. However, the

58

proposed approach of [121] only considered longitudinal vehicle control, which means

only vehicle speed would be automated using vehicle-to-vehicle communication, while the

active steering of the ego vehicle and the behavior of the surrounding vehicles were not

considered.

The most relevant study to this work is [122], where the authors proposed a

distributed controller utilizing a state feedback law to guarantee a collision-free vehicle

merging when facing a road reduction. However, the lateral movement of the merging

vehicles was not included in the analysis. Furthermore, the optimal merging location (as

measured by the distance between the end of the lane and the merging vehicle) at which

the merging vehicle should initiate a merge request was not investigated but assumed. Note

the merging location can significantly affect the system level efficiency and safety, and

the optimal merging location is not obvious given a particular scenario. Therefore, the

assumption that the optimal merging location is known, as made by [122], is not realistic.

This work fills this gap by utilizing RL to interactively learn the optimal merging location

to improve fuel efficiency and ride comfort. Our study aims to develop an optimal merging

strategy that maximizes road capacity utilization while ensuring safety and passenger

comfort. We employ an actor-critic style maskable proximal policy optimization (MPPO)

algorithm to learn effective merging policies. The RL agent determines the optimal

distance at which each merging vehicle should initiate its lane change maneuver. To handle

the low-level vehicle control, we utilize Bézier curves for trajectory generation and PID

controllers for longitudinal and lateral control. This setup allows the RL agent to focus

on high-level decision-making while ensuring smooth vehicle movements. This chapter

explores various reward function designs, including minimizing time, energy consumption,

and jerk, as well as maximizing average speed. We analyze how these different objectives

impact the learned merging strategies and overall traffic flow efficiency. By studying

these metrics, we aim to improve road capacity utilization, reduce traffic oscillations, and

59

Table 4.1: State of the art articles on platoon control maneuvers

References Vehicle Dynamics Environment Evaluation Application Control Technique
[123] Longitudinal MATLAB Fuel consumption On-ramp merging Optimal control

[119]
Longitudinal
and lateral

Not mentioned Controller stability Platoon Merging Distributed MPC

[120] Not mentioned VISSIM [124] String stability
Merging and

splitting of platoons
PID

[122] Longitudinal Not mentioned Collision avoidance
Platoon merging facing

road reduction
Distributed state

feedback controller

[82] Longitudinal
PLEXE [125]
and SUMO

Fuel consumption,
connectivity strength,

platoon stability,
platoon size,

and time

Platoon formulating Hybrid DRL

[68] Longitudinal SUMO
Traffic oscillation

and platoon stability
Platoon longitudinal

control
Soft actor critic (SAC)

[126]
Longitudinal
and lateral

AUDRIC/
Dynacar

Safety Platoon Merging
Feedforward and

feedback controller

[127]
Longitudinal
and lateral

MATLAB
and ROS

Safety
Platoon maneuver

protocols

PID, adaptive MPC,
and Lyapunov

controller

[128] Longitudinal PLEXE String stability
Joining and

leaving platoon
Consensus-based

controller

[50]
Longitudinal
and lateral

SUMO
Traffic flow,

average speed,
and delay time

Platoons at non
signalized intersection

PPO

[70] Longitudinal SUMO
String and

controller stability
Platoons gap

closing/opening
Deep deterministic

policy gradient (DDPG)

[129]
Longitudinal
and lateral

MATLAB Controller robustness
Multi-vehicle
merging into

platoon
Nonlinear MPC

This work
Longitudinal
and lateral

Python

Fuel consumption,
time, jerk,

maximum jerk,
and speed

Platoon merging facing
road reduction

Maskable PPO

60

Figure 4.1: Platoons initial configuration.

enhance the driving range of electric vehicles. Through this case study, we investigate the

potential of CTCE RL approaches in addressing complex traffic scenarios and optimizing

cooperative behaviors among connected vehicles. Our work contributes to the development

of efficient platoon merging strategies, which can significantly impact road safety, traffic

conditions, and environmental sustainability in urban areas.

4.1 Simulation Environment

4.1.1 Vehicle Platoon

The platoon configuration we consider in this case study is shown in Fig. 4.1,

where the destination platoon consists of ten vehicles to measure the impact of the merging

technique (nine followers and one leader). These vehicles are initialized to be 11 meters

away from each other. On the other side, the merging platoon consists of four vehicles

(three followers and one leader). Suppose that the lane for the merging platoon is about to

end, and the goal here is to find the optimal merging location for the destination platoon.

Therefore, by the end of the simulation, all the merging vehicles should be merged to

the destination platoon on the other lane to form one single platoon of fourteen vehicles

(thirteen followers and a single leader).

61

Desired inter-vehicular distance

Destination platoon vehicles

Merging vehicle

Figure 4.2: Illustration of gap generation.

The platoon travels as one unit without the need to physically couple the vehicles

of the platoon, which can be achieved by maintaining a fixed spacing distance between the

platoon’s members. Two typologies are used in the literature to achieve that, i.e., constant

spacing policy and time headway policy. In the constant spacing policy, the platoon ensures

the desired spacing between each vehicle in the platoon regardless of the velocity of the

platoon. In the headway time policy, the desired spacing changes with respect to the

vehicle’s velocity. So that the spacing distance is more extensive for higher velocities to

ensure safety by providing more time for the follower vehicle to react to breaks, the platoon

in this chapter uses the constant distance spacing policy.

At the start of the scenario, the initial speed of the vehicles and the inter-vehicular

gaps are equal to their respective desired values. Desired speed, vd , equals 10 m/s. All the

merging platoon vehicles can ask to merge at any time during the simulation. Furthermore,

since the platoons consist of CAVs that are capable to communicate with each other for

cooperating merging when any vehicle asks to merge, a gap generation operation will be

cooperatively performed by nearby vehicles in both platoons to ensure sufficient space for

merging vehicle to perform lane change. Particularly, the controller selects which vehicles

62

�

v

ζ

φ

x

y

Figure 4.3: Schematics of the vehicle dynamics model.

to increase their spacing distance so that there is a safe distance for the merging vehicle to

merge into (Fig. 4.2). The selection will be based on the position of the merging vehicle.

When the gap generation operation is done, the lateral controller of the merging vehicle

will perform a lane change to merge to the destination platoon. After the merging vehicle

arrives at the target lane, a platoon reformulation occurs. The reformulation reassigns the

leader of the platoon to the front vehicle and the target vehicle for each vehicle.

4.1.2 Vehicle Model

Both the longitudinal and lateral dynamics of vehicles are taken into consideration.

The vehicle dynamic model is briefly described in this section, and interested readers are

refer to relevant reference, e.g., [5, 130, 131]. The model of the vehicle used is depicted in

63

Fig. 4.3 and can be formulated as follows [130]:

v̇ = a (4.1a)

ṗx = v cos(φ) (4.1b)

ṗy = v sin(φ) (4.1c)

φ̇ =
v
l

tan(ζ), (4.1d)

where (px, py) denotes the position of the vehicle, l is the wheelbase, and φ is the yaw

angle. The control variables are the acceleration a and the steering angle ζ .

4.1.3 Longitudinal Control

In longitudinal control, the controller tracks the difference between the longitudinal

position of the follower vehicle and the longitudinal position of its target vehicle (the

vehicle in the front) to the desired value for each follower vehicle by controlling the

acceleration of the vehicle. A conventional PID controller is used to control the longitudinal

inter-vehicular distance between each vehicle and the vehicle in front of the same platoon.

The PID is formulated as

uk(t) = kp ek(t)+ kd
d
dt

ek(t)+ ki

∫ t

0
ek(t)dt, (4.2)

where kp, kd , and ki represent the proportional, derivative, and integral gain of the

controller, respectively. uk(t) and ek(t) are control variable and the error signal of the

kth vehicle, respectively. The error signal can be calculated as

ek(t) = xk+1− xk−dre f , (4.3)

where xk+1 and xk are the longitudinal coordinates of the kth vehicle and its target vehicle,

respectively. dre f represents the desired inter-vehicular distance.

64

Initial location

P0(xv+L/2, yv)

P1(p0x+q, yv)

(xv, yv)

P2(p4x-q, ytv)

L

P3(xtv-L/2, ytv)

Target location

Figure 4.4: Lane changing cubic Bézier curve.

4.1.4 Lateral Control

When the gap generation operation is done, the merging vehicle generates a

lane-changing path and follows it to the other lane. Using Bézier curves to generate

the reference trajectory results in smoother routes that are easy to track by the merging

vehicles [132]. With n + 1 control points, a Bézier curve of order n is formulated as

described by [132]

P[t0,tt1](t) =
n

∑
i=0

Bn
i (t)Pi, (4.4)

where Pi are control points, Bn
i (t) is the Bernstein polynomial given by

Bn
i (t) =

(
n
i

)
(

t1− t
t1− t0

)n−i (
t− t0
t1− t0

)i i ∈ {0,1, ...,n} (4.5)

Bézier curve has several unique properties, but the most satisfactory for lane-changing

maneuvers is that the curve’s starting and ending segments are tangent to the first and last

points. So, the line between the first two control points and the line between the last two

control points can be selected to be parallel to the lanes (Fig. 4.4). By doing this, at the end

of the lane change, the vehicle will have the same heading angle as the lanes.

65

A third order Bézier curve with four control points (p0, p1, p2, and p3) is used in

this work. Therefore, (4.4) reduces to

P(t) = (1− t)3P0 +3t(1− t)2P1 +3t2(1− t)P2 + t3P3, (4.6)

with t ∈ [0,1]. As shown in Fig. 4.4, the first and last control points (P0, P3) are positioned

at the front of the merging vehicle and the back of its target vehicle, respectively. The

orientation of lines P0P1 and P2P3 are parallel to the lane lines to reduce the vehicle’s

post-curve adjustment time. Furthermore, setting

q = P0,x−P1,x = P2,x−P3,x, (4.7)

yields a symmetric Bézier curve around the path center, making q the only hyperparameter

to be tuned to get a smooth curve.

Similar to longitudinal control, a PID controller is used to track the lateral offset

between the vehicle and the Bézier trajectory. When the merging vehicle reaches the center

of the target lane, the PID lateral controller is then used to track the center line so that the

vehicle will be performing lane-keeping.

4.2 Proximal Policy Optimization Algorithm

In this work, the proximal policy optimization (PPO) algorithm is used [133, 134],

which is a policy-based on-policy policy gradient RL algorithm. In general, policy gradient

methods attempt to optimize the policy directly [135]. The policy, π , is a function

approximator, usually a neural network, parameterized with respect to a set of parameters

θ . Essentially, gradient ascent is used to change θ towards the increase of the cumulative

rewards. Policy gradient methods are significantly faster in practice [136], but they suffer

from some fundamental problems. For example, the agent’s training data is based on the

current policy when the data was collected, which makes the rewards and observations

66

Figure 4.5: Data flow diagram of the PPO algorithm.

distribution constantly changing based on the current policy. This change leads to

instability in the whole training process. Also, policy gradient methods are susceptible

to hyper-parameters like entropy coefficient, learning rate, and weights initialization, to

name a few. To address these issues, PPO has been proposed in the literature as a scalable,

robust, and sample-efficient policy gradient algorithm that is also relatively easy to code.

For policy gradient methods, the loss is defined as follows:

LPG(θ) = E[logπθ (at |st)At], (4.8)

where E is the expected return over a batch of data, At is the estimation of the advantage

function at time step t, and πθ is a stochastic policy. πθ (at |st) is likelihood of choosing the

action a given the state s. The advantage function can be calculated as

At = Gt −Vt(s), (4.9)

67

where Gt is the total discounted rewards, vt function or value estimation of the state s.

Making multiple optimization steps on this loss using the same data collected from the

environment is not advised because that might change the policy too much towards that

specific trajectory. TRPO, [135], has already tried to solve this issue, but their solution

(trust region optimization method) includes a second-order derivative and its inverse, which

is very computationally expensive. PPO solved the same problem by introducing a soft

constraint that makes the objective function solvable using a first-order optimizer. The new

objective function will prevent the policy from changing too much by clipping the objective

value, making it possible to run multiple optimization steps on the cost function without

moving the policy too far in the parameter space. The loss function proposed by PPO is as

follows [134]:

LCLIP(θ) = E [min(Γt(θ)A,clip(Γt(θ),1− ε,1+ ε))A], (4.10)

where Γt is the probability ratio of the policy before the new policy and the policy before

the update πθold
(at |st). Epsilon is a hyperparameter that defines how much an update

can change the policy. In the PPO algorithm, the agent collects data by interacting with

the environment. Next, the advantage estimate of each state is calculated. Finally, for k

epochs, stochastic gradient descent is applied with N mini-batches of the collected data to

update the policy. A pseudocode of the PPO algorithm is shown in Algorithm 4.1. Finally,

Fig. 4.5 shows flow chart of the PPO algorithm.

4.3 RL-based Merging Strategy

4.3.1 States Observation and Action Space

In this simulation, there are fourteen autonomous vehicles. Four are in the merging

platoon, and the rest belong to the destination platoon. The states should describe all the

essential information about every vehicle so that the agent can have enough information to

68

Algorithm 4.1: Centralized-RL AVs Merging Control
1. Initialize policy parameters θ , value function parameters φ

2. for each iteration do
3. Set θold ← θ

4. for actor = 1, 2, ..., N do
5. Run policy πθold

in environment for T timesteps
6. Compute advantage estimates At
7. end
8. for epoch = 1, 2, ..., K do
9. for each minibatch do

10. Compute value function loss: LV F(φ) = (Vφ (st)−Gt)
2

11. Update φ to minimize LV F(φ)

12. Compute policy loss: LCLIP(θ)

13. Update θ to maximize LCLIP(θ)

14. end
15. end
16. end

Merging platoon vehicle

Start of the reduction

Rj1

Rj2

y

xi10

xj4

Figure 4.6: Observation space measurements.

69

take reasonable actions. The global x position of every vehicle is provided, and the relative

distance of each merging vehicle to the start of the road reduction is provided as shown in

Fig 4.6. The state of whether every merging vehicle is merged or not is also fed to the

network. It can be observed that there are continuous and discrete attributes, and each has

its own maximum and minimum values, meaning that in order to get a fast convergence,

normalization is inevitable. The state vector can be formed as follows:

S =

[
xi1 xi2 · · · xi10 R j1 · · · R j4 s j1 · · · s j4

]
(4.11)

where i and j denote the destination and merging platoon vehicles, respectively, as shown in

Fig 4.6. x is the global x coordinate, R is the relative distance between the corresponding

vehicle and the starting point of the road reduction, and s is the status of the vehicle as

follows:

sv =

1, => if vehicle v is merged

0, => if vehicle v is not merged
(4.12)

Since we have four vehicles in the merging lane, the action space size is four, one

for each vehicle. The action should stimulate the corresponding merging platoon vehicle

to ask to merge to the other lane. There are two options for the action space: discrete or

continuous. The continuous option means that the agent will select a relative distance at the

start of the simulation to ask to merge and ultimately try to find the optimal distance. That

approach works only if perfect prediction of all vehicles future behavior is available. On

the other hand, with the discrete action space, the agent will make real-time actions based

on the observations it is receiving. The action for the vehicle v is as follows:

av =

1, => Request to merge

0, => Stay in the same lane
(4.13)

70

Θ

Fr

Fg FN

FN

Fa

Ft

Figure 4.7: Free Body Diagram of the vehicle.

4.3.2 Reward Functions

In this chapter, different reward functions will be used to train the RL model to

investigate their impact on the merging strategy. The vehicles’ time consumed, energy

consumption, mean jerk, maximum jerk, and relative position are characteristics used to

incentivize or discourage the agents’ decisions. The first important index is that all the

vehicles merge to the not-ending lane and do not crash. A penalty of negative rewards is

returned to the RL algorithm for every non-merged vehicle that gets close to the start of the

road reduction.

4.3.2.1 The Energy Consumption The amount of energy consumed during the maneuver is

essential in evaluating the model behavior. In this work, an electric vehicle energy model is

used to calculate the energy consumed by all vehicles to finish the merge. Using newton’s

second law, the forces on the wheel can be formed as follows in equation (4.14).

∑Fx = ma, (4.14)

71

where a is the vehicle acceleration, m is the mass of the vehicle, and Fx is the summation of

forces applied on the vehicle in the x direction. Substituting the forces shown in Fig. 4.7

expressed in equation (4.15).

Ft −Fa +Fg +Fr = ma, (4.15)

where Fa = 0.5Cd(D)ρ Av2 is the aerodynamic resistance, Fr = mCr g cos(θ(t)) is the

friction force, Fg = mg sin(θ(t)) is the gravity force, and Ft = maw is the traction force.

Note that here aw is the wheel acceleration, A is the frontal area of the vehicle, ρ is the air

density, g is the acceleration of gravity, θ(t) is the gradient of the road, Cd is the air drag

coefficient, Cr is the rolling resistance coefficient, g is the gravity acceleration, a is vehicle

acceleration, and D is the relative distance between the vehicle and the vehicle in front of

it [137].

Reorganizing and substituting the forces formulas in equation (4.15) yields:

aw = a+
0.5Cd(D)ρAv2

m
+Cr g cos(θ(t))+g sin(θ(t)) (4.16)

This work adopts a 2019 Nissan LeafSV EV from [123]. The energy consumption of the

vehicle during the simulation time ts is as follows:

Re =
∫ ts

0
(maw v+

b(mrt)
2

ξ 2 a2
w)dt, (4.17)

where ξ is the gear ratio, rt is the radius of the tire, and b is the motor loss

coefficient, measured experimentally.

4.3.2.2 The Vehicle Jerk Passengers’ comfort has been studied thoroughly, especially

for automated vehicles, as it can affect the adoption of autonomous vehicles. Repetitive

exposure to low-frequency motions can develop motion sickness [138], and regular

exposure to high-frequency motions can lead to lower back pain [139, 140]. The jerk can

be used to sense these discomfort and sudden acceleration changes and ultimately optimize

72

the autonomous vehicle’s behavior to ensure comfortable driving. This work uses the mean

and the maximum jerk as reward functions to train the RL agent. For the mean jerk, the

absolute value of the jerk of every vehicle is calculated, and the mean is sent as the reward.

The reward function is expressed as follows:

R j =
−1
N

N

∑
n=1

(
an,k−an,k−1

dt

)2
, (4.18)

where R j is the step rewards, k is the time step, and N is the number of vehicles.

For the maximum jerk as a reward function, only the maximum jerk of all vehicles

is returned as the step reward. In this case, the reward function is expressed as:

Rm j =−||Jk||∞ (4.19)

where Jk is a vector of the absolute values of all the vehicles’ jerk at time step k.

4.3.2.3 Time Another metric used to train the RL is time. Reducing the time it takes all

the vehicles to finish the merge reduces traffic congestion. For every time step, a negative

reward will be sent to the RL agent until all of the merging platoon vehicles have already

merged to the other lane. This will incentivize the agent to merge all the vehicles as soon

as possible.

Rt =

−r, => if merging vehicles did not merge yet

0, => if all merging vehicles have merged
(4.20)

4.3.2.4 Speed Another reward function is proposed to encourage the model to get all the

vehicles to go through the merge faster. A relative position (longitudinal velocity) of the

last vehicle in the destination platoon is returned to the agent at each time step. The reward

function can be obtained as follows:

Rs = xvl ,k
− xvl ,k−1, (4.21)

73

where xvl ,k
is the global x position of last vehicle in the destination platoon at time step k.

4.3.3 Maskable PPO

Based on the nature of our simulation, the valid actions change based on the state

of the environment. So, for example, a gap generation operation will start when one of the

vehicles asks to merge. The vehicle’s state will be changed accordingly to “merged”, which

means the agent should not be able to ask a vehicle to merge again after it is already merged

into the target lane. That means for the rest of the simulation, the only proper action for a

merged vehicle is “stay in the same lane”.

There are three methods to solve this problem.

• The first one is to build the simulation environment to ignore invalid actions.

However, this method is not sampling-efficient since sampling ignored actions that

do not affect the environment will waste a significant amount of time.

• In the second approach, a negative reward is set to penalize choosing an invalid action

so that the agent will eventually learn only to select valid actions. This method

will add an unnecessary complication for the policy to learn, increasing the required

convergence time.

• In the third approach, a mask is used to block invalid action allowing the policy to

only choose within the available valid actions at that state. In [141], the theoretical

justification for using masking in policy gradient methods is proved.

All three approaches have been implemented in this work, and it was determined

that the third approach, namely, Maskable PPO, performs the best. Fig. 4.8 shows the

difference in convergence time between a regular PPO, where the environment ignores

invalid actions, and Maskable PPO (MPPO). All numerical results presented in the rest of

this chapter are collected using MPPO.

74

0 5000 10000 15000 20000 25000 30000
Episodes

−200

−150

−100

−50

0

Re
wa

rd
s

PPO
MPPO

Figure 4.8: Comparison of training progress of MPPO and PPO.

75

4.4 Numerical Results and Discussion

A series of tests were performed to evaluate the performance of the proposed

framework using our recently developed object-oriented toolbox for Python. The system

includes a collection of tools and interfaces for simulating and displaying the movement of

the vehicles within an intelligent transportation system environment. It also calculates the

performance indices to evaluate the merging technique of the trained model. The toolbox

consists of two main components, the DRL model and the environment. The PPO algorithm

represents the DRL model. However, there are multiple implementations for the PPO

algorithm (DRL model) [142]. Therefore, the maskable PPO from [133] is adopted in this

work. The environment is created to be an OpenAI Gym class [143], with built-in functions

to perform the low-level controllers to manage the simulation of non-RL related actions.

The toolbox operation consists of two stages, training and evaluation. After training, the

model will be used to predict actions, and a test scenario will be simulated to evaluate

the performance indices of the model behavior. This section presents numerical results.

We start with single objective RL, followed by the multi-objective RL that combines all

important metrics. Table 4.2 lists all the parameters used in this simulation. Simulations

are performed with high-performance computing (HPC) nodes running Red Hat Enterprise

Linux release 8.6 (Ootpa) with 192 GB of RAM and 40 CPU Cores at 2.50 GHz. The

training time of a maskable PPO model with 2048 steps for each rollout and 64 batch size

is 6000 episodes, around 10 hours. On the other hand, the time required to simulate an

entire scenario and evaluate the model actions is 400 milliseconds.

4.4.1 Single Objective RL

Evaluation results of each single objective RL model are summarized in Table

4.3, where the “Simple Early Merge” model is a manually designed merging strategy for

benchmarking. Specifically, this simple merging behavior would make all vehicles ask to

76

Table 4.2: Simulation Parameters

Parameters Value Description
N 14 Total number of vehicles
r 1 Time model negative reward

q [m] 6
Distance between control points
to obtain a smooth Bézier curve

θa 22 x 64 x 64 x 8 Actor Network Architecture
θc 22 x 64 x 64 x 1 Critic Network Architecture

vd [m/s] 10 Leaders desired speed
dre f [m] 11 Desired inter-vehicular distance

Batch Size 64 Number of tuples propagate the network
ε 0.2 Clipping hyperparameter

Number of Epochs 10
The times experiences are used

to train the network
RL discount factor γ 0.99 Defines the priority of immediate rewards

l [m] 4 Wheelbase length
m [kg] 1618.87 Mass of the vehicle

ρ [kg/m3] 1.28 Air density
A [m2] 2.5334 Frontal area of the vehicle

θ(t) [rad] 0 Gradient of the road
g [m/s2] 9.81 Acceleration of gravity

Cr 0.015 Rolling resistance coefficient
ξ 8.193 Gear ratio

r [m] 0.4318 Radius of the tire
b 1.0355 Motor loss coefficient
kp 0.2 Proportional gain
kd 0.7 Derivative gain
ki 0.00034 Integral gain

77

Table 4.3: Evaluation results of different single objective RL models

RL Model Re R j Rm j Rs Rt Simple Early Merge

Energy Consumed [MJ] 21.24 44.76 91.5 92.77 80.2 91.5

Average Jerk [m/s3] 0.4907 0.4478 0.6841 0.692 0.634 0.6841

Maximum Jerk [m/s3] 2.95 2.436 2.3019 3.09 2.565 2.3019
Last Vehicle’s

Average Speed [m/s] 7.67 6.17 8.869 8.865 8.91 8.869

Time [s] 27.1 28.8 18.2 18.1 17.4 18.2

merge at the start of the simulation, yielding a zipper-like configuration of the resultant

single platoon. Detailed discussions on the results are given as follows.

4.4.1.0.1 Results for minimizing energy consumption only For the first case, the RL

agent is trying to reduce the energy consumed by the vehicles. The average of all the

vehicles’ energy consumed is returned every time step. As shown in Table 4.3, the RL

agent reduced the energy to around 21.24 MJ, which is more than 76% better than doing

an early merge of all the vehicles at the start of the simulation. Furthermore, the average

jerk is also significantly reduced. The RL model performed a zipper merge, starting with

the first vehicle of the merging platoon asking to merge, and the last vehicle of the merging

platoon being the last one to ask to merge. Fig. 4.9 shows the training progress of ten

different seeds.

4.4.1.0.2 Results for minimizing the time required to finish the merge The RL agent

is trying to reduce the time required to merge all the vehicles into one platoon. The apparent

attempt to minimize the time required to finish the merge is to start merging as soon as

possible to minimize the time required. However, the RL agent found a better cooperative

78

0 1000 2000 3000 4000 5000
Episodes

−900

−800

−700

−600

−500

−400

−300

Re
wa

rd
s

avg

Figure 4.9: The training plot of the energy as a reward function.

79

0 1000 2000 3000 4000 5000 6000
Episodes

−240

−230

−220

−210

−200

−190

−180

−170

Re
wa

rd
s

avg

Figure 4.10: The training plot of the time as a reward function.

behavior that does not merge all vehicles at the start. Instead, some vehicles surprisingly

wait some time before asking to merge, which proves that the pattern or behavior of

merging significantly affects the merging performance. As a result, the agent learns to

perform an early zipper merge to finish in only 17.4 seconds, as shown in Table 4.3. The

training progress is shown in Fig. 4.10. It can be observed that even with the untrained

model (random actions), the time rewards achieved are relatively good. The reason is that

at each time step, the agent has two options for each vehicle, merge or stay in the same

lane, which makes starting probability of each action to be chosen by the agent is 50%.

Given that the agent will be asked to choose an action ten times every second, it is very

likely that the agent will ask all the vehicles to merge in the first second.

80

4.4.1.0.3 Results for maximizing the speed of the last vehicle in the destination

platoon In the third case, the change in the x position of the destination platoon’s last

vehicle is returned to the agent. The change in the x position represents the longitudinal

velocity. Increasing the longitudinal speed of the last vehicle increases the traffic flow. The

agent’s average speed of the last vehicle is 8.8 m/s, where the desired speed of the last

vehicle is set to 10 m/s. Fig. 4.11 shows the training progress of ten different seeds.

It is worth noting that in this case, the last vehicle’s speed is actual lower that the case

of Rt . This is likely due to the fact that rewarding based on one single vehicle can take

a longer time for RL to converge and there can be multiple local optimal for RL training

algorithm. However, as can be seen from Table 4.3 that Rs did perform better than the cases

of benchmarking Simple Early Merge model and Rm j.

4.4.1.0.4 Results for minimizing the mean jerk of all the vehicles In the fourth case,

the RL agent reduces the changes of acceleration and/or deceleration of the vehicles. The

average jerk of all of the vehicles is returned to the agent. The RL learned to merge in

28.8 seconds with only 0.4478 m/s3 average jerk. Reducing the average jerk reduces

the vehicle’s changes of acceleration and deceleration, and therefore decreasing energy

consumption by more than 51% less than a regular early merge. Fig. 4.12 shows the

training progress of ten different seeds.

4.4.1.0.5 Results for minimizing the maximum jerk Reducing the average jerk does

not necessarily mean that the jerk is satisfied for every vehicle at each time step. In the

fifth case, the RL is encouraged to reduce the maximum jerk of all vehicles. The maximum

value of all the vehicles’ jerks is returned to the agent at every time step. The RL agent

successfully reduced the maximum jerk to 2.3019 m/s3, 5.5%, and decreased the time spent

by 36.8%, better than the average-jerk RL. This comes with the cost of increasing energy

81

0 1000 2000 3000 4000 5000 6000
Episodes

120

140

160

180

200

220

240

260

Re
wa

rd
s

avg

Figure 4.11: The training plot of the speed as a reward function.

82

0 1000 2000 3000 4000 5000
Episodes

−350

−325

−300

−275

−250

−225

−200

−175

−150

Re
wa

rd
s

avg

Figure 4.12: The training plot of the average jerk as a reward function.

83

0 1000 2000 3000 4000 5000
Episodes

−950

−900

−850

−800

−750

−700

Re
wa

rd
s

avg

Figure 4.13: The training plot of the maximum jerk as a reward function.

consumption by 51% and the average jerk by 52.7%. The training progress of ten different

seeds is shown in Figure (4.13).

4.4.2 Multi-Objective RL

It can be observed that when the average jerk is minimized, the agent takes too long

to finish the merge, but when time is the main objective of the RL the energy consumed

and the jerk rise high. This means there should be a balance based on the type of drive

required. A weighted sum of all the individual rewards is returned to the agent every time

step, which can be formulated as follows:

Rmulti-objective =−δ1Rt +δ2Rs−δ3R j−δ4Re, (4.22)

84

Table 4.4: Evaluation results of the multi-objective RL with different weights

Case 1 Case 2 Case 3

Max Jerk [m/s3] 3.01 2.6 3.35

Avg Jerk [m/s3] 0.52 0.54 0.57

Last Vehicle’s Average Speed [m/s] 7.75 8.9 7.97

Energy Consumed [MJ] 56.66 46.48 83.68

Time [s] 25.5 21.6 22.4

where δ1,2,3,4 ∈ [0,1] are the weights. Re, R j, Rt , and Rs, are formulated in equations

(4.17), (4.18),(4.20), (4.21), respectively. Figs. 4.14 and 4.15 show the training progress

of ten different seeds with weights δ1 = 0.2,δ2 = 0.1,δ3 = 0.3,δ4 = 0.3 (Case 1) and

δ1 = 0.1,δ2 = 0.1,δ3 = 0.3,δ4 = 1 (Case 2), respectively. The agent will accommodate

time and energy for the first set of weights while maintaining a low amount of mean jerk.

While the agent for Case 2 will care more about energy which increases the time by a

few seconds, as shown in Table 4.4, which lists an additional result for Case 3 with δ1 =

0.2,δ2 = 0.1,δ3 = 0.4,δ4 = 0.4. As can be seen from Table 4.4, the merging strategy is

greatly influenced by the weights for (4.22). Usually, the balance of each metric is up to the

policymaker, and the proposed framework is flexible to accommodate a variety of merging

strategies by simply changing the weights of (4.22), hence avoiding manual control design

for each scenario.

4.5 Summary

This chapter explored the cooperative merging of two platoons of electrified

Connected and Automated Vehicles (CAVs) during a lane reduction scenario. We

proposed a CTCE DRL framework using an actor-critic style maskable Proximal Policy

85

0 1000 2000 3000 4000 5000 6000
Episodes

−300

−250

−200

−150

−100

−50

0

Re
wa

rd
s

avg

Figure 4.14: The training plot of the multi-objective reward function (Case 1).

86

0 1000 2000 3000 4000 5000 6000
Episodes

−600

−500

−400

−300

−200

−100

Re
wa

rd
s

avg

Figure 4.15: The training plot of the multi-objective reward function (Case 2).

87

Optimization (MPPO) algorithm to learn optimal merging policies. The framework aimed

to maximize road capacity utilization while ensuring safety and passenger comfort. Our

approach successfully determined the optimal distance for merging vehicles to request

lane changes, with low-level control handled by Bézier curves and PID controllers. The

DRL method demonstrated significant improvements, achieving a 76.7% reduction in

energy consumption and a 50% reduction in average jerk compared to baseline strategies.

These results highlight the substantial impact of merge timing on traffic flow, energy

efficiency, and passenger comfort. The study revealed the DRL framework’s ability

to balance multiple objectives, including minimizing time, energy consumption, and

jerk, while maximizing average speed. However, we acknowledge limitations in the

current approach, particularly its focus on a two-lane reduction scenario with fully

cooperative vehicles. While the centralized controller demonstrated promising results

in our study, it faces inherent limitations that could hinder its application in larger,

more complex traffic scenarios. The reliance on a single control point makes the

system vulnerable to communication failures or latency issues, which could significantly

impact the performance and safety of the entire platoon. Moreover, as the number of

vehicles increases, the computational complexity grows exponentially, potentially leading

to slower decision-making and reduced responsiveness. This scalability issue is particularly

concerning in real-world traffic situations where the number of vehicles can be much larger

and more dynamic than in our controlled experiment.

88

CHAPTER FIVE

MARL-BASED AV MERGING CONTROL

This chapter presents a case study on applying MARL to highway merging control

in road reduction scenarios. Building on the centralized approach explored in Chapter 4,

this study investigates a Centralized Training Decentralized Execution (CTDE) framework

to address scalability limitations. Specifically, MARL is employed to control AVs

attempting to merge onto a lane already occupied by human-driven vehicles (HDVs), with

the goal of maximizing traffic flow, passenger comfort, and fuel efficiency. The framework

utilizes an actor-critic architecture, where a self-attention network in the critic handles

the varying number of AVs. The proposed method is validated using the SUMO traffic

simulator [144], which provides a realistic highway simulation environment.

Several researchers have applied CTDE to highway merging scenarios for AVs,

as shown in Table 5.1. For example, authors in [145] utilized CTDE for connected

and automated vehicles at merging roadways, where the critic receives the concatenated

local observations of all agents while actors map local observations to local actions. The

system was trained with a total of three AVs, and it was demonstrated that the learned

policy can be applied to scenarios with up to 8 AVs. Similarly, reference [74] proposed

an Interaction-aware Decision Making with Adaptive Strategies (IDAS) approach using

CTDE, employing a pair of critics, one centralized and one decentralized, along with

decentralized actors. The centralized critic encouraged cooperative behavior and smooth

traffic flow, while the decentralized critic helped agents learn rule-following and individual

behaviors.

The CTDE approach has shown promise in achieving smooth and safe merging

while optimizing traffic flow. By leveraging global information during training, these

89

methods can learn cooperative behaviors that consider the overall traffic situation, while

still allowing for decentralized, scalable execution based on local observations. Yet, despite

these advancements, CTDE approaches in current research still face certain limitations,

particularly when it comes to handling dynamic traffic environments. Additionally, as

shown in Table 4.1, the majority of current research on MARL for highway maneuvers

(e.g., lane change, on-ramp merging, and road reduction) considers a fixed, limited number

of AVs that don’t change during the training episode [43, 44, 54, 58, 59, 71, 72, 145, 146].

Although this makes the learning problem simpler, it does not accurately represent

real-world traffic situations, as vehicles constantly join and exit the road network and cause

the number of vehicles to change dynamically over time.

Compared to existing work reviewed above, the present study is different and

novel from the following aspects. (1) The number of vehicles considered in this paper

is significantly higher than existing work. In particular, a total number of 50 vehicles

are considered during one single episode. (2) The proposed MARL CTDE framework is

capable of handling a variable number of agents, and therefore significantly reduce the

network size and decrease the training time. (3) As most of existing work only evaluate

one or two metric to assess the performance of the learned policy, we consider five different

metrics ranging from passenger comfort to fairness.

5.1 Problem Definition and Proposed Approach

In this study, we focus on the problem of multiple AVs merging in a road reduction

scenario using MARL. The environment, as shown in Fig. 5.1, is modeled as a two-lane

highway where the right lane terminates after 300 meters, necessitating the merging of

vehicles into a single lane. This traffic scenario is simulated using SUMO (Simulation of

Urban Mobility), an open-source microscopic traffic simulator [144]. Vehicles in the main

lane are expected to maintain safe following distances and create gaps to accommodate

90

Figure 5.1: The AVs merging scenario in SUMO simulation environment, where each
vehicle on the bottom lane is an RL agent. The goal is to learn an optimal merging strategy
for each vehicle on the bottom lane so that the overall long term return is maximized. Note
that the number of vehicles in the merging zone varies within a single episode, making the
RL problem challenging as the number of agents is not fixed.

Table 5.1: MARL Approaches for AV Control in Various Highway Merging Scenarios

References MARL Approach # of AVs Evaluation Metrics Merging Scenario

[43] Multi-agent Q-learning 2 Collision rates Taper-type on ramp
[44] DTDE-MADDPG 2 Collision rates Taper-type on ramp
[54] DTDE-MARL ≤ 4 Collision rates Parallel-type on ramp

[71, 72] DTDE-MA-A2C Not mentioned altruistic behavior in AVs Parallel-type on ramp
[59] DTDE-DQN ≤ 5 altruistic behavior in AVs Parallel-type on ramp

[146] DTDE-MA2C ≤ 8 Safety and efficiency Parallel-type on ramp
[58] DTDE-MA2C ≤ 6 Safety and efficiency Highway lane change

[147] DTDE-MARL ≤ 3 Collisions rate Taper-type on ramp
[145] CTDE-MADDPG ≤ 8 Eliminate stop and go Taper-type on ramp
[41] CTCE ≤ 30 Safety and efficiency Taper-type on ramp

[74] CTDE-MADDPG ≤ 8
Outflow, inflow,

and speed
Taper-type on ramp

Our approach CTDE 50

Comfort, fuel, traffic flow,
lane distribution fairness,

position shift fairness,
and speed

Road reduction (Lane-drop)

91

merging vehicles when a merging lane AV asks to merge. To mimic real-world conditions,

vehicles enter the highway randomly from either lane, creating a dynamic environment

with a varying number of learning agents. This approach tests the scalability of MARL

algorithms to changing traffic conditions and evaluates the generalization capabilities of

the learned policies. The simulation uses SUMO’s Traffic Control Interface (TraCI) [148]

to facilitate interactions between the environment and RL agents. Vehicle longitudinal

dynamics are governed by the Krauss car-following model [149], lane change decisions

are made by RL agents, and the lateral dynamics are controlled using SUMO’s default

model [150].

The complexity of this problem arises from several factors:

• Multiple agents: Each AV is an independent agent that must make decisions based

on local information while considering the actions of other vehicles.

• Efficiency goals: The merging process should minimize traffic slowdowns and

maintain a smooth flow of vehicles through the bottleneck.

• Partial observability: Each vehicle has limited information about the state of other

vehicles and must make decisions based on this partial view of the environment.

• Dynamic environment: The number of vehicles involved in the merging process can

vary over time, requiring a flexible and scalable solution.

5.1.1 Environment Overview

The problem is modeled as a decentralized partially observable MDP

(Dec-POMDP) [151] defined by the tuple: (S,O,A,r, p,γ). Here, S is the state space,

O : O1× . . .×On is the joint local observation space of all agents n, A : A1× . . .×An is the

joint action space for all agents n, p(S′ | S,A) is the transition probability to state S′ given

the current S and action A = (a1, . . . ,an), γ is the discount factor, and r is the immediate

92

shared reward received when taking action A in state S. This work uses an MARL CTDE

framework, adopted from [152], for multi-agent automated traffic control with a dynamic

number of agents. During the training phase, the critic has access to global information

through a central coordinator. However, in the execution phase, each agent can only observe

a limited part of the environment, which aligns with realistic connected vehicle scenarios.

Specifically, each agent’s local observation oi ∈ Oi consists of information from nearby

vehicles within a predefined communication range, representing vehicle-to-vehicle (V2V)

connectivity limitations. This partial observability during execution ensures that the learned

policies are applicable in real-world settings where full environmental information is not

available to individual vehicles.

5.1.1.1 State Space In this work, the state of the environment at time t, St , is represented

by the joint local observations of all active agents Kt :

S = [o1,o2, ...,oKt] (5.1)

Note that since the number of agents is dynamic, Kt represent the participating

agents at time t. The local observation of each agent i, denoted as oi, is defined as a vector

of dimension 4+3Ni, where Ni is the number of observed surrounding vehicles within an

8-meter range in front of and behind the AV. Fig. 5.2 illustrates this local observation space

for each AV. The local observation vector of AV i is represented as:

oi = [ei,x1,x2, ...,xNi], (5.2)

where:

• ei = [vi,di,mi] represents the ego vehicle’s state:

– vi: speed of the ego vehicle

– di: distance to the merge point

93

Figure 5.2: Illustration of the local observation space for an AV. Each AV can observe
neighboring vehicles within a total 16-meter range.

– mi: merge state (1 if merged, 0 if not yet merged)

• x j = [∆x j,v j,∆v j] for j = 1, ...,Ni represents the state of each observed vehicle:

– ∆x j: relative longitudinal position to the ego vehicle

– v j: speed of the observed surrounding vehicle

– ∆v j: relative speed to the ego vehicle

This local observation oi is normalized and then passed to the actor network.

5.1.1.2 Action Space The action space Ai of agent i is defined as a binary set representing

high-level lane change decision:

Ai =

1 ⇒ Request to merge

0 ⇒ Stay in current lane.
(5.3)

With a selected high-level decision, lower-level controllers in the SUMO simulation

environment produce the corresponding steering and throttle control signals to maneuver

94

the AVs. The overall action space of the system is the joint actions from all active k AVs at

time step t:

A = A1×A2×·· ·×Akt (5.4)

This formulation allows for a simplified yet effective representation of the key decisions

required in the merging scenario, while delegating the detailed vehicle control to the

simulation environment. This adopted formulation is widely used in the literature, such

as [153], [146], [71, 72], and [59].

5.1.2 Reward Functions

In the proposed CTDE framework, a shared reward structure is employed, where a

normalized global reward is received at each time step to indicate the quality of the joint

actions taken at that time step. The general form of the reward function is:

rt = f (st ,at) (5.5)

where st is the current state, at is the joint action of all agents. In this study, various

reward function designs are explored. Detailed description of these reward functions are

presented in Section 5.2.

5.1.3 MARL Algorithm

We propose an MARL algorithm designed to address the challenges of scalability,

non-stationarity, and dynamic agent numbers in a road reduction environment. The

proposed algorithm is shown in Algorithm 5.1. Our approach utilizes a CTDE framework,

as illustrated in Fig. 5.3, consisting of decentralized actors for each agent, a centralized

critic, and a centralized counterfactual baseline network [92]. This structure allows us to

95

Figure 5.3: CTDE Actor-Critic MARL Architecture adopted in the proposed merging
control framework.

maintain the benefits of decentralized policies while leveraging global information during

training to mitigate non-stationarity issues.

5.1.3.1 Centralized Critic and Counterfactual Baseline The centralized critic estimates the

value function Vπ(St), representing the expected cumulative discounted reward from the

global state St under the joint policy π . The critic takes the global state St as input and

outputs a scalar value estimate.

However, when using a centralized critic network with a global reward to guide

the agents’ behavior, a new challenge arises: the credit assignment problem. The global

reward is given to a joint set of actions that moved all the agents from state St to state

St+1 in terms of the global environment state space. As a result, calculating each agent’s

individual contribution to the global reward becomes a complex task.

96

To address this challenge, a counterfactual baseline is introduced:

bi
ψ,t(S,a) = Eai∼π(·|oi)

[
Qπ

(
St ,(a−i,ai)

)]
, (5.6)

where a−i represents the actions of all agents except agent i, and oi is the observation of

agent i. The advantage Ai
t quantifies how much better (or worse) the chosen action of agent

i is compared to the average action, given the actions of other agents.

Ai = Qπ(S,a)−bψ(S,a), (5.7)

where the Q-value function Qπ(St ,at) is defined as:

Qπ(St ,at) = Eπ [r(St ,at)+ γVπ(St+1)], (5.8)

with r(St ,at) being the global reward function.

The centralized critic is updated to minimize the following mean squared error loss:

Lc(φ) = ∑
t

[
r(St ,at)+ γVφ (St+1)−Vφ (St)

]2 (5.9)

Similarly, the baseline network bψ is updated using a similar mean-squared error

loss:

Lb(ψ) = ∑
t

[
Kt
∑
i=1

[
bψ(St ,a−i

t)−
(
rt + γVφ (St+1)

)]2
]
. (5.10)

5.1.3.2 Actor Network Each agent i is represented by an actor network parameterized by

θ . The actor’s objective function is defined as:

J(θ) = Eπθ

[N

∑
i=1

∑
t

min
(
Γ

i
t(θ)A

i
t ,

clip(Γi
t(θ),1− ε,1+ ε)Ai

t
)

+β H(πi(oi))
]
,

(5.11)

97

Algorithm 5.1: CTDE-MARL AVs Merging Control
1. Initialize weights: Critic φ , Baseline ψ , Policy θ

2. for each iteration do
3. while nsteps < buffer size do
4. Observe state S, local observation o, active agents kt
5. for each agent i in Kt do
6. Sample action ai ∼ πθ (ai|oi)
7. end
8. Take joint action a, observe r, S′

9. Store (S,O,a,R,S′,kt) in buffer B
10. Vt = Criticφ (S)
11. end
12. Compute discounted returns Gt for every state St
13. Compute Critic loss Lc(φ)
14. Update φ to minimize Lc(φ)
15. for time step t do
16. for each agent j in Kt do
17. Calculate Baseline b j

ψ(o j,(oi,ai)1≤ i≤ kt , i ̸= j)

18. Compute advantage A j = Gt −Q j
ψ

19. end
20. end
21. Compute loss Lb(ψ)
22. Update ψ to minimize Lb(ψ)
23. Compute J(θ) using A j
24. Update θ to maximize J(θ)
25. end

98

where Γi
t(θ) is the probability ratio defined as

πθ (a
i
t |o

i
t)

πθold
(ai

t |o
i
t)

, β is the entropy coefficient, ε

is a clipping parameter, H is the policy entropy given by H(πi(oi)) = Eπi[− log(πi(oi))],

and Ai
t is the advantage function for agent i at time t.

5.1.3.3 Neural Networks In this study, we adopt a framework that utilizes both centralized

and decentralized neural networks. The centralized networks are the critic and baseline

networks, while each actor has its own decentralized neural network. Given that our

agents (AVs) are homogeneous with identical local state space and action space, we

employ parameter-sharing. This technique, where all agents share the same policy network

parameters, has been shown to enhance learning efficiency [154].

5.1.3.3.1 Actor Network Architecture The decentralized actor network is designed to

efficiently process the local observations of each agent. The observation vector oi, which

includes information about the ego vehicle and nearby vehicles within an 8-meter range, is

fed directly into the network as illustrated in Fig. 5.4. This observation vector is processed

through a series of fully connected layers to extract relevant features and capture complex

relationships within the state information and producing a set of logits zi. These logits are

then passed through a Softmax layer, yielding the action probability distribution: πθ (oi) =

softmax([z1,z2]). The final action ai is sampled from this probability distribution: ai ∼

πθ (oi).

5.1.3.3.2 Critic Network Architecture For the centralized critic network, the input is a

concatenation of all agents’ local observations at each time step. However, our environment

presents a challenge: the number of participating AVs fluctuates as vehicles complete

merges or enter the highway, resulting in a variable global state size. To address this

issue, we propose a self-attention based architecture. Self-attention layers can handle

inputs of varying lengths, allowing our model to process observations from a changing

99

Figure 5.4: Actor network architecture.

number of agents. This approach is also applied to the centralized baseline, which takes

as input the concatenation of local observations and actions from active agents. The

self-attention mechanism, introduced by Google Research and Google Brain, is a powerful

technique used in deep learning and natural language processing (NLP) tasks [155]. It

has demonstrated effectiveness in various applications, including computer vision [156],

semantic segmentation [157], and object detection [158]. In the self-attention mechanism,

each element in the input becomes a query, key, and value. These are derived from the

input embeddings by multiplying them with a weight matrix. The attention function can be

described mathematically as:

Attention(Q,K,V) = softmax

(
QKT√

dk

)
V, (5.12)

where Q, K, and V represent the query, key, and value matrices respectively, and dk is a

scaling factor.

The critic network begins with a feature extractor that processes each observation

individually using a fully connected layer followed by layer normalization (see Fig. 5.5).

This initial processing allows the network to extract relevant features from each agent’s

observation independently. The output of this stage is then fed into the self-attention

mechanism, comprising query, key, and value vectors, which feed into a Multi-head

100

Figure 5.5: Critic network architecture.

Attention layer. The self-attention layer enables the network to dynamically weigh the

importance of different agents’ information, adapting to the changing number of agents

in the environment. Following the attention mechanism, a residual connection combines

the output of the attention layer with the encoded observations, allowing the network

to preserve important individual agent information alongside the relational data. The

final stages of the critic network include an average layer, which average the processed

information across all agents, and output a scalar. This structure allows the critic to

effectively evaluate the global state while accommodating a variable number of agents.

5.1.3.3.3 Baseline Network Architecture The baseline network shares a similar

structure with the critic but incorporates some distinct features to process both observations

and actions. The baseline is used to estimate Qπ(St ,a−i
t), which can be defined as:

Qπ(St ,a−i
t) =Vπ(oi)+Qπ(S−i

t ,a−i
t). (5.13)

Hence, baseline network has two inputs: the local observation of agent i, and the

observation-action pair of all of the other active agents. See Fig. 5.6. Each input

will go through a different feed forward layer. Following that, the baseline network

employs a self-attention mechanism similar to the critic network, allowing the baseline to

101

Figure 5.6: Baseline network architecture.

consider relationships between different agents’ observations and actions when estimating

the baseline value. The output of the attention mechanism is then processed through

additional layers, including a residual connection and average layer, before producing the

final baseline estimate. This architecture enables the baseline network to generate accurate

estimates while adapting to the varying number of agents in the environment.

5.2 Reward Functions

Extensive experiments are conducted to assess the performance of the proposed

approach under various reward functions formulations. In particular, the following reward

functions are explored.

• M1: Local speed with safety optimization

• M2: Global speed with safety optimization

• M3: Local speed with jerk minimization

• M4: Local speed with fuel consumption minimization

102

5.2.1 M1: Local Speed with Safety Optimization

This reward function aims to optimize the speed and safety based on local

observations of AVs. In order to ensure safety, agents will be penalized for getting too

close to the road reduction point. The safety penalty will start at a specific threshold and

increase as the agent gets closer to the road reduction point. The speed term is based on

the average speed of the AV and its surrounding vehicles. For an active agent j, the local

speed reward and safety reward are defined as follows.

r j
local speed,t =

1

|N j
t |+1

∑

i∈ j∪N j
t

si
t (5.14)

r j
safety,t =

−

(
x j
t −d
d

)2

, if x j
t ≤ d

0, otherwise,

(5.15)

where N j
t is the set of observed surrounding vehicles of agent j at time t with |N j

t | being

its cardinality of the set, si
t is the speed of vehicle i at time t, x j

t is the longitudinal distance

from the agent j to the road reduction point, and d is a predefined threshold distance.

For example, for the leftmost merging vehicle in Fig. 5.2, rlocal speed,t corresponds to the

average speed of the three vehicles in the leftmost circle. In addition, for the left merging

vehicle, rsafety,t = 0 as it is outside of the predefined threshold d, while the right merging

vehicle, rsafety,t is non-zero.

Therefore, for M1 model, the reward can be defined as follows.

rt =
1
Kt

Kt
∑
j=1

(
w1r j

local speed,t +w2r j
safety,t

)
, (5.16)

where w1 and w2 are weighting factors and Kt is number of active agents at time t.

103

5.2.2 M2: Global Speed with Safety Optimization

Different from M1, this reward function is designed to maximize the global speed.

The reward function incorporates two key components: the average speed of all vehicles in

both lanes that are before the road reduction point, and a safety reward that discourages the

agents from approaching the merge point too closely. Resultant reward can be defined as:

rt =
1

Ct

Ct
∑

n=1
w1sn

t +
1
Kt

Kt
∑
j=1

w2r j
safety,t , (5.17)

where Ct is the total number of vehicles in the environment at time t. It’s important to note

that the safety term is zero for vehicles in the main lane, so the second term only sums over

all active agents at time t.

Remark 1 The key difference between the reward function (5.16) of M1 and the reward

function (5.17) of M2 lies in the treatment of vehicles in the main lane. Take Fig. 5.2 for

example, the vehicles in the main lane that do not belong to any circle will not contribute

to the calculation of (5.16), but they do impact the reward of (5.17). The idea here is that,

(5.17) aims to capture the impacts of RL decisions on the entire traffic by including all

vehicle speed, hence referred to as “global speed”. On the other hand, (5.16) captures the

vehicle speed that are directly impacted by RL decision. For example, if a vehicle in the

main lane is far away from any merging vehicles, its speed may not be directly impacted

(or only minimally impacted) by the merging decision, and therefore are excluded in the

reward function. Therefore, (5.16) is referred to as “local speed”.

5.2.3 M3: Local Speed with Jerk Minimization

M3 is a dual-objective reward function designed to maximize local speed

while simultaneously minimizing vehicle jerk. The reward function balances two key

components: the average speed of all agents and its immediate neighbors, and a term for

104

abrupt changes in acceleration (jerk). Research has shown that motion sickness can be

induced by repetitive exposure to low-frequency motions [138], while lower back pain can

be induced by regular exposure to high-frequency motions [139, 140]. The AVs behavior

can be optimized to ensure comfortable driving by minimizing the jerk, which correlates to

these distress and sudden acceleration changes [32]. Total reward can be defined as:

rt =
1
Kt

Kt
∑
j=1

(
w1r j

local speed,t +w2r j
local jerk,t

)
(5.18)

with the local jerk defined as

r j
local jerk,t =−

1

|N j
t |+1

∑

l∈ j∪N j
t

(
accl

t −accl
t−1

dt

)2

, (5.19)

where accl
t is the acceleration of vehicle l at time t. This combination encourages smooth,

efficient movement while maintaining a comfortable ride for passengers.

5.2.4 M4: Local Speed with Fuel Consumption Minimization

The goal of M4 is to minimize fuel consumption and optimize local speed at the

same time. The reward function combines the average speed of the ego vehicle and

its immediate neighbors, with a term for excessive fuel usage expressed by promoting

both efficient movement and environmentally friendly driving behaviors. The fuel

consumption evaluation is based on SUMO’s PHEMlight model [159], which calculates

fuel consumption as a function of the vehicle’s current power demand. The power demand

P is computed as:

P = (PRoll +PAir +PAccel +PGrad)/ηgb, (5.20)

where PRoll is the power needed to overcome rolling resistance, PAir is the power needed

to overcome air resistance, PAccel is the power needed for acceleration, PGrad is the

105

Table 5.2: Overview of the Four RL Models Evaluated in This Chapter.

Model Label Reward Function Weights Results

M1 Local speed with safety optimization w1 = 1 & w2 = 3 Tables 5.3-5.5; Figs. 5.7, 5.11 & 5.12
M2 Global speed with safety optimization w1 = 1 & w2 = 3 Tables 5.3-5.5; Figs. 5.8, 5.11 & 5.13
M3 Local speed with jerk minimization w1 = 1 & w2 = 0.4 Tables 5.3-5.5; Figs. 5.9, 5.11 & 5.14
M4 Local speed with fuel consumption minimization w1 = 1 & w2 = 1 Tables 5.3-5.5; Figs. 5.10, 5.11 & 5.15

power needed to overcome road gradient, and ηgb is the drivetrain efficiency. The fuel

consumption rate is then determined using characteristic curves specific to each vehicle

type, which is a function of power demand, denoted as f (P).

The total reward can be expressed as:

rt =
1
Kt

Kt
∑
j=1

(
w1r j

local speed,t +w2r j
local fuel,t

)
, (5.21)

where the local fuel consumption is defined as

r j
local fuel,t =−

1

|N j
t |+1

∑

i∈ j∪N j
t

f (Pi
t). (5.22)

5.3 Results and Discussion

This section presents a comprehensive evaluation of the proposed MARL

framework for AVs merging control in highway scenarios (described in Section 5.1). To

benchmark our method, its performance is compared against (1) the Multi-Agent Proximal

Policy Optimization (MAPPO) algorithm [154], a well-established approach in MARL,

and (2) a rule-based zipper merge strategy [160, 161]. Four RL models are analyzed, each

with one of the reward functions discussed in Section 5.2. The label of each model, the

corresponding reward function and results, are summarized in Table 5.2.

106

5.3.1 Simulation Setup

We employed an on-policy training algorithm, as detailed in Algorithm 5.1.

Each training rollout consists of 6 episodes (around 6000 steps), allowing the agents to

experience a wide range of traffic scenarios and learn effective merging strategies. Each

time step (sampling time) is 0.2 second. To ensure the robustness of our approach, we

conducted training using 8 different random seeds, to assess the consistency and reliability

of the results. That is, 8 separate trainings each with different initialization of weights and

randomness for both the MARL algorithm and SUMO sides.

The simulations were conducted using high-performance computing (HPC) nodes

running Red Hat Enterprise Linux release 8.6 (Ootpa). Each node was equipped with

192 GB of RAM and 40 CPU cores operating at 2.50 GHz, providing the necessary

computational power to handle the complex MARL training process. The SUMO simulator

was interfaced with our MARL implementation using TraCI (Traffic Control Interface)

[148], allowing seamless interaction between the RL agents and the simulated environment.

5.3.2 Training Convergence Analysis

The learning performance of our proposed MARL framework across four different

reward functions is evaluated in comparison to the benchmark MAPPO algorithm [154].

In Figs. 5.7-5.10, the x-axis represents the number of training rollouts, while the y-axis

shows the average reward achieved. Our proposed model is represented by the red line,

while MAPPO is shown in blue. The shaded areas around each line indicate the variance

in performance across multiple random seeds.

For M1, the proposed approach demonstrates faster convergence and higher final

rewards compared to MAPPO, shown in Fig 5.7. The agents are able to learn effective

merging policies that balance safety and efficiency, achieving an average episodic reward

of approximately 87.2 after around 2300 training updates. In contrast, MAPPO converges

107

0 1000 2000 3000 4000
Rollouts

50

60

70

80

90

Re
wa

rd

Average Reward (MAPPO)
Average Reward (Proposed: M1)

Figure 5.7: Convergence comparison of the proposed method (M1) and the benchmark
MAPPO method.

to a lower episodic reward of approximately 85.3 and requires nearly twice as many

training updates. However, despite our model requiring fewer updates to converge, it

utilizes an additional centralized baseline network. As a result, the overall training time

to convergence is comparable to MAPPO.

For M2, Fig. 5.8 shows a clear upward trend in average reward in the proposed

method, converging to approximately 217. This performance significantly surpasses that of

the MAPPO approach, which converges to a lower value of around 195. Such a substantial

improvement in convergence value indicates that our model can more effectively optimize

global speed while maintaining safety constraints.

Fig. 5.9 illustrates the progression of the average reward for over the course of

training rollouts for both the proposed M3 model and the MAPPO benchmark. The

108

0 250 500 750 1000 1250 1500 1750
Rollouts

100

120

140

160

180

200

220

Re
wa

rd

Average Reward (MAPPO)
Average Reward (Proposed: M2)

Figure 5.8: Convergence comparison of the proposed method (M2) and the benchmark
MAPPO method.

results demonstrate a clear advantage of our proposed model over the MAPPO benchmark.

Both approaches show rapid initial improvement, indicating quick learning in the early

stages of training. However, our model (represented by the red line) consistently

outperforms MAPPO (blue line) throughout the training process. By the end of the training

period (around 700 rollouts), M3 model achieves and maintains an average reward of

approximately 320, while MAPPO plateaus at a lower value of about 310. Notably, in

addition to the faster convergence, the proposed M3 model also exhibits greater robustness,

as evidenced by the narrower shaded area which suggests that the proposed approach has

less training variance. Finally, it is also worth mentioning that MAPPO method seems to be

unstable in this case study, as the reward starts to continusouly decline after 600 rollouts.

109

0 200 400 600 800 1000
Rollouts

180

200

220

240

260

280

300

320

Re
wa

rd

Average Reward (MAPPO)
Average Reward (Proposed: M3)

Figure 5.9: Convergence comparison of the proposed method (M3) and the benchmark
MAPPO method.

Lastly, the training performance of the proposed M4 model in comparison to the

MAPPO benchmark is shown in Fig. 5.10. By the end of the training period, which spans

approximately 800 rollouts, our model attains an average reward of about 76 surpassing

that of MAPPO, which reaches a slightly lower value of around 72. This shows that the

proposed M4 model is able to effectively balance the objectives of speed optimization and

fuel efficiency, as indicated by the higher reward.

Overall, the proposed framework exhibits higher training efficiency, as evidenced

by the shorter convergence time and the higher reward. In all four models, the proposed

method achieve smaller variance, and hence is more robust. Moreover, as can be seen from

Figs. 5.8 and 5.9, MAPPO suffers stability issue where the reward starts to decline, while

the proposed method demonstrates greater stability in all four case studies.

110

0 100 200 300 400 500 600 700 800
Rollouts

10

20

30

40

50

60

70

80

Re
wa

rd

Average Reward (MAPPO)
Average Reward (Proposed: M4)

Figure 5.10: Convergence comparison of the proposed method (M4) and the benchmark
MAPPO method.

Table 5.3: Evaluation Results of M1-M4 Models with 10 m/s Maximum Speed.

Model Flow [#/h] Fuel [mg/s] Avg Jerk [m/s3] Avg Speed [m/s]

M1 1488.83 122701.95 4.01 5.3
M2 1498.75 124711.08 3.44 5.23
M3 1430.84 159143.18 3.09 4.18
M4 1482.7 114995.16 3.93 5.17

Zipper Merge 1304.35 169540.15 3.45 4.02

5.3.3 Merging Performance Comparison

To assess the effectiveness of the proposed MARL approach, we deployed the

best-performing trained models for evaluation. Specifically, for each reward model

(M1-M4), the saved model checkpoint that achieved the highest rewards during training

111

Table 5.4: Evaluation Results of M1-M4 Models with 20 m/s Maximum Speed.

Model Flow [#/h] Fuel [mg/s] Avg Jerk [m/s3] Avg Speed [m/s]

M1 1986.75 169531.47 3.66 9.31
M2 2135.23 183102.56 3.816 11.46
M3 1595.74 186751.38 3.01 5.72
M4 1803.61 155711.8 3.65 8.01

Zipper Merge 1333.33 21265.34 3.1 4.54

is then tested in various conditions to quantitatively compare the merging performance. To

validate the robustness and generalizability of the proposed approach, the model training

was conducted with a maximum speed of 10 m/s and the evaluation was conducted at

both 10 m/s and 20 m/s. Notably, the performance trends remain consistent across both

evaluation conditions, demonstrating the robustness of the proposed approach. In addition,

a rule-based zipper merge strategy [160, 161] is also evaluated as benchmark.

The performance evaluation is conducted using a suite of metrics designed to

capture various aspects of merging efficiency and safety, including:

• Traffic flow (unit: vehicles/hour).

• Fuel consumption (unit: mg/s): The average fuel consumption of all vehicles before

the road reduction at each time step and then averaged by the total time steps.

• Average jerk (as a measure of ride comfort; unit: m/s3): The average jerk of all

vehicles before the road reduction at each time step and then averaged by the total

time steps.

• Average speed (unit: m/s): The average speed of all vehicles before the road

reduction at each time step and then averaged by the total time steps.

These metrics provide a holistic view of the effectiveness and efficiency of our approach

in managing highway merging scenarios. Note that when calculating these metrics, all

112

vehicles in both lanes will be included, and hence different from some of the rewards

function used for training. This is because when analyzing the performance, we want to

use the metrics that correspond to the overall system efficiency, even if some vehicles are

not observed by any local agents.

Tables 5.3 and 5.4 present the evaluation results for both evaluation conditions, i.e.,

10 m/s and 20 m/s maximum speeds, respectively. Across both scenarios, all MARL

models consistently outperform the rule-based zipper merge strategy in most metrics,

underscoring the advantages of our learning-based approach. Note that performance of

the benchmark, i.e., the zipper merge strategy, is presented in the last row of each table.

With 10 m/s evaluation condition, (Table 5.3), M2 model achieves the highest flow rate

of 1498.75 vehicles per hour, a 14.9% improvement over the zipper merge baseline. M1

model, while slightly behind in flow rate, achieves the highest average speed of 5.3 m/s.

Additionally, M4 model demonstrates the best fuel efficiency, consuming only 114,995.16

mg/s, a 32.17% reduction compared to the zipper merge baseline.

The performance improvements further increase at higher speeds, as evident in

Table 5.4. With 20m/s evaluation condition, M2 model, whose reward function focuses

on global speed, achieves a remarkable flow of 2135.23 vehicles per hour, a 60.14%

improvement over the zipper merge baseline. It also maintains the highest average speed of

11.46 m/s, significantly outpacing other approaches. These results suggest that optimizing

the global speed leads to more efficient overall traffic management, especially in high-speed

scenarios. However, the superior speed and flow of the global speed model come with a

trade-off in fuel consumption. The speed with M4 models continues to demonstrate the best

fuel efficiency among MARL models, achieving a 14.96% reduction in fuel consumption

compared to M2 model. This highlights the importance of considering multiple objectives

in AV control.

113

Consistently across both evaluation conditions, the M3 model, which combines

local speed and jerk in the reward function, achieves the lowest average jerk, i.e., 3.09

m/s3 and 3.01 m/s3, respectively). While this potentially offers the smoothest ride for

passengers, it comes at the cost of reduced traffic flow and average speed. Such trade-off

between ride comfort and system efficiency is an important consideration in real-world

applications. Finally, it’s noteworthy that despite being trained at 10 m/s, the proposed

MARL models generalize very well to the 20 m/s condition, maintaining their relative

performance and consistently outperforming the zipper merge benchmark.

5.3.4 Merging Strategy Visualization

In this and the following section, we evaluate the behavior of various trained models

in terms of their merging strategies, focusing on aspects such as merging positions, vehicle

order post-merge, and the fairness of these strategies. By quantifying these metrics,

we aim to understand the strengths and weaknesses of each model’s approach to traffic

management. To visualize the merging position, Fig. 5.11 presents a heat map of the

vehicle merging zone. This spatial representation indicates where merging decisions most

frequently occur, with the intensity of color in different areas reflecting the concentration

of merging actions. As can be seen, M1 model implements a merging strategy that is

both earlier and distributed, demonstrated by the heat map where the merging activities

are distributed across a broad region with greater concentrations observed during the early

region of the merging zone, i.e., between approximately 100m and 160m along the merging

zone. For M2 model, the optimal merging strategy demonstrates a clear preference for late

merging behavior. As evidenced in Fig. 5.11, the heat map shows a high concentration of

merging activities towards the end of the merging zone, i.e., between 250-300m along the

merging zone. Such a late merging behavior suggests that M2 model encourages vehicles

to utilize both lanes for as long as possible before executing merge maneuvers, which can

114

help maintain higher flow rate. For M3 model, the heat map shows intense merging activity

concentrated between 250m and 300m in the merging zone, indicating a late, clustered

merging strategy. This approach allows for the formation of vehicle groups before merging,

potentially contributing to smoother overall traffic flow despite the significant reordering of

vehicles. See the next section for more details on this regard. Finally, M4 model presents

a balanced approach among the extremes observed in the other models. Fig. 5.11 reveals

a more even distribution of merging activities along the merge zone, but with a noticeable

concentration towards the 285-300m range.

Another attempt to visualize the merging strategies is done in Figs. 5.12-5.15,

which depict the relationship between the initial order of vehicles and their final position

in the platoon after the merge. In the top portions of these figures, the x-axis represents

the order in which vehicles finished the merge, where zero (far right) represents the first

vehicle to finish the merge, and 99 represents the last. The y-axis (and also the numerical

labels placed on each data point) denotes the vehicle entering sequence, with lower values

indicating earlier entry times. Additionally, the color of the points denotes the lane from

which the vehicle first entered the traffic, with red corresponding to the Main lane and

blue representing the merging lane. To provide a reference for comparison, a dotted

diagonal line is included in these plots to represent the ideal zipper merge strategy. This

line illustrates the expected final positions of vehicles if they were to merge in a perfect

alternating pattern from the main and merging lanes, i.e., using zipper merge strategy.

The deviation of the actual data points from this diagonal line visualizes how the learned

merging strategies differ from the zipper merge approach. For example, if a vehicle is

above the dotted line (e.g., vehicle 14 in Fig. 5.12), it means this vehicle has sacrificed

its position to either let other vehicles pass. Similarly, if a vehicle is below the dotted line

(e.g., vehicle 26 in Fig. 5.12), it means this vehicle has gained advantage by surpassing

115

100 125 150 175 200 225 250 275 300

M1: Local speed with safety optimization

100 125 150 175 200 225 250 275 300

M2: Global speed with safety optimization

100 125 150 175 200 225 250 275 300

M3: Local speed with jerk minimization

100 125 150 175 200 225 250 275 300
X position (m)

M4: Local speed with fuel consumption minimization

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
er

gi
ng

 d
en

sit
y

0.0

0.1

0.2

0.3

0.4

0.5

M
er

gi
ng

 d
en

sit
y

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
er

gi
ng

 d
en

sit
y

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
er

gi
ng

 d
en

sit
y

Figure 5.11: Heat-map of vehicles merging point for each MARL model. The intensity of
the red color indicate high frequency that each MARL model decides to merge.

116

other vehicles. Moreover, the bottom portions of Figs. 5.12-5.15 plot the final formation

after passing the merging point, with the number for each point being their initial order.

Note that Figs. 5.12-5.15 provide an intuitive way to visualize different merging

strategy. For example, Fig. 5.14 clearly demonstrates that M3 model uses a clustering

merging strategy, where groups of main lane vehicles and groups of merging lane vehicles

alternate in the final formation. This motivates us to quantify the fairness of merging

strategies. Two metrics are proposed, Lane Fairness and Individual Fairness. The following

section presents more details on the fairness comparison of the four merging strategies.

5.3.5 Fairness Comparison

The Lane Fairness, inspired by [162], measures how evenly vehicles from the

two lanes are distributed in the final formation. An ideal merging strategy would

result in a balanced distribution of vehicles across all lanes, ensuring no single lane is

disproportionately congested. Intuitively speaking, the bottom portions of Figs. 5.12-5.15

should present a pattern with alternating colors and the larger deviation from such a pattern,

the less fair it is. Mathematically, Lane Fairness can be calculated as follows.

Lane Fairness =
(∑n

i=1 xi)
2

n∑
n
i=1 x2

i
, (5.23)

where xi is the ratio of actual to expected number of vehicles for a lane in a segment and

n is the number of segments (n = 2 is chosen for the present study, resulting the expected

number of vehicles for each lane in a single segment equals 1).

While the Lane Fairness effectively quantifies the distribution of vehicles across

lanes post-merge, it does not account for the individual delays experienced by vehicles

during the merging process. To address this limitation and provide a more comprehensive

assessment of fairness, we introduce an additional metric, Individual Fairness. Individual

Fairness measures the average position shift for individual vehicle. An ideal merging

117

Table 5.5: Summary of Merging Styles and Fairness.

Model Label Merging Styles Lane Fairness Individual Fairness

M1 Distributed towards early merge 0.7692 0.9664
M2 Late merge 0.7812 0.966
M3 Distributed towards late merge 0.5319 0.7528
M4 Distributed towards late merge 0.7692 0.928

Zipper Merge Late merge 1 1

strategy would preserve the order for all vehicles. Intuitively speaking, the top portions of

Figs. 5.12-5.15 should perfect align with the dotted diagonal line, and the large deviation

from it, the less fair. Mathematically, Individual Fairness can be calculated as follows.

Individual Fairness = 1−
∑

n
i=1 |pi−qi|

Maximum Displacement
, (5.24)

where pi is the initial spawning order of vehicle i before the merge, qi is the final order of

vehicle i after the merge, and n is the total number of vehicles. Maximum Displacement

represents the theoretical upper limit of cumulative position shifts across all vehicles, given

by:

Maximum Displacement =

n2−1

2 for odd n,

n2
2 for even n.

(5.25)

Note that (5.25) corresponds to an extreme case where the first vehicle ends up being the

last one after merge, the second vehicle ends up being the second last one after merge, and

so on.

The merging strategies and corresponding fairness indexes for each model, together

with those of the benchmark zipper merge strategy, are summarized in Table 5.5. Note that

for both Lane Fairness and Individual Fairness, the higher score, the more fair it is.

For M1 model, Fig. 5.12 suggests that although reordering occur during the

merging process, they are relatively minor, resulting in the Individual Fairness being

118

0.9664. The Lane Fairness for this model is 0.7692, which is slightly lower than the M2

model. This suggests that there is a moderate level of lane alternation and the vehicles are

evenly distributed among the lanes. Note that the longest streak of vehicles from the same

lane is only 4.

For M2 model, the close alignment of points along the diagonal line in Fig.

5.13 indicates minimal reordering of vehicles, which is quantitatively supported by the

high Individual Fairness score of 0.966. This score suggests that the model prioritizes

maintaining the initial order of vehicles throughout the merging process, likely contributing

to a smooth and predictable traffic flow. The Lane Fairness of 0.7812 indicates a relatively

balanced utilization of both lanes. This is further supported by the longest same-lane

streak of only 5 vehicles, suggesting frequent alternation between vehicles from the main

and merging lanes. These metrics, combined with the visual evidence from Fig. 5.13,

demonstrate that M1 model, which focus on global speed optimization, achieves a high

degree of both lane-wise and individual fairness while optimizing for overall traffic speed

and safety.

On the other hand, M3 model exhibits the most distinctive behavior among all four

models. Fig. 5.14 reveals a striking pattern of clustered points, clearly illustrating a traffic

light-like behavior where groups of vehicles from each lane alternate in merging. This

clustering is quantitatively supported by the model’s low Lane Fairness of 0.5319 and the

remarkably long same-lane streak of 24 vehicles. These metrics indicate that the model

strongly favors merging vehicles in alternating groups from each lane, likely as a strategy

to minimize overall jerk by reducing the frequency of lane changes. Furthermore, the

individual Fairness for this model is 0.7528, significantly lower than the other models.

This low score reflects the extreme disruption to the initial vehicle ordering, with some

points in Fig. 5.14 showing shifts of 60-70 positions.

119

05101520253035404550556065707580859095

0

20

40

60

80

100

Ve
hi

cle
s I

ni
tia

l O
rd

er

012345678
109

111213
1615

18

14
17

2019

26

21

28

22

30

23
2524

32

27

34

29

36

31
33

35
3738394041424344454647484950515253545556575859606162

66
64

68

63
65

67
7069

7271

78

74
76

81

73

83

75

84

77

86

79

87

80

89

82

91

85

93

88

95

90

97
99

92
94

96
98

Merging Lane
Main Lane

05101520253035404550556065707580859095
Vehicles Final Order

0123456781091112131615181417201926212822302325243227342936313335373839404142434445464748495051525354555657585960616266646863656770697271787476817383758477867987808982918593889590979992949698

Figure 5.12: Comparison of starting and final positions for M1 model. Top: the x-axis
represents the order in which vehicles pass the reduction point, and the y-axis denotes the
vehicle entering sequence. Bottom: the final formation after passing the lane reduction
point.

Lastly, M4 model presents a balanced approach between the extremes observed in

the other models. Fig. 5.15 shows a merging pattern that falls between the tightly ordered

M2 model and the highly reordered M3 model. The Individual Fairness of 0.928 indicates

that while reordering occurs, it is more equitably distributed among vehicles compared to

the M3 model. The Lane Fairness of 0.7692, identical to the M1 model, suggests a similar

balance in lane utilization. However, the longest same-lane streak of 9 vehicles indicates a

tendency towards longer groups from the same lane. This grouping behavior is visible in

Fig. 5.11, particularly towards the end of the graph, where clusters of 5-10 vehicles from

the same lane maintain their relative positions. This strategy combined with the tendency

for late merging shown in the heat map is likely to reduce stop-and-go traffic, potentially

decreasing overall fuel consumption by minimizing full stops and subsequent accelerations.

120

05101520253035404550556065707580859095

0

20

40

60

80

100

Ve
hi

cle
s I

ni
tia

l O
rd

er

0123
54

7
9

6
8

1110
1312

1415161718
2019

2221
2324

2625
2827

3029
3231

3433
3635

3837
4039

4241
434445464748

5049
5251

5453
5655

5857
60

62
59

64
61

66
63

68
70

65
67

72
69

74
71

77
79

73

80

75

82

76

85

78

88
86

90

81

92

83

94

84
87

96

89

98

91
93

95
97

99

Merging Lane
Main Lane

05101520253035404550556065707580859095
Vehicles Final Order

0123547968111013121415161718201922212324262528273029323134333635383740394241434445464748504952515453565558576062596461666368706567726974717779738075827685788886908192839484879689989193959799

Figure 5.13: Comparison of starting and final positions for M2 model. Top: the x-axis
represents the order in which vehicles pass the reduction point, and the y-axis denotes the
vehicle entering sequence. Bottom: the final formation after passing the lane reduction
point.

5.4 Summary

This chapter presents a multi-agent reinforcement learning (MARL) framework for

decentralized coordination of autonomous vehicles (AVs) in highway merging scenarios.

The approach is founded on a decentralized partially observable Markov decision process

(Dec-POMDP) formulation, allowing each vehicle to make independent decisions based on

local observations. Utilizing a centralized training with decentralized execution paradigm,

the framework incorporates self-attention mechanisms in the critic and baseline networks

to effectively manage varying numbers of agents. The framework’s implementation and

validation were conducted using the SUMO traffic simulator, employing four distinct

reward functions: global speed, local speed, fuel efficiency, and ride comfort. Simulation

results demonstrate the framework’s efficacy in managing complex trade-offs in AV

121

05101520253035404550556065707580859095

0

20

40

60

80

100

Ve
hi

cle
s I

ni
tia

l O
rd

er

1
3

0

5
7

9
11

4

13
15

1718
16

8

12

22
19

6

21
23

25
27

29
31

3334
36

39
41

43
45

47

14

24
26

28
30

35
37

40
42

46
48

50
52

54
56

58

20

38

49

53

57
5960

62
64

66
68

70
72

74
76

2

78

10

80
82

84
86

88
90

92
94

96
98

83
85

44

89
91

95

51

61

65

97

71

75

79

93

87

63

69

73

81

99

55

77

67

32

Merging Lane
Main Lane

05101520253035404550556065707580859095
Vehicles Final Order

1305791141315171816812221962123252729313334363941434547142426283035374042464850525456582038495357596062646668707274762781080828486889092949698838544899195516165977175799387636973819955776732

Figure 5.14: Comparison of starting and final positions for M3 model. Top: the x-axis
represents the order in which vehicles pass the reduction point, and the y-axis denotes the
vehicle entering sequence. Bottom: the final formation after passing the lane reduction
point.

control. The framework’s generalizability is evidenced by its successful evaluation in

higher speed conditions, despite being trained at lower speeds. Additionally, two fairness

indexes are introduced to compare how different merging strategies preserve lane-wise

order and individual vehicle order.

122

05101520253035404550556065707580859095

0

20

40

60

80

100

Ve
hi

cle
s I

ni
tia

l O
rd

er

01
32

456
87

9
11

131415
12

16

10

17181920212223
26

24

28
25

30
27

32
29

34
31

36
33

38
35

40
37

39
42

44
41

43
46

48
45

47
50

54
52

49
51

53
5655

62

58
60

57

66

59

64
61

70

63

68
65

72

82

76

86
88

67

90

74

92
94

69
71

78

73

80

75

84

96

77

97

79

99

81
83

85
87

89
91

93
95

98

Merging Lane
Main Lane

05101520253035404550556065707580859095
Vehicles Final Order

0132456879111314151216101718192021222326242825302732293431363338354037394244414346484547505452495153565562586057665964617063686572827686886790749294697178738075849677977999818385878991939598

Figure 5.15: Comparison of starting and final positions for M4 model. Top: the x-axis
represents the order in which vehicles pass the reduction point, and the y-axis denotes the
vehicle entering sequence. Bottom: the final formation after passing the lane reduction
point.

123

CHAPTER SIX

MARL-BASED AV MERGING CONTROL WITH DECENTRALIZED TRAINING

This chapter addresses the multiple AVs merging problem introduced in Chapter

5, using a Decentralized Training and Decentralized Execution (DTDE) scheme to

further evaluate the proposed Centralized Training and Decentralized Execution (CTDE)

algorithm.

6.1 DTDE-based AVs Merging Control

The problem is modeled as a decentralized partially observable MDP

(Dec-POMDP) [151] defined by the tuple: (S,O,A,R, p,γ). Here, S is the state space,

O : O1× . . .×On is the joint local observation space of all agents n, A : A1× . . .×An

is the joint action space for all agents n, p(S′ | S,A) is the transition probability to state S′

given the current S and action A= (a1, . . . ,an), γ is the discount factor, and R= {r1, . . . ,rn}

is the set of individual reward functions for each agent. This work uses a MARL DTDE

framework for multi-agent automated traffic control with a dynamic number of agents. In

this approach, both training and execution phases are fully decentralized. Each agent learns

and acts independently based on its local observations, without access to global information

or a central coordinator. Specifically, each agent’s local observation oi ∈ Oi consists of

information from nearby vehicles within a predefined range. This decentralized approach

during both training and execution ensures that the learned policies are directly applicable

in real-world settings where full environmental information is not available to individual

vehicles and centralized coordination is not feasible.

124

The DTDE MARL AVs Merging Control algorithm (Algorithm 6.1) implements

the following key computations. The local advantage for agent i is computed as:

Ai = ri + γVφi(o
′i)−V φi(oi), (6.1)

where ri is the local reward for agent i, o′i is the next local observation, and γ is the discount

factor.

The actor network πθi for each agent i is updated to maximize the expected

advantage:

Lπ(θi) = E[logπθi(ai|oi)Ai], (6.2)

where ai is the action taken by agent i.

The critic network Vwi for each agent i is updated to minimize the mean squared

TD error:

LV (wi) = E[(ri + γVwi(o
′i)−V wi(oi))

2]. (6.3)

To facilitate learning in a multi-agent environment, experiences from all agents

are collected in a shared replay buffer D . Each experience tuple (oi,ai,ri,o′i) is stored

in this buffer. During the learning phase, batches of experiences are sampled from this

shared buffer to update the actor and critic networks. We adopted parameter sharing in

this framework, where only a single actor network πθ and a single critic network Vφ are

used for all AVs. This approach significantly reduces the number of parameters to be

learned and promotes consistency in behavior across agents. The shared actor network

takes an agent’s local observation as input and outputs an action, while the shared critic

network estimates the value function based on the local observation. This shared buffer

and parameter sharing approach allows for efficient knowledge transfer between agents, as

each agent can learn from the experiences of others, and all agents contribute to updating

125

Algorithm 6.1: DTDE-MARL AVs Merging Control
1. Initialize shared weights: Value function φ , Policy θ

2. for each iteration do
3. while nsteps < buffer size do
4. for each agent i in Kt do
5. Observe local observation oi
6. Sample action ai ∼ πθ (ai|oi)
7. Take action ai, observe ri, o′i
8. Store (oi,ai,ri,o′i) in shared buffer D

9. end
10. end
11. Sample batch of experiences (o,a,r,o′) from D
12. Compute TD errors: r+ γVφ (o′)−Vφ (o)
13. Compute value function loss: LV (φ)
14. Update φ to minimize LV (φ)
15. Compute advantages: A
16. Compute policy loss: Lπ(θ)
17. Update θ to maximize Lπ(θ)

18. end

the same set of parameters. However, it’s important to note that during both training and

execution phases, each agent still acts independently based on its local observations.

6.2 State and Action Spaces

In this decentralized approach, each agent i operates solely based on its local

observation oi at time t. The global state St of the environment, while not directly

accessible to any individual agent, can be conceptualized as the collection of all agents’

local observations:

St = [o1,o2, ...,oKt] (6.4)

126

where Kt represents the number of active agents at time t, which may vary

dynamically.

The local observation oi for each agent i is a vector of dimension 3+ 3Ni, where

Ni is the number of observed surrounding vehicles within an 8-meter range in front of and

behind the AV. This local observation space is illustrated in Fig. 5.2. Specifically, oi is

defined as:

oi = [ei,x1,x2, ...,xNi], (6.5)

where ei = [vi,di,mi] represents the ego vehicle’s state:

• vi: speed of the ego vehicle

• di: distance to the merge point

• mi: merge state (1 if merged, 0 if not yet merged)

x j = [∆x j,v j,∆v j] for j = 1, ...,Ni represents the state of each observed vehicle:

• ∆x j: relative longitudinal position to the ego vehicle

• v j: speed of the observed surrounding vehicle

• ∆v j: relative speed to the ego vehicle

Each element in the local observation oi is normalized to [0, 1] based on its

maximum and minimum values. This normalized local observation is the sole input to

the agent’s actor network for making predictions and decisions. It’s important to note that

each agent has access only to its own local observation and does not have information about

the global state or the observations of other agents.

The action space of each AV is a high-level lane change decisions and can be

expressed as:

127

ai =

1 ⇒ Request to merge

0 ⇒ Stay in current lane.
(6.6)

6.3 Reward Functions

In our DTDE framework, each agent receives an individual reward based on its

local observations and actions. We explore three different reward functions, each designed

to optimize different aspects of the merging behavior.

6.3.1 R1: Local Speed with Safety Optimization

This reward function aims to balance speed optimization with safety considerations.

For an agent j, the reward is composed of two terms:

r j
speed,t =

1

|N j
t |+1

∑

i∈ j∪N j
t

si
t (6.7)

r j
safety,t =

−

(
x j
t −d
d

)2

, if x j
t ≤ d

0, otherwise

(6.8)

Here, N j
t is the set of observed neighboring vehicles, si

t is the speed of vehicle i, x j
t

is the distance to the merge point, and d is a safety threshold. The total reward for agent j

is:

r j
t = w1r j

speed,t +w2r j
safety,t (6.9)

128

6.3.2 R2: Local Speed with Jerk Minimization

This reward function aims to maximize speed while minimizing jerk for a smoother

ride:

r j
t = w1r j

speed,t +w2r j
jerk,t (6.10)

where r j
speed,t is as defined in R1, and

r j
jerk,t =−

1

|N j
t |+1

∑

l∈ j∪N j
t

(
accl

t −accl
t−1

dt

)2

(6.11)

Here, accl
t is the acceleration of vehicle l at time t.

6.3.3 R3: Local Speed with Fuel Consumption Minimization

This reward function balances speed optimization with fuel efficiency:

r j
t = w1r j

speed,t +w2r j
fuel,t (6.12)

where r j
speed,t is as defined in R1, and

r j
fuel,t =−

1

|N j
t |+1

∑

i∈ j∪N j
t

f (Pi
t) (6.13)

Here, f (Pi
t) is the fuel consumption rate based on the power demand Pi

t of vehicle

i, calculated using SUMO’s PHEMlight model. In all reward functions, w1 and w2 are

weighting factors to balance different objectives.

129

6.4 Results

We evaluated the three reward functions (R1, R2, R3) in our DTDE MARL

framework for AVs merging control. Figures (6.1 - 6.3) illustrate the learning curves for

our DTDE MARL approach using reward functions R1, R2, and R3 respectively. The

learning curve in Fig. 6.1 for R1 shows an overall upward trend, indicating that the DTDE

approach successfully learned to optimize speed while considering safety constraints. Fig.

6.2, representing R2, presents a learning curve with a similar upward trajectory, suggesting

effective learning in balancing speed optimization and ride smoothness. The learning curve

in Fig. 6.3 for R3 also demonstrates an increasing trend, indicating that the DTDE approach

learned to optimize speed while minimizing fuel consumption.

When compared to our previous CTDE results (Chapter 5), the DTDE approach

consistently achieved lower reward values across all three reward functions compared to

the CTDE method. Additionally, the CTDE approach exhibited more stable learning curves

for all reward functions, while the DTDE learning curves showed greater variability. One

the other hand, despite the lack of access to global information or a central coordinator,

the DTDE approach successfully learned effective policies for AVs merging control. This

demonstrates the viability of fully decentralized learning and execution in multi-agent

traffic scenarios, even when individual agents have limited environmental awareness.

6.5 Summary

This chapter presented a Decentralized Training and Decentralized Execution

(DTDE) approach for multi-agent reinforcement learning in automated vehicle merging

control. We modeled the problem as a Dec-POMDP, enabling decentralized

decision-making based on local observations. Our fully decentralized algorithm operates

without access to global information or a central coordinator in both training and execution

phases. We implemented parameter sharing with a single actor network and a single critic

130

Figure 6.1: Learning curve for R1 reward function.

131

Figure 6.2: Learning curve for R2 reward function.

132

Figure 6.3: Learning curve for R3 reward function.

133

network for all AVs, promoting efficient learning and behavioral consistency. A shared

replay buffer facilitates indirect knowledge transfer between agents while maintaining

decentralized execution. We explored three different reward functions to optimize various

aspects of merging behavior, including speed, safety, ride smoothness, and fuel efficiency.

The DTDE approach addresses key challenges in multi-agent systems, such as scalability

to dynamic numbers of agents and applicability to real-world scenarios where centralized

control is infeasible. Learning curves demonstrated the effectiveness of our approach across

different reward functions.

134

CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

This dissertation explored the application of multi-agent reinforcement learning

(MARL) to autonomous vehicle (AV) control, with a focus on highway merging scenarios.

Three case studies were presented, a centralized approach for platoon merging and

another two decentralized multi-agent frameworks where AVs act independently based

on local observations. The first case study demonstrated the potential of centralized RL

to optimize cooperative platoon merging strategies. The proposed maskable proximal

policy optimization (MPPO) algorithm successfully learned policies to balance multiple

objectives including safety, efficiency, energy consumption, and passenger comfort.

Results showed significant improvements over baseline strategies, with up to 76.7%

reduction in energy consumption and 50% reduction in average jerk.

The second case study addressed key limitations of centralized approaches by

developing a scalable multi-agent reinforcement learning (MARL) framework. The

proposed approach is built on a decentralized partially observable Markov decision process

(Dec-POMDP) formulation, enabling each vehicle to make independent decisions based

on local observations. The framework employs a centralized training with decentralized

execution (CTDE) paradigm, utilizing self-attention mechanisms in the critic and baseline

networks to effectively handle varying numbers of agents. The fairness and efficiency

of the learned merging strategies were evaluated using novel quantitative metrics. Both

the centralized and decentralized MARL approaches consistently outperformed benchmark

RL methods and a rule-based zipper merge strategy across various metrics. Notably, the

proposed methods achieved up to 60.14% improvement in traffic flow at higher speeds,

demonstrating their potential to significantly enhance highway merging efficiency. The

135

generalizability of the framework was demonstrated by successfully applying policies

trained in low-speed scenarios to high-speed situations. This capability is crucial for

real-world deployment, where traffic conditions can vary widely.

The third case study presents the decentralized training and decentralized execution

(DTDE) MARL approach where agents act and learn independently based solely on local

information. This study showed that even with the lacking global information or central

coordination, the DTDE approach effectively learned merging policies. This demonstrates

that fully decentralized learning and execution can succeed in multi-agent traffic scenarios,

even with agents’ limited environmental awareness.

The present research opens up several promising avenues for future investigation

and expansions. A crucial area for future work is investigating the effects of uncertainties in

the system, including studying noise’s impact on vehicle-level control and errors or delays

in inter-vehicle communication. Furthermore, the use of multiple past-time steps in the

state space, and/or the use of recurrent network capable of handling time series data, can

potentially provide a richer context for decision-making. Lastly, another potential direction

for future research can be exploring safety-based reinforcement learning approaches that

incorporates safety constraints directly into the learning process.

136

REFERENCES

[1] J. Deichmann, Autonomous Driving’s Future: Convenient and Connected.
McKinsey, 2023.

[2] T. Litman, “Autonomous vehicle implementation predictions: Implications for
transport planning,” 2020.

[3] Z. Zhou, C. Rother, and J. Chen, “Event-triggered model predictive control for
autonomous vehicle path tracking: Validation using CARLA simulator,” IEEE
Transactions on Intelligent Vehicles, vol. 8, pp. 3547–3555, June 2023.

[4] Z. Zhou and J. Chen, “Modeling driver lane change behavior using inverse
reinforcement learning,” in 2024 IEEE 3rd International Conference on Computing
and Machine Intelligence (ICMI), pp. 1–5, IEEE, 2024.

[5] J. Chen and Z. Yi, “Comparison of event-triggered model predictive control for
autonomous vehicle path tracking,” in 2021 IEEE Conference on Control Technology
and Applications (CCTA), (San Diego, CA), August 8–11, 2021.

[6] T. Gindele, S. Brechtel, and R. Dillmann, “Learning driver behavior models
from traffic observations for decision making and planning,” IEEE Intelligent
Transportation Systems Magazine, vol. 7, no. 1, pp. 69–79, 2015.

[7] A. Irshayyid, J. Chen, and G. Xiong, “A review on reinforcement learning-based
highway autonomous vehicle control,” Green Energy and Intelligent Transportation,
p. 100156, 2024.

[8] V. W. Inman, S. Jackson, B. H. Philips, et al., “Cooperative adaptive cruise control
human factors study: Experiment 1-workload, distraction, arousal, and trust,” tech.
rep., United States. Federal Highway Administration, 2016.

[9] N. C. Spiller, K. Blizzard, R. Margiotta, et al., “Recurring traffic bottlenecks:
A primer focus on low-cost operational improvements,” tech. rep., United States.
Federal Highway Administration. Office of Operations, 2017.

[10] G. De La Torre, P. Rad, and K.-K. R. Choo, “Driverless vehicle security: Challenges
and future research opportunities,” Future Generation Computer Systems, vol. 108,
pp. 1092–1111, 2020.

[11] Y. Lyu, W. Luo, and J. M. Dolan, “Probabilistic safety-assured adaptive merging
control for autonomous vehicles,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 10764–10770, IEEE, 2021.

137

[12] K. A. Mustafa, D. J. Ornia, J. Kober, and J. Alonso-Mora, “Racp: Risk-aware
contingency planning with multi-modal predictions,” IEEE Transactions on
Intelligent Vehicles, 2024.

[13] X. Tang, K. Yang, H. Wang, J. Wu, Y. Qin, W. Yu, and D. Cao,
“Prediction-uncertainty-aware decision-making for autonomous vehicles,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 4, pp. 849–862, 2022.

[14] F. Lucidi, A. Bosco, L. Mallia, and A. Setti, “Factors underpinning and influencing
drivers’ aberrant behaviors across the life course,” Frontiers in Psychology, vol. 10,
p. 504670, 2020.

[15] H. Yang, Y. He, Y. Xu, and H. Zhao, “Collision avoidance for autonomous vehicles
based on mpc with adaptive apf,” IEEE Transactions on Intelligent Vehicles, 2023.

[16] M. Capallera, L. Angelini, Q. Meteier, O. Abou Khaled, and E. Mugellini,
“Human-vehicle interaction to support driver’s situation awareness in automated
vehicles: A systematic review,” IEEE Transactions on intelligent vehicles, vol. 8,
no. 3, pp. 2551–2567, 2022.

[17] J. Liu, D. Zhou, P. Hang, Y. Ni, and J. Sun, “Towards socially responsive
autonomous vehicles: A reinforcement learning framework with driving priors and
coordination awareness,” IEEE Transactions on Intelligent Vehicles, 2023.

[18] D. Xu, P. Liu, H. Li, H. Guo, Z. Xie, and Q. Xuan, “Multi-view graph convolution
network reinforcement learning for cavs cooperative control in highway mixed
traffic,” IEEE Transactions on Intelligent Vehicles, 2023.

[19] D. Zhou, Z. Ma, and J. Sun, “Autonomous vehicles’ turning motion planning
for conflict areas at mixed-flow intersections,” IEEE Transactions on Intelligent
Vehicles, vol. 5, no. 2, pp. 204–216, 2019.

[20] J. Wu, Y. Wang, Z. Shen, L. Wang, H. Du, and C. Yin, “Distributed multilane
merging for connected autonomous vehicle platooning,” Science China Information
Sciences, vol. 64, no. 11, pp. 1–16, 2021.

[21] W. Li, F. Qiu, L. Li, Y. Zhang, and K. Wang, “Simulation of vehicle interaction
behavior in merging scenarios: A deep maximum entropy-inverse reinforcement
learning method combined with game theory,” IEEE Transactions on Intelligent
Vehicles, 2023.

[22] T. Nishi, P. Doshi, and D. Prokhorov, “Merging in congested freeway traffic using
multipolicy decision making and passive actor-critic learning,” IEEE Transactions
on Intelligent Vehicles, vol. 4, no. 2, pp. 287–297, 2019.

138

[23] L. Davis, “Effect of adaptive cruise control systems on mixed traffic flow near an
on-ramp,” Physica A: Statistical Mechanics and its Applications, vol. 379, no. 1,
pp. 274–290, 2007.

[24] X.-m. Chen, M. Jin, C.-Y. Chan, Y.-s. Miao, and J.-w. Gong, “Bionic
decision-making analysis during urban expressway ramp merging for autonomous
vehicle,” tech. rep., 2017.

[25] D. Marinescu, J. Čurn, M. Bouroche, and V. Cahill, “On-ramp traffic merging using
cooperative intelligent vehicles: A slot-based approach,” in 2012 15th International
IEEE Conference on Intelligent Transportation Systems, pp. 900–906, IEEE, 2012.

[26] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous driving in urban
environments: Boss and the urban challenge,” Journal of field Robotics, vol. 25,
no. 8, pp. 425–466, 2008.

[27] C. Dong, J. M. Dolan, and B. Litkouhi, “Smooth behavioral estimation for
ramp merging control in autonomous driving,” in 2018 IEEE Intelligent Vehicles
Symposium (IV), pp. 1692–1697, IEEE, 2018.

[28] J. Rios-Torres and A. A. Malikopoulos, “Automated and cooperative vehicle
merging at highway on-ramps,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 4, pp. 780–789, 2016.

[29] W. Cao, M. Mukai, T. Kawabe, H. Nishira, and N. Fujiki, “Cooperative vehicle
path generation during merging using model predictive control with real-time
optimization,” Control Engineering Practice, vol. 34, pp. 98–105, 2015.

[30] J. Chen, L. Zhang, and W. Gao, “Reconfigurable model predictive control for large
scale distributed systems,” IEEE Systems Journal, 2024.

[31] S. Li, W. Zou, J. Gao, Y. Yin, D. Kim, S. Yang, and S. E. Li, “Fast online
computation of mpc-based integrated decision control for autonomous vehicles,”
IEEE Transactions on Intelligent Vehicles, 2024.

[32] A. Irshayyid and J. Chen, “Comparative study of cooperative platoon merging
control based on reinforcement learning,” Sensors, vol. 23, no. 2, pp. 1–23, 2023.

[33] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis,
“Mastering chess and shogi by self-play with a general reinforcement learning
algorithm,” CoRR, vol. abs/1712.01815, 2017.

[34] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,

139

G. Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go without
human knowledge,” Nature, vol. 550, pp. 354–359, 10 2017.

[35] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[36] Y. Lin, J. McPhee, and N. L. Azad, “Comparison of deep reinforcement learning
and model predictive control for adaptive cruise control,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 2, pp. 221–231, 2020.

[37] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J., vol. 6,
pp. 679–684, 1957.

[38] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural information
processing systems, vol. 12, 1999.

[39] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” Advances in neural
information processing systems, vol. 12, 1999.

[40] A. R. Kreidieh, C. Wu, and A. M. Bayen, “Dissipating stop-and-go waves in closed
and open networks via deep reinforcement learning,” in 2018 21st international
conference on intelligent transportation systems (itsc), pp. 1475–1480, IEEE, 2018.

[41] J. Cui, W. Macke, H. Yedidsion, A. Goyal, D. Urieli, and P. Stone, “Scalable
multiagent driving policies for reducing traffic congestion,” 2021.

[42] C. Wang and Y. Wang, “Safe autonomous driving with latent dynamics and
state-wise constraints,” Sensors, vol. 24, no. 10, p. 3139, 2024.

[43] L. Schester and L. E. Ortiz, “Longitudinal position control for highway on-ramp
merging: A multi-agent approach to automated driving,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), pp. 3461–3468, IEEE, 2019.

[44] L. Schester and L. E. Ortiz, “Automated driving highway traffic merging using deep
multi-agent reinforcement learning in continuous state-action spaces,” in 2021 IEEE
Intelligent Vehicles Symposium (IV), pp. 280–287, IEEE, 2021.

[45] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control
using deep reinforcement learning,” in Autonomous Agents and Multiagent Systems:
AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised
Selected Papers 16, pp. 66–83, Springer, 2017.

[46] H. Nekoei, A. Badrinaaraayanan, A. Sinha, M. Amini, J. Rajendran, A. Mahajan,
and S. Chandar, “Dealing with non-stationarity in decentralized cooperative
multi-agent deep reinforcement learning via multi-timescale learning,” in
Conference on Lifelong Learning Agents, pp. 376–398, PMLR, 2023.

140

[47] L. M. Schmidt, J. Brosig, A. Plinge, B. M. Eskofier, and C. Mutschler, “An
introduction to multi-agent reinforcement learning and review of its application to
autonomous mobility,” in 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC), pp. 1342–1349, IEEE, 2022.

[48] F. Ye, X. Cheng, P. Wang, C.-Y. Chan, and J. Zhang, “Automated lane change
strategy using proximal policy optimization-based deep reinforcement learning,” in
2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1746–1752, IEEE, 2020.

[49] L. Szoke, S. Aradi, T. Bécsi, and P. Gaspar, “Vehicle control in highway traffic by
using reinforcement learning and microscopic traffic simulation,” in 2020 IEEE 18th
International Symposium on Intelligent Systems and Informatics (SISY), pp. 21–26,
IEEE, 2020.

[50] D. Quang Tran and S.-H. Bae, “Proximal policy optimization through a
deep reinforcement learning framework for multiple autonomous vehicles at a
non-signalized intersection,” Applied Sciences, vol. 10, no. 16, p. 5722, 2020.

[51] M. Li, Z. Cao, and Z. Li, “A reinforcement learning-based vehicle platoon control
strategy for reducing energy consumption in traffic oscillations,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 12, pp. 5309–5322, 2021.

[52] D. Chen, Z. Li, Y. Wang, L. Jiang, and Y. Wang, “Deep multi-agent
reinforcement learning for highway on-ramp merging in mixed traffic,” arXiv
preprint arXiv:2105.05701, 2021.

[53] E. Leurent, “An environment for autonomous driving decision-making.” https://
github.com/eleurent/highway-env, 2018.

[54] C. Mahatthanajatuphat, K. Srisomboon, W. Lee, P. Samothai, and A. Kheaksong,
“Investigation of multi-agent reinforcement learning on merge ramp for avoiding
car crash on highway,” in 2022 37th International Technical Conference on
Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 1050–1053,
IEEE, 2022.

[55] S. Wang, H. Fujii, and S. Yoshimura, “Generating merging strategies for connected
autonomous vehicles based on spatiotemporal information extraction module and
deep reinforcement learning,” Physica A: Statistical Mechanics and its Applications,
vol. 607, p. 128172, 2022.

[56] Z. Zhang, S. Han, J. Wang, and F. Miao, “Spatial-temporal-aware safe multi-agent
reinforcement learning of connected autonomous vehicles in challenging scenarios,”
arXiv preprint arXiv:2210.02300, 2022.

[57] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open
urban driving simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.

141

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

[58] W. Zhou, D. Chen, J. Yan, Z. Li, H. Yin, and W. Ge, “Multi-agent reinforcement
learning for cooperative lane changing of connected and autonomous vehicles in
mixed traffic,” Autonomous Intelligent Systems, vol. 2, no. 1, p. 5, 2022.

[59] R. Valiente, B. Toghi, R. Pedarsani, and Y. P. Fallah, “Robustness and adaptability of
reinforcement learning-based cooperative autonomous driving in mixed-autonomy
traffic,” IEEE Open Journal of Intelligent Transportation Systems, vol. 3,
pp. 397–410, 2022.

[60] H. Hu, Z. Lu, Q. Wang, and C. Zheng, “End-to-end automated lane-change
maneuvering considering driving style using a deep deterministic policy gradient
algorithm,” Sensors, vol. 20, no. 18, p. 5443, 2020.

[61] J. Wang, C. Hu, J. Zhao, S. Zhang, and Y. Han, “Deep q-network-based efficient
driving strategy for mixed traffic flow with connected and autonomous vehicles
on urban expressways,” Transportation Research Record, p. 03611981231161355,
2023.

[62] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator vissim,”
Fundamentals of traffic simulation, pp. 63–93, 2010.

[63] P. Wang and C.-Y. Chan, “Formulation of deep reinforcement learning architecture
toward autonomous driving for on-ramp merge,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), pp. 1–6, IEEE, 2017.

[64] P. Wang, H. Li, and C.-Y. Chan, “Continuous control for automated lane change
behavior based on deep deterministic policy gradient algorithm,” in 2019 IEEE
Intelligent Vehicles Symposium (IV), pp. 1454–1460, IEEE, 2019.

[65] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change decision-making through
deep reinforcement learning with rule-based constraints,” in 2019 International Joint
Conference on Neural Networks (IJCNN), pp. 1–6, IEEE, 2019.

[66] T. Ren, Y. Xie, and L. Jiang, “Cooperative highway work zone merge control
based on reinforcement learning in a connected and automated environment,”
Transportation research record, vol. 2674, no. 10, pp. 363–374, 2020.

[67] S. Lu, Y. Cai, L. Chen, H. Wang, X. Sun, and Y. Jia, “A sharing deep reinforcement
learning method for efficient vehicle platooning control,” IET Intelligent Transport
Systems, vol. 16, no. 12, pp. 1697–1709, 2022.

[68] L. Jiang, Y. Xie, N. G. Evans, X. Wen, T. Li, and D. Chen, “Reinforcement
learning based cooperative longitudinal control for reducing traffic oscillations
and improving platoon stability,” Transportation Research Part C: Emerging
Technologies, vol. 141, p. 103744, 2022.

142

[69] T. Chu and U. Kalabić, “Model-based deep reinforcement learning for cacc in
mixed-autonomy vehicle platoon,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), pp. 4079–4084, IEEE, 2019.

[70] M. Berahman, M. Rostami-Shahrbabaki, and K. Bogenberger, “Multi-task
vehicle platoon control: A deep deterministic policy gradient approach,” Future
transportation, vol. 2, no. 4, pp. 1028–1046, 2022.

[71] B. Toghi, R. Valiente, D. Sadigh, R. Pedarsani, and Y. P. Fallah, “Cooperative
autonomous vehicles that sympathize with human drivers,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 4517–4524,
IEEE, 2021.

[72] B. Toghi, R. Valiente, D. Sadigh, R. Pedarsani, and Y. P. Fallah, “Altruistic maneuver
planning for cooperative autonomous vehicles using multi-agent advantage
actor-critic,” arXiv preprint arXiv:2107.05664, 2021.

[73] D. Kamran, Y. Ren, and M. Lauer, “High-level decisions from a safe maneuver
catalog with reinforcement learning for safe and cooperative automated merging,”
in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
pp. 804–811, IEEE, 2021.

[74] Y. Hu, A. Nakhaei, M. Tomizuka, and K. Fujimura, “Interaction-aware decision
making with adaptive strategies under merging scenarios,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 151–158,
IEEE, 2019.

[75] S. Triest, A. Villaflor, and J. M. Dolan, “Learning highway ramp merging via
reinforcement learning with temporally-extended actions,” in 2020 IEEE Intelligent
Vehicles Symposium (IV), pp. 1595–1600, IEEE, 2020.

[76] Y. Lin, J. McPhee, and N. L. Azad, “Anti-jerk on-ramp merging using deep
reinforcement learning,” in 2020 IEEE Intelligent Vehicles Symposium (IV),
pp. 7–14, IEEE, 2020.

[77] S. Hwang, K. Lee, H. Jeon, and D. Kum, “Autonomous vehicle cut-in algorithm
for lane-merging scenarios via policy-based reinforcement learning nested within
finite-state machine,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 10, pp. 17594–17606, 2022.

[78] M. Bouton, A. Nakhaei, D. Isele, K. Fujimura, and M. J. Kochenderfer,
“Reinforcement learning with iterative reasoning for merging in dense traffic,” in
2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), pp. 1–6, IEEE, 2020.

143

[79] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[80] I. Nishitani, H. Yang, R. Guo, S. Keshavamurthy, and K. Oguchi, “Deep merging:
Vehicle merging controller based on deep reinforcement learning with embedding
network,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 216–221, IEEE, 2020.

[81] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer, “Cooperation-aware
reinforcement learning for merging in dense traffic,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), pp. 3441–3447, IEEE, 2019.

[82] S. B. Prathiba, G. Raja, K. Dev, N. Kumar, and M. Guizani, “A hybrid
deep reinforcement learning for autonomous vehicles smart-platooning,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13340–13350, 2021.

[83] F. De Rango, P. Raimondo, and D. Amendola, “Extending sumo and plexe simulator
modules to consider energy consumption in platooning management in vanet,” in
2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real
Time Applications (DS-RT), pp. 1–9, IEEE, 2019.

[84] D. Chen, L. Jiang, Y. Wang, and Z. Li, “Autonomous driving using safe
reinforcement learning by incorporating a regret-based human lane-changing
decision model,” in 2020 American Control Conference (ACC), pp. 4355–4361,
IEEE, 2020.

[85] “Next generation simulation (ngsim),” 2020. [Onlne]. Available:, https://ops.
fhwa.dot.gov/trafficanalysistools/ngsim.htm.

[86] A. Sharma, K. Xu, N. Sardana, A. Gupta, K. Hausman, S. Levine, and C. Finn,
“Autonomous reinforcement learning: Formalism and benchmarking,” arXiv
preprint arXiv:2112.09605, 2021.

[87] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–4926,
2021.

[88] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30,
2016.

[89] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling
network architectures for deep reinforcement learning,” in International conference
on machine learning, pp. 1995–2003, PMLR, 2016.

144

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

[90] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
arXiv preprint arXiv:1511.05952, 2015.

[91] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a survey,”
Artificial Intelligence Review, pp. 1–49, 2022.

[92] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual
multi-agent policy gradients,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 32, 2018.

[93] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[94] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Computing
graph neural networks: A survey from algorithms to accelerators,” ACM Computing
Surveys (CSUR), vol. 54, no. 9, pp. 1–38, 2021.

[95] S. Wang, D. Jia, and X. Weng, “Deep reinforcement learning for autonomous
driving,” arXiv preprint arXiv:1811.11329, 2018.

[96] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[97] N. Müller and T. Glasmachers, “Challenges in high-dimensional reinforcement
learning with evolution strategies,” in Parallel Problem Solving from Nature–PPSN
XV: 15th International Conference, Coimbra, Portugal, September 8–12, 2018,
Proceedings, Part II 15, pp. 411–423, Springer, 2018.

[98] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans, “Trial without error:
Towards safe reinforcement learning via human intervention,” arXiv preprint
arXiv:1707.05173, 2017.

[99] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada,
“Control barrier functions: Theory and applications,” in 2019 18th European control
conference (ECC), pp. 3420–3431, IEEE, 2019.

[100] C. L. Lan, S. Tu, A. Oberman, R. Agarwal, and M. G. Bellemare, “On
the generalization of representations in reinforcement learning,” arXiv preprint
arXiv:2203.00543, 2022.

[101] A. Merckling, N. Perrin-Gilbert, A. Coninx, and S. Doncieux, “Exploratory state
representation learning,” Frontiers in Robotics and AI, vol. 9, p. 762051, 2022.

145

[102] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical
observations and microscopic simulations,” Physical review E, vol. 62, no. 2,
p. 1805, 2000.

[103] I. Papadeas, L. Tsochatzidis, A. Amanatiadis, and I. Pratikakis, “Real-time semantic
image segmentation with deep learning for autonomous driving: A survey,” Applied
Sciences, vol. 11, no. 19, p. 8802, 2021.

[104] A. Remonda, S. Krebs, E. Veas, G. Luzhnica, and R. Kern, “Formula rl: Deep
reinforcement learning for autonomous racing using telemetry data,” arXiv preprint
arXiv:2104.11106, 2021.

[105] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for
direct perception in autonomous driving,” in Proceedings of the IEEE international
conference on computer vision, pp. 2722–2730, 2015.

[106] Y. Zhang, A. Carballo, H. Yang, and K. Takeda, “Perception and sensing for
autonomous vehicles under adverse weather conditions: A survey,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 196, pp. 146–177, 2023.

[107] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[108] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions (2014),” arXiv
preprint arXiv:1409.4842, vol. 10, 2014.

[109] I. Kerenidis, J. Landman, and A. Prakash, “Quantum algorithms for deep
convolutional neural networks,” arXiv preprint arXiv:1911.01117, 2019.

[110] D. Zhang, J. Han, L. Zhao, and D. Meng, “Leveraging prior-knowledge for weakly
supervised object detection under a collaborative self-paced curriculum learning
framework,” International Journal of Computer Vision, vol. 127, pp. 363–380, 2019.

[111] I. Rida, “Feature extraction for temporal signal recognition: An overview,” arXiv
preprint arXiv:1812.01780, 2018.

[112] T. Li, J. P. Higgins, and J. J. Deeks, “Collecting data,” Cochrane handbook for
systematic reviews of interventions, pp. 109–141, 2019.

[113] J. M. Anderson, N. Kalra, K. D. Stanley, P. Sorensen, C. Samaras, and T. A.
Oluwatola, Autonomous Vehicle Technology: A Guide for Policymakers. Santa
Monica, CA: RAND Corporation, 2016.

[114] Vehicle Platooning: A Brief Survey and Categorization, vol. Volume 3: 2011
ASME/IEEE International Conference on Mechatronic and Embedded Systems

146

and Applications, Parts A and B of International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, 08 2011.

[115] F. Fakhfakh, M. Tounsi, and M. Mosbah, “Vehicle platooning systems: Review,
classification and validation strategies,” International Journal of Networked and
Distributed Computing, vol. 8, 06 2020.

[116] C. Englund, L. Chen, J. Ploeg, E. Semsar-Kazerooni, A. Voronov, H. H. Bengtsson,
and J. Didoff, “The grand cooperative driving challenge 2016: boosting the
introduction of cooperative automated vehicles,” IEEE Wireless Communications,
vol. 23, no. 4, pp. 146–152, 2016.

[117] D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson, J. Woodruff,
M. Barth, C. Murray, A. Kurt, et al., “Lane change and merge maneuvers for
connected and automated vehicles: A survey,” IEEE Transactions on Intelligent
Vehicles, vol. 1, no. 1, pp. 105–120, 2016.

[118] A. Paranjothi, M. Atiquzzaman, and M. S. Khan, “Pmcd: Platoon-merging approach
for cooperative driving,” Internet Technology Letters, vol. 3, no. 1, p. e139, 2020.

[119] H. Liu, W. Zhuang, G. Yin, Z. Tang, and L. Xu, “Strategy for heterogeneous
vehicular platoons merging in automated highway system,” in 2018 Chinese Control
And Decision Conference (CCDC), pp. 2736–2740, 2018.

[120] S. Dasgupta, V. Raghuraman, A. Choudhury, T. N. Teja, and J. Dauwels, “Merging
and splitting maneuver of platoons by means of a novel pid controller,” in 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–8, 2017.

[121] B. van Arem, C. J. G. van Driel, and R. Visser, “The impact of cooperative adaptive
cruise control on traffic-flow characteristics,” IEEE Transactions on Intelligent
Transportation Systems, vol. 7, no. 4, pp. 429–436, 2006.

[122] A. Schwab and J. Lunze, “Vehicle platooning and cooperative merging,”
IFAC-PapersOnLine, vol. 52, no. 5, pp. 353–358, 2019. 9th IFAC Symposium on
Advances in Automotive Control AAC 2019.

[123] Z. Su and P. Chen, “Optimal platoon merging and catch-up approach for connected
electric vehicles,” in 2022 American Control Conference (ACC), pp. 1964–1969,
2022.

[124] N. E. Lownes and R. B. Machemehl, “Vissim: a multi-parameter sensitivity
analysis,” in Proceedings of the 2006 Winter Simulation Conference, pp. 1406–1413,
IEEE, 2006.

[125] M. Segata, R. Lo Cigno, T. Hardes, J. Heinovski, M. Schettler, B. Bloessl,
C. Sommer, and F. Dressler, “Multi-Technology Cooperative Driving: An Analysis

147

Based on PLEXE,” IEEE Transactions on Mobile Computing (TMC), 2 2022. to
appear.

[126] C. Hidalgo, R. Lattarulo, C. Flores, and J. Pérez Rastelli, “Platoon merging approach
based on hybrid trajectory planning and cacc strategies,” Sensors, vol. 21, no. 8,
p. 2626, 2021.

[127] A. Farag, A. Hussein, O. M. Shehata, F. García, H. H. Tadjine, and E. Matthes,
“Dynamics platooning model and protocols for self-driving vehicles,” in 2019 IEEE
Intelligent Vehicles Symposium (IV), pp. 1974–1980, IEEE, 2019.

[128] S. Santini, A. Salvi, A. S. Valente, A. Pescapè, M. Segata, and R. L. Cigno,
“Platooning maneuvers in vehicular networks: A distributed and consensus-based
approach,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 1, pp. 59–72, 2018.

[129] M. Goli and A. Eskandarian, “Mpc-based lateral controller with look-ahead design
for autonomous multi-vehicle merging into platoon,” in 2019 American Control
Conference (ACC), pp. 5284–5291, IEEE, 2019.

[130] A. De Luca, G. Oriolo, and C. Samson, Feedback control of a nonholonomic car-like
robot, pp. 171–253. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[131] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media,
2011.

[132] J.-w. Choi and G. H. Elkaim, “Bézier curves for trajectory guidance,” in World
Congress on Engineering and Computer Science, WCECS, pp. 22–24, Citeseer,
2008.

[133] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-baselines3: Reliable reinforcement learning implementations,” Journal of
Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021.

[134] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[135] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in Proceedings of the 32nd International Conference on Machine
Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine Learning
Research, (Lille, France), pp. 1889–1897, PMLR, 07–09 Jul 2015.

[136] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018.

[137] J. Chen, M. Liang, and X. Ma, “Probabilistic analysis of electric vehicle energy
consumption using MPC speed control and nonlinear battery model,” in 2021 IEEE
Green Technologies Conference, (Denver, CO), April 7–9, 2021.

148

[138] T. Irmak, K. N. de Winkel, D. M. Pool, H. H. Bülthoff, and R. Happee, “Individual
motion perception parameters and motion sickness frequency sensitivity in fore-aft
motion,” Experimental brain research, vol. 239, no. 6, pp. 1727–1745, 2021.

[139] M. J. Griffin and J. Erdreich, “Handbook of human vibration,” 1991.

[140] K. N. de Winkel, T. Irmak, R. Happee, and B. Shyrokau, “Standards for passenger
comfort in automated vehicles: Acceleration and jerk,” Applied Ergonomics,
vol. 106, p. 103881, 2023.

[141] S. Huang and S. Ontañón, “A closer look at invalid action masking in policy gradient
algorithms,” in Proceedings of the Thirty-Fifth International Florida Artificial
Intelligence Research Society Conference, FLAIRS 2022, Hutchinson Island, Jensen
Beach, Florida, USA, May 15-18, 2022 (R. Barták, F. Keshtkar, and M. Franklin,
eds.), 2022.

[142] S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, and W. Wang, “The 37
implementation details of proximal policy optimization,” The ICLR Blog Track 2023,
2022.

[143] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[144] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–simulation of
urban mobility: an overview,” in Proceedings of SIMUL 2011, The Third Int. Conf.
on Advances in System Simulation, 2011.

[145] S. K. S. Nakka, B. Chalaki, and A. A. Malikopoulos, “A multi-agent deep
reinforcement learning coordination framework for connected and automated
vehicles at merging roadways,” in 2022 American Control Conference (ACC),
pp. 3297–3302, IEEE, 2022.

[146] D. Chen, M. R. Hajidavalloo, Z. Li, K. Chen, Y. Wang, L. Jiang, and Y. Wang, “Deep
multi-agent reinforcement learning for highway on-ramp merging in mixed traffic,”
IEEE Transactions on Intelligent Transportation Systems, 2023.

[147] D. Wang, “Multi-agent reinforcement learning for safe driving in on-ramp merging
of autonomous vehicles,” in 2024 14th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), pp. 644–651, IEEE, 2024.

[148] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and J.-P. Hubaux,
“TraCI: an interface for coupling road traffic and network simulators,” in Proc.
Comm. Net. Simulation Symp., pp. 155–163, 2008.

[149] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a microscopic model of
traffic flow,” Physical Review E, vol. 55, no. 5, p. 5597, 1997.

149

[150] J. Erdmann, “Sumo’s lane-changing model,” in Modeling Mobility with Open Data:
2nd SUMO Conference 2014 Berlin, Germany, May 15-16, 2014, pp. 105–123,
Springer, 2015.

[151] F. A. Oliehoek, C. Amato, et al., A concise introduction to decentralized POMDPs,
vol. 1. Springer, 2016.

[152] A. Cohen, E. Teng, V.-P. Berges, R.-P. Dong, H. Henry, M. Mattar, A. Zook, and
S. Ganguly, “On the use and misuse of absorbing states in multi-agent reinforcement
learning,” arXiv preprint arXiv:2111.05992, 2021.

[153] A. Irshayyid and J. Chen, “Highway merging control using multi - agent
reinforcement learning,” in 2024 IEEE 3rd International Conference on Computing
and Machine Intelligence (ICMI), pp. 1–2, 2024.

[154] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. M. Bayen, and Y. Wu, “The surprising
effectiveness of ppo in cooperative multi-agent games,” in Neural Information
Processing Systems, 2021.

[155] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[156] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth
16x16 words: Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[157] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu,
“Coca: Contrastive captioners are image-text foundation models,” arXiv preprint
arXiv:2205.01917, 2022.

[158] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, “Video swin
transformer,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 3202–3211, 2022.

[159] S. Hausberger and D. Krajzewicz, “Colombo deliverable 4.2: Extended simulation
tool phem coupled to sumo with user guide,” 2014.

[160] “Zipper merge.” https://www.dot.state.mn.us/zippermerge/. Accessed:
2022-11-16.

[161] E. Lammers, J. G. Pigman, B. Howell, A. Kirk, et al., “Applicability of zipper merge
versus early merge in kentucky work zones,” tech. rep., University of Kentucky
Transportation Center, 2017.

150

https://www.dot.state.mn.us/zippermerge/

[162] R. K. Jain, D.-M. W. Chiu, W. R. Hawe, et al., “A quantitative measure of fairness
and discrimination,” Eastern Research Laboratory, Digital Equipment Corporation,
Hudson, MA, vol. 21, p. 1, 1984.

151

	ACKNOWLEDGMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	2 PRELIMINARIES AND PROBLEM FORMULATION
	2.1 Preliminaries on Reinforcement Learning
	2.2 Preliminaries on Multi-Agent Reinforcement Learning
	2.3 AV Merging Problem Formulation

	3 LITERATURE REVIEW ON RL-BASED AV MERGING AND PLATOONING
	3.1 Scenarios for RL-based Control
	3.1.1 Highway Lane Change
	3.1.2 Highway Ramp Merging
	3.1.3 Platooning

	3.2 RL Algorithms
	3.2.1 Deep Reinforcement Learning Algorithms
	3.2.2 Multi-agent Reinforcement Learning
	3.2.3 Curriculum Learning
	3.2.4 Representation Learning

	3.3 Action Space
	3.3.1 Continuous Action Spaces
	3.3.2 Discrete Action Space
	3.3.3 Safety Modules

	3.4 State Space
	3.4.1 State Information from Surrounding Vehicles
	3.4.2 End-to-End State Space
	3.4.3 Temporal Information

	3.5 Reward Function
	3.5.1 Safety
	3.5.2 Efficiency
	3.5.3 Comfort
	3.5.4 Adaptability

	3.6 Summary

	4 AV MERGING CONTROL USING CENTRALIZED RL
	4.1 Simulation Environment
	4.1.1 Vehicle Platoon
	4.1.2 Vehicle Model
	4.1.3 Longitudinal Control
	4.1.4 Lateral Control

	4.2 Proximal Policy Optimization Algorithm
	4.3 RL-based Merging Strategy
	4.3.1 States Observation and Action Space
	4.3.2 Reward Functions
	4.3.3 Maskable PPO

	4.4 Numerical Results and Discussion
	4.4.1 Single Objective RL
	4.4.2 Multi-Objective RL

	4.5 Summary

	5 MARL-BASED AV MERGING CONTROL
	5.1 Problem Definition and Proposed Approach
	5.1.1 Environment Overview
	5.1.2 Reward Functions
	5.1.3 MARL Algorithm

	5.2 Reward Functions
	5.2.1 M1: Local Speed with Safety Optimization
	5.2.2 M2: Global Speed with Safety Optimization
	5.2.3 M3: Local Speed with Jerk Minimization
	5.2.4 M4: Local Speed with Fuel Consumption Minimization

	5.3 Results and Discussion
	5.3.1 Simulation Setup
	5.3.2 Training Convergence Analysis
	5.3.3 Merging Performance Comparison
	5.3.4 Merging Strategy Visualization
	5.3.5 Fairness Comparison

	5.4 Summary

	6 MARL-BASED AV MERGING CONTROL WITH DECENTRALIZED TRAINING
	6.1 DTDE-based AVs Merging Control
	6.2 State and Action Spaces
	6.3 Reward Functions
	6.3.1 R1: Local Speed with Safety Optimization
	6.3.2 R2: Local Speed with Jerk Minimization
	6.3.3 R3: Local Speed with Fuel Consumption Minimization

	6.4 Results
	6.5 Summary

	7 CONCLUSION AND FUTURE WORK
	REFERENCES

