
SIMULTANEOUS CELL STATE ESTIMATION VIA DENSE ADAPTIVE EXTENDED
KALMAN FILTER

by

LUKE NUCULAJ

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

2024

Oakland University
Rochester, Michigan

Thesis Advisory Committee:

Jun Chen, Ph.D., Chair
Darrin Hanna, Ph.D.
Manohar Das, Ph.D.

© by Luke Nuculaj, 2024
All rights reserved

ii

To my father, my mother, my siblings Isabella, Alek,

Leonardo, and my beloved.

Without your constant love and support, this would have

never been possible. This is for you.

iii

ACKNOWLEDGMENTS

The author wishes to express his appreciation for extensive mentorship provided

by Jun Chen, Ph.D., under whom I have grown significantly as an engineer in all aspects,

but also as an eager student of the sciences. Thanks are also due to committee members

Darrin Hanna, Ph.D. and Manohar Das, Ph.D. for their contributions to this dissertation –

their insights have proven highly valuable in its development. Likewise, acknowledgment

should be extended to peers Ali Irshayyid, Zhaodong Zhou, and Christopher Rother.

Luke Nuculaj

iv

ABSTRACT

SIMULTANEOUS CELL STATE ESTIMATION VIA DENSE ADAPTIVE EXTENDED
KALMAN FILTER

by

LUKE NUCULAJ

Adviser: Jun Chen, Ph.D.

This work addresses the computational intractability apropos of extended Kalman

filters (EKF) in the context of battery cell state estimation under limited voltage

measurement. A novel, compact variation of the Kalman filter – namely, the “dense

extended Kalman filter" (DEKF) – is proposed, which leverages unique information about

each of the cell’s inherent physical properties and net currents at each time step to

compress sparsely-populated covariance matrices and state vectors into a dense form, one

which does not vary with the number of cells in the pack. The computation saving in

terms of floating point operations (FLOPs) reduction is analytically compared and

illustrated through simulation. More specifically, the DEKF offers significant resource

savings while maintaining estimation accuracy, reducing the estimation algorithm’s time

complexity from O(N3) to O(N), where N is the number of cells in a serial-connected

string. Furthermore, a special case where all serial-connected cells share the same

discharge current, i.e., no balancing or leakage, is also studied and demonstrated.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv

ABSTRACT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER ONE
INTRODUCTION 1

CHAPTER TWO
CELL STATE ESTIMATION PROBLEM 5

2.1. Battery Model 5

2.2. Problem Formulation 10

CHAPTER THREE
SPARSE EXTENDED KALMAN FILTER 11

3.1. Sparse Prediction Model and Time Update 11

3.2. Sparse Kalman Gain and Measurement Update 12

CHAPTER FOUR
RELATIVE FITNESS FACTORS 15

4.1. Derivation of Individual RFF 15

4.2. Constructing the RFF Matrix 20

CHAPTER FIVE
DENSE EXTENDED KALMAN FILTER 24

5.1. Dense Time Update 24

5.2. Dense Measurement Update 27

vi

TABLE OF CONTENTS—Continued

5.3. Adaptive DEKF 31

5.4. Complete DAEKF Algorithm 32

CHAPTER SIX
SIMULATION RESULTS 36

6.1. Implementation Details and Methodology 36

6.2. Results and Discussion 38

CHAPTER SEVEN
SPECIAL CASE WITH HOMOGENEOUS CELL CURRENT 44

CHAPTER EIGHT
CONCLUSION 48

REFERENCES 49

vii

LIST OF TABLES

Table 2.1 Nominal Circuit Parameters 9

Table 2.2 Initial States 9

Table 4.1 Cell Currents 17

Table 4.2 Relative Fitness Factors 18

Table 6.1 FLOP Comparison for Dense Adaptive EKF
and Sparse Adaptive EKF 41

Table 7.1 DAEKF FLOPs for No Balancing and Balancing
Time Updates 46

viii

LIST OF FIGURES

Figure 2.1 Structure of serial-connected battery cells with
balancing currents and pack terminal voltage
measurement (ya

k− yb
k). 6

Figure 2.2 Equivalent circuit model of a battery cell. 6

Figure 2.3 Plots of SOC, relaxation voltage, and terminal
voltage for five cells. 9

Figure 6.1 Pack characteristics over five cells. 40

Figure 6.2 Comparison of SOC estimation error and predicted
measurement error between the sparse EKF
and the DAEKF over five cells. 40

Figure 6.3 DAEKF and sparse EKF performance comparison
over 100 cells. 43

Figure 6.4 Evolution of average RMS errors in estimation
and measurement prediction across 20 trials
over various cell numbers. 43

Figure 7.1 Comparison of DAEKF FLOP count between
the cases of balancing currents and no balancing
currents. 46

ix

LIST OF ABBREVIATIONS

AEKF Adaptive Extended Kalman Filter

DAEKF Dense Adaptive Extended Kalman Filter

DEKF Dense Extended Kalman Filter

EKF Extended Kalman Filter

EV Electric Vehicle

FLOP Floating-Point Operation

IAEKF Intelligent Adaptive Extended Kalman Filter

MPC Model Predictive Control

OCV Open-Circuit Voltage

RFF Relative Fitness Factor

RMSE Root Mean Squared Error

SOC State of Charge

x

CHAPTER ONE

INTRODUCTION

With the growing popularity of electric vehicles (EVs) in recent years, their

superiority to their gasoline-powered counterparts in areas of reduced carbon emissions

and cost efficiency have rightfully catapulted EVs to the frontier of today’s cutting-edge,

infrastructural technology [1, 2]. At the heart of EVs lay hundreds of battery cells –

typically of the lithium-ion (Li-Ion) variety [3–5]. Due to the inevitability of

manufacturing variations, battery cells exhibit voltage and state-of-charge (SOC)

imbalances with one another which – in turn – curtail both battery life and performance,

ultimately reducing an electric vehicle’s range [6–9]. To combat this, nondissipative cell

balancing techniques are frequently employed in conjunction with advanced control

techniques – model predictive control (MPC) being among the most commonly explored

and appealing control techniques by virtue of its ability to account for system

constraints [6, 10, 11]. However, the dual problem of a battery cell’s harshly nonlinear

dynamics and its internally complex, electrochemical processes renders direct

measurement of SOC a challenging task, if not an impossible one [12–15]. This fact

necessitates a reliable means of SOC estimation, as an ill-informed cell balancing

controller is prone to overcharging/discharging multiple cells at a time, thereby

exacerbating the degradation of the pack.

Despite their computational lightness, traditional Coulomb counting methods for

SOC estimation suffer a great deal from accumulated, current integration error [16, 17].

On the other hand, the extended Kalman filter (EKF) [18–22], which unionizes a

pre-conceived mathematical model of the cell’s internal, nonlinear dynamics and terminal

voltage measurements to accurately estimate cell SOC while mitigating the drift that

1

plagues the Coulomb counting method, has been widely researched in

literature [17, 23–27]. For example, reference [24] explores the adaptive extended Kalman

filter (AEKF), which employs a covariance matching approach for quick yet reliable

online estimation, yielding a maximum SOC estimation error of less than 2%.

Reference [26] builds upon the AEKF, introducing an intelligent AEKF (IAEKF), which

monitors the changes in the fixed-length error innovation sequence’s (EIS) distribution,

and updates the innovation covariance matrices accordingly. In comparison the AEKF,

this method sees the decrease of the estimator’s root mean squared error (RMSE) by

43.34%, while the computational overhead only increases by 4.59%.

While these improved estimators show promising results, as soon as the task

becomes simultaneous (and with limited measurement [28]), multi-cell SOC estimation

instead of single-cell, variants of the EKF suffer immensely from computational latency

and hefty memory requirements [29–32]. For purposes of multi-cell SOC estimation, this

fact renders traditional Kalman filtering over a large number of cells wholly impractical

for embedded deployment, wherein computing power and memory resources are tightly

constrained [29]. While there exists some utility in heuristic, data-driven methods of pack

SOC estimation [33, 34], their “black-box" nature is not desirable in the context of

deterministic estimation methods. While the research on deterministic pack SOC

estimation is scarce at best, [35] exploits the local observability of a nominal battery

model to enable interval estimation of pack SOC, scalable by virtue of the interval

observer’s number of states being independent of the number of cells. Although this

method realizes cell heterogeneity in the form of different SOC initialization, electrical

parameters, and unevenly distributed currents, the assignment of an identical OCV-SOC

(open circuit voltage) relationship to each cell is restrictive, in spite of its favorable CPU

time with respect to cell number.

2

This paper further explores the extended Kalman filter as a viable means of

estimation, but rather than dealing explicitly with each cell’s system dynamics in the form

of sparse state vectors/matrices, a novel, dense extended Kalman filter (DEKF) is

proposed. This method of cell SOC estimation re-imagines the entire pack as a single

“average" cell and perform state estimation over the said average cell, whose dimensions

are constant regardless of the number of cells in the string. Furthermore, a relative fitness

factor (RFF) is uniquely defined for each cell based on how much its SOC changes with

respect to the average cell – the RFF is largely a function of cell parameters. A cell’s RFF

is defined in such a way that when multiplied by the change in the average state, the

change in said cell’s state can be recovered. As will be shown later, this can be exploited

to recover the changes in every single cell’s state from the average state, hence reducing

the state estimation problem for each single cell to that of the average cell whose size is

constant. Similar to [35], the state vector’s size is invariable with respect to the number of

cells, but the DEKF’s covariance matrices are also a fixed size. With this in mind, it was

found by way of numerical simulation that for the 100-cell problem, an adaptive rendition

of the DEKF saved over 16 million FLOPs of computation in comparison to the sparse

extended Kalman filter while exhibiting nearly identical performance. The adaptive

DEKF’s scalability in terms of estimation performance is closely examined for various cell

numbers, and is shown to grow more accurate with a larger cell number. This is because

the measurement – and consequently, the measurement noise – are being scaled down by a

greater amount for a large cell number N, which sees the adaptive DEKF relying on the

measurements more to balance the model predictions. See Section 6.2 for more details.

The rest of the paper is organized as follows. Section II formulates the problem of

cell SOC estimation in a serial-connected string, while Section III presents the traditional

sparse EKF for cell SOC estimation. Section IV introduces the concept of relative fitness

factors, forming the basis for the DEKF. Section V derives the DEKF and establishes its

3

equivalence to sparse formulation, while section VI provides the main simulation results.

Section VII discusses a special case with homogeneous cell current and Section VIII

concludes the paper.

4

CHAPTER TWO

CELL STATE ESTIMATION PROBLEM

2.1 Battery Model

Consider a serial-connected battery with N cells, as shown in Fig. 2.1. The highly

nonlinear chemical processes that occur within battery cells are difficult to precisely

model. Instead, a first-order equivalent circuit model (ECM) is adopted as a suitable

representation of a Li-Ion battery’s system dynamics [27, 36–38]. See Fig. 2.2, where the

open-circuit voltage (Voc), open-circuit resistance (Ro), terminal voltage (y), total cell

current (u), relaxation resistance (Rp) and relaxation capacitance (Cp) are all model

parameters. The cell dynamics are specified by

ṡi =−η
i ui

3600Ci

V̇ i =− V i

Ri
pCi

p
+

ui

Ci
p

yi =V i
oc−V i−uiRi

o,

where the superscript i denotes the ith cell, si is the ith cell’s state of charge (SOC), V i is

the ith cell’s relaxation voltage, η i is the Coulombic efficiency, Ci is the cell capacity with

unit of Amp-hours (the latter two being constant with respect to cell states). Additionally,

ui
k is the ith cell’s total current at time step k, and is the sum of an applied balancing

current β i
k and the battery pack current uk. Finally, the convention that ui

k > 0 signifies

discharging and ui
k < 0 charging is used in this work.

5

Figure 2.1: Structure of serial-connected battery cells with balancing currents and pack
terminal voltage measurement (ya

k− yb
k).

Figure 2.2: Equivalent circuit model of a battery cell.

6

Forward Euler method can be used to discretize the above cell dynamics with a

sampling time Ts, as follows:

si
k+1 = si

k−η
i Ts

3600Ci ui
k (2.1a)

V i
k+1 =

(
1− Ts

Ri
pCi

p

)
V i

k +
Ts

Ci
p

ui
k (2.1b)

yi
k =V i

oc,k−V i
k−ui

kRi
o. (2.1c)

Denoting xi :=
[

si V i
]T

, the linear state equation for a single cell can be

compactly represented as

xi
k+1 = Aixi

k +Biui
k, (2.2)

where

Ai =

1 0

0 1− Ts
Ri

pCi
p

 Bi =

−η i Ts
3600Ci
Ts
Ci

p

 . (2.3)

Note that it is typical of the ECM’s electrical parameters to vary as a function of

SOC [14, 24, 27], making (2.2) nonlinear. However, to simplify the notation, in this work,

we consider Ro, Rp, and Cp constant values that do not vary as a function of SOC, making

the state equation (2.2) linear. Moreover, the measurement function (2.1c) is still

nonlinear, since the open circuit voltage Voc is nonlinear as a function of SOC – typically

stored in a lookup table [39].

Consider the collection of state update equations across all N cells

Xk+1 :=



x1
k+1

x2
k+1
...

xN
k+1


=



A1x1
k +B1u1

k

A2x2
k +B2u2

k
...

ANxN
k +BNuN

k


,

7

and define the sparse state vector as Xk =

[
x1

k x2
k . . . xN

k

]T
, which is the state vector

for the entire battery pack at time step k. This allows for the state dynamics across the

entire pack to be represented as

Xk+1 = AXk +BUk, (2.4)

where

A =



A1 0 . . . 0

0 A2 . . . 0
...

...

0 0 . . . AN


(2.5)

B =



B1 0 . . . 0

0 B2 . . . 0
...

...

0 0 . . . BN


, (2.6)

are block-diagonal, and cell current matrix Uk is defined as
[

u1
k u2

k . . . uN
k

]T
. The

measurement function, in the case of pack-level dynamics, is a scalar quantity

representative of the pack’s terminal voltage defined as

yk =
N

∑
i=1

(
V i

oc,k−V i
k−ui

kRi
o

)
:= h(Xk,Uk). (2.7)

Example 1. Consider a battery with N = 5 serial-connected cells, with cell parameters

listed in Table 2.1 and initial states listed in Table 2.2. Moreover, Ts = 10 and all cell

currents are equal to 4.6A. Fig. 2.3 plots the SOC, relaxation voltage, and terminal

voltage for each cell. As can be seen, due to the heterogeneous cell parameters (see Table

2.1), the cells’ SOC significantly differ from each other, making cell level state estimation

a challenging task, especially under limited sensor capability.

8

0 500 1000 1500 2000 2500 3000

Time [s]

0.4

0.6

0.8

1

S
O

C

State-Of-Charge (N = 5)

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.05

0.1

V
o

lt
a

g
e

 [
V

]

Relaxation Voltage (N = 5)

0 500 1000 1500 2000 2500 3000

Time [s]

3

3.2

3.4

V
o

lt
a

g
e

 [
V

]

Terminal Voltage (N = 5)

Figure 2.3: Plots of SOC, relaxation voltage, and terminal voltage for five cells.

Table 2.1: Nominal Circuit Parameters

Parameter Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
C 4.293 5.249 4.717 4.201 4.941
η 0.785 0.839 0.768 0.803 0.900

Rp(·10−2) 2.072 1.686 1.987 2.086 2.113
Cp(·103) 1.874 1.373 2.148 1.870 2.004

Ro(·10−2) 1.718 1.565 1.292 1.344 1.184

Table 2.2: Initial States

State Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
s0 0.990 0.993 0.994 0.994 0.992
V0 0.010 0.019 0.017 0.013 0.017

9

2.2 Problem Formulation

Given the battery dynamic model (2.4), the primary objective of this paper is to

find a computationally efficient state estimation algorithm to estimate Xk, with only one

voltage sensor to measure the pack terminal voltage. Formally, the problem being

addressed in this paper is described below.

Problem 1. Given battery dynamic model (2.4) and output equation (2.7), find a

computationally efficient algorithm for estimating Xk based on Uk and yk.

Remark 1. Note that Problem 1 restricts the number of voltage sensors to only 1, i.e., only

the pack terminal voltage is measured. This setting is similar to [35], which also assumes

only the pack terminal voltage measurement is available. However, our work is different

from [35] in that only interval estimation is performed in [35], while the state for all cells

is estimated in our work. Note also that, the assumption that only terminal voltage is

measured can be beneficial in reducing manufacturing cost while at the same time can be

restrictive. In the future, we will also consider the scenario that multiple cell terminal

voltages are also measured, and the corresponding optimal sensor configuration problem.

10

CHAPTER THREE

SPARSE EXTENDED KALMAN FILTER

To solve Problem 1, the extended Kalman filter (EKF) can be applied, due to the

nonlinearity of the battery model (particularly the output equation). This section describes

a straightforward application of EKF – termed as sparse EKF for the remainder of this

paper – for estimating over N serial-connected battery cells, which has a complexity of

O(N3) since the sizes of the covariance matrices and vectors grow proportionally to N.

We will later show a computationally efficient variant of the EKF to solve Problem 1 with

a complexity of O(N).

3.1 Sparse Prediction Model and Time Update

Because of the inherent deviations of real-life systems from mathematical models,

(2.4) and (2.7) take on the form

Xk+1 = AXk +BUk +Wk

yk = h(Xk,Uk)+ vk,

where Wk :=
[

w1
k w2

k . . . wN
k

]T
, wi

k (∼N (0,Qi
k)) is the process noise of the the ith

cell, and vk (∼N (0,Rk)) is the measurement noise, the latter two satisfying zero-mean

Gaussian distributions with covariances Qi
k and Rk. Retaining (2.5) and (2.6), the

complete time-update for the sparse EKF is the following:

X̂−k+1 = AX̂+
k +BUk (3.1a)

P−k+1 = AP+
k AT +Qk, (3.1b)

where (3.1a) is the state update and (3.1b) is the covariance update. The initial sparse

process covariance P+
0 and sparse process noise covariance Qk are block-diagonal

11

matrices defined as

P+
0 =



P1,+
0 0 . . . 0

0 P2,+
0 . . . 0

...
...

0 0 . . . PN,+
0


(3.2)

Qk =



Q1
k 0 . . . 0

0 Q2
k . . . 0

...
...

0 0 . . . QN
k


, (3.3)

where Pi,+
0 and Qi

k are the initial process covariance and process noise covariance at time

step k, respectively, for the ith cell. Note that (3.1a) and (3.1b) rely on real-time

computations over matrices (3.2) and (3.3), which grow quadratically with N. Finally, the

predicted output, which is evaluated over the sparse EKF’s prediction X̂−k+1, can be

computed as

ŷ = h
(

X̂−k+1,Uk

)
, (3.4)

where h is defined in (2.7).

3.2 Sparse Kalman Gain and Measurement Update

Recall that the open circuit voltage Voc is a nonlinear function of the SOC, making

h in (2.7) nonlinear. Therefore, to compute the Kalman gain, one needs to first linearize h

12

as follows:

Hk+1 = ∂X h(X ,U)

∣∣∣∣∣
(X̂−k+1,Uk)

= ∂X

[
N

∑
i=1

(
V i

oc(X(i,1))

−Ri
oU(i)−X(i,2)

)]∣∣∣∣∣
(X̂−k+1.Uk)

. (3.5)

Here, X̂−k+1(i) is the ith cell’s predicted state vector at time step k+1, Uk(i) is equivalent

to ui
k, and X(i,1) and X(i,2) are the SOC and V of the ith cell, respectively. Evaluating the

Jacobian in (3.5), we have

Hk+1 =

[
∂V 1

oc
∂X(i,1) −1 · · · ∂V N

oc
∂xN(1)

−1
]∣∣∣∣∣

(X̂−k+1,Uk)

, (3.6)

where X(i,1) is the ith cell’s SOC. The resulting sparse Kalman gain matrix and the

measurement update can be calculated:

Kk+1 =
P−k+1HT

k+1

Hk+1P−k+1HT
k+1 +Rk

. (3.7a)

X̂+
k+1 = X̂−k+1 +Kk+1(yk+1−h(X̂−k+1,Uk)) (3.7b)

P+
k+1 = (I−Kk+1Hk+1)P

−
k+1. (3.7c)

Recall from the previous section that Rk is the measurement noise covariance such

that vk ∼N (0,Rk).

Remark 2. While the sparse EKF provides a passable framework for cell state

estimation, a notable drawback is the increasing size of matrices used in calculations as N

increases, making it computationally heavy. In fact, the complexity of such a naive EKF

approach requires O(N3) complexity each time step. More particularly, the time update

requires O(N2) complexity, even if the sparsity of A and B matrices are explicitly

13

exploited, and the measurement update requires O(N3) complexity. The total complexity is

16N3 +30N2 +(4P+18)N +6M+1, where M is the size of a moving window for

adaptive parameter tuning, and P is related to the resolution of the OCV-SOC curve. See

Sections 5.3 and 6.2 for more details.

Such a high complexity makes the sparse EKF approach not suitable for real-time

implementation, especially in embedded environments. To address these concerns, in the

following sections, a “dense extended Kalman filter” (DEKF) is developed, whose

complexity is linear with respect to N, making it suitable for real-time implementation.

We start by introducing a key element for the proposed DEKF – namely, the relative

fitness factors – in the next section.

14

CHAPTER FOUR

RELATIVE FITNESS FACTORS

By introducing the concept of “relative fitness factors" accompanied with

complete examples, this section sets out to form the basis for the DEKF, a novel,

multi-cell SOC estimation technique that addresses the unmanageable resource

requirements of the sparse EKF.

4.1 Derivation of Individual RFF

The driving paradigm of the dense EKF is that estimates are made about average

state vectors and dense covariance matrices that are invariable in size for all N – it is

unique information about each cell’s system dynamics that provide insight to how every

SOC in the pack changes with respect to the “average" cell over time. In order to

determine this change, begin by averaging (2.1a) and (2.1b) over all N cells to obtain

1
N

N

∑
i=1

si
k+1 =

1
N

N

∑
i=1

si
k−

1
N

N

∑
i=1

η iTs

3600Ci ui
k (4.1a)

1
N

N

∑
i=1

V i
k+1 =

1
N

N

∑
i=1

(
1− Ts

τ i
p

)
V i

k +
1
N

N

∑
i=1

Ts

Ci
p

ui
k, (4.1b)

where time constant τ i
p = Ri

pCi
p. Denote sµ,k := 1

N ∑
N
i=1 si

k and Vµ,k := 1
N ∑

N
i=1V i

k as the

average SOC at time step k and average V at time step k, respectively. From (4.1), the

changes in sµ,k and Vµ,k are

∆sµ,k = sµ,k+1− sµ,k =−
1
N

N

∑
i=1

η iTs

3600Ci ui
k (4.2a)

∆Vµ,k =Vµ,k+1−Vµ,k =
1
N

N

∑
i=1

(
Ts

Ci
p

ui
k−

Ts

τ i
p

V i
k

)
. (4.2b)

15

Without loss of generality, we will now step through how to quantify the degree to

which si
k changes with respect to sµ,k. Retrieving the control input term from (2.1a) yields

γ
i
s,k =

∆si
k

∆sµ,k
=

− η iTs
3600Ci ui

k

− 1
N ∑

N
i=1

η iTs
3600Ci ui

k

=

η i

Ci ui
k

1
N ∑

N
i=1

η i

Ci ui
k

, (4.3)

where γ i
s,k is the ith cell’s SOC “relative fitness factor" (RFF) at time step k. From this

methodology, γ i
V,k naturally follows

γ
i
V,k =

ui
k

Ci
p
−

V i
k

τi
p

1
N ∑

N
i=1

(
ui

k
Ci

p
−

V i
k

τi
p

) . (4.4)

At any given time step, each cell has a set of two RFFs – one for each of its states. A cell’s

RFFs signify the degree to which each of its states si
k and V i

k evolve with respect to

average states sµ,k and Vµ,k. In other words, we can recover the change in states as

si
k+1 = si

k + γ
i
s,k∆sµ,k (4.5a)

V i
k+1 =V i

k + γ
i
V,k∆Vµ,k. (4.5b)

The following theorem establishes the utility of the RFFs in computing each cell’s change

in state by proving the equivalence of (4.5) to the existing state dynamic equations.

Theorem 1. The SOC update equation (4.5a) is equivalent to (2.1a), and the relaxation

voltage update equation (4.5b) is equivalent to (2.1b).

Proof. First we prove equivalence for the SOC update equation. Substituting (4.2a) and

(4.3) into (4.5a),

si
k+1 = si

k +

 − η iTs
3600Ci ui

k

− 1
N ∑

N
i=1

η iTs
3600Ci ui

k

(− 1
N

N

∑
i=1

η iTs

3600Ci ui
k

)

= si
k−

η iTs

3600Ci ui
k,

16

Table 4.1: Cell Currents

u1
k u2

k u3
k u4

k u5
k

1.6 3.6 4.6 5.6 7.6

which reproduces (2.1a). As for the relaxation voltage update equation, a similar

substitution can be made by substituting (4.2b) and (4.4) into (4.5b), where we get

V i
k+1 =V i

k +

ui
k

Ci
p
−

V i
k

τi
p

1
N ∑

N
i=1

ui
k

Ci
p
−

V i
k

τi
p

1
N

N

∑
i=1

Ts

Ci
p

ui
k−

Ts

τ i
p

V i
k

=V i
k +

Ts

Ci
p

ui
k−

Ts

τ i
p

V i
k

=

(
1− Ts

τ i
p

)
V i

k +
Ts

Ci
p

ui
k,

which reproduces (2.1b). This completes the proof.

Theorem 1 established that the RFF can be used to quantify how the ith state

vector xi
k changes with respect to the state vector xµ,k of an “averaging” model, defined as

xµ,k :=
[

sµ,k Vµ,k

]T
. To express this mathematically, the Jacobian Γi

k = ∂xi
k/∂xµ,k can

be defined as

Γ
i
k =

∂xi
k

∂xµ,k
=


∂xi

k(1)
∂xµ,k(1)

∂xi
k(1)

∂xµ,k(2)

∂xi
k(2)

∂xµ,k(1)
∂xi

k(2)
∂xµ,k(2)

=

γ i
s,k 0

0 γ i
Vk

 . (4.6)

Then, (4.5) can be compactly represented as

xi
k+1 = xi

k +Γ
i
k∆xµ,k. (4.7)

Example 2. Consider the five-cell serial-connected battery as discussed in Example 1.

Consider Ts = 0.1, and the initial cell currents as they appear in Table 4.1. The

17

Table 4.2: Relative Fitness Factors

γ1 γ2 γ3 γ4 γ5

0.37430 0.70661 0.91970 1.31445 1.69994

denominator term in (4.3) can be computed as

1
5

5

∑
i=1

η i

Ci ui
k =

1
5

(
(0.785)(1.6)

4.293
+

(0.839)(3.6)
5.249

+
(0.768)(4.6)

4.717
+

(0.803)(5.6)
4.201

+
(0.900)(7.6)

4.941

)
= 0.81433.

Then each cell’s SOC RFF is computed as:

γ
1
s,k =

0.29257
0.81433

= 0.35927

γ
2
s,k =

0.57542
0.81433

= 0.70661

γ
3
s,k =

0.74895
0.81433

= 0.91970

γ
4
s,k =

1.07041
0.81433

= 1.31445

γ
5
s,k =

1.38433
0.81433

= 1.69994.

For easy reference, the computed SOC RFF for each cell is listed in Table 4.2.

Given ui
k for each cell and Ts, the change in average SOC for this time step can be found

to be −2.26205 ·10−5 (negative since current is being drawn out of the battery). Using

18

the computed RFFs, the change in each cell’s SOC can be calculated,

∆s1
k = γ

1
k ∆sµ,k =−8.12692 ·10−6

∆s2
k = γ

2
k ∆sµ,k =−1.59839 ·10−5

∆s3
k = γ

3
k ∆sµ,k =−2.08041 ·10−5

∆s4
k = γ

4
k ∆sµ,k =−2.97336 ·10−5

∆s5
k = γ

5
k ∆sµ,k =−3.84537 ·10−5.

Now, to show that each cell’s SOC change derived from the average indeed

matches that which the individual cell dynamics produce, the same quantities are

computed based on (2.1a), as follows.

∆s1
k =−(0.785)(0.1)(1.6)

(3600)(4.293)
=−8.12692 ·10−6

∆s2
k =−(0.839)(0.1)(3.6)

(3600)(5.249)
=−1.59839 ·10−5

∆s3
k =−(0.768)(0.1)(4.6)

(3600)(4.717)
=−2.08041 ·10−5

∆s4
k =−(0.803)(0.1)(5.6)

(3600)(4.201)
=−2.97336 ·10−5

∆s5
k =−(0.900)(0.1)(7.6)

(3600)(4.941)
=−3.84537 ·10−5.

Note that the concept of RFF provides an alternate perspective of the multi-cell

state estimation problem: the RFF method requires only the change in average state (SOC

and relaxation voltage) be known in order to compute the change in each cell’s state

estimate. Later on, this technique will prove vital in the reduction of computational

overhead for SOC estimation over large N. The concept of RFFs is further illustrated

through the following numerical example.

19

4.2 Constructing the RFF Matrix

In the context of cell SOC estimation in a battery pack, the main concern is

considering the states of all cells at once, not individually. For this reason, we recall the

sparse state vector from Section 3.1 and compute the pack-level Jacobian

Γk =
∂Xk

∂xµ,k
=

[
Γ1

k Γ2
k . . . ΓN

k

]T
, (4.8)

where Γk (termed as “RFF matrix") is of size 2N×2. Extrapolating (4.7) to the entire

pack,

Xk+1 = Xk +Γk∆xµ,k

offers a useful method for computing changes to the entire pack’s states as a function of

changes in xµ,k, the size of which does not change with N. The next section leverages this

core concept into an estimation algorithm – termed “dense extended Kalman filter"

(DEKF) – by developing an initial framework and concurrently proving theoretical

equivalence to the sparse method outlined in Section 3.1. The next two lemmas related to

the left pseudoinverse of Γ will be utilized in Section 5.3.

Lemma 1. The left pseudoinverse Γ† exists and is given by

Γ
† =

γ1
s

∑
N
i=1

(
γi
s
)2 0 . . .

γN
s

∑
N
i=1

(
γi
s
)2 0

0
γ1
V

∑
N
i=1(γ

i
V)2

. . . 0
γN
V

∑
N
i=1(γ

i
V)2

 . (4.9)

Proof. Writing out the full form of Γ as defined in (4.8) gives

Γ =

γ1
s 0 γ2

s 0 . . . γN
s 0

0 γ1
V 0 γ2

V . . . 0 γN
V


T

.

20

Observing the full form of Γ, for each non-zero element in a given column, its

corresponding element in the other column is zero, and vice versa. For this reason, it is

clear that the column vectors of Γ are linearly independent as there is no nontrivial linear

combination of these vectors which equals the zero vector. Such linear independence of

the columns of Γ guarantees the existence of a left pseudoinverse [40]. Next,

Γ
T

Γ =

γ1
s 0 . . . γN

s 0

0 γ1
V . . . 0 γN

V





γ1
s 0

0 γ1
V

...
...

γN
s 0

0 γN
V


=

∑
N
i=1
(
γ i
s
)2 0

0 ∑
N
i=1(γ

i
V)

2

 ,

which is symmetric positive definite. Therefore,

(
Γ

T
Γ

)−1
=

∑
N
i=1
(
γ i
s
)2 0

0 ∑
N
i=1(γ

i
V)

2


−1

=


1

∑
N
i=1

(
γi
s
)2 0

0 1
∑

N
i=1(γ

i
V)2

 .

21

Next, multiplying
(
ΓT Γ

)−1 by ΓT from the right gives

Γ
† =

(
Γ

T
Γ

)−1
Γ

T

=


1

∑
N
i=1

(
γi
s
)2 0

0 1
∑

N
i=1(γ

i
V)2


γ1

s 0 . . . γN
s 0

0 γ1
V . . . 0 γN

V



=


γ1
s

∑
N
i=1

(
γi
s
)2 0 . . .

γN
s

∑
N
i=1

(
γi
s
)2 0

0
γ1
V

∑
N
i=1(γ

i
V)2

. . . 0
γN
V

∑
N
i=1(γ

i
V)2

 .
This completes the proof.

Remark 3. To verify that Γ†Γ = I, we have

Γ
†
Γ =


∑

N
i=1

(
γi
s
)2

∑
N
i=1

(
γi
s
)2 0

0
∑

N
i=1(γ

i
V)2

∑
N
i=1(γ

i
V)2

=

1 0

0 1

 .

While Lemma 1 and Remark 3 prove that Γ†Γ = I2×2, ΓΓ† is generally not an

identity matrix. However, the next lemma establishes that ΓΓ† acts as an identity matrix

when being multiplied to a change in the sparse state ∆X .

Lemma 2. Denote ∆Xk := Xk+1−Xk ∈ R2N×1, ∆X̃k := ΓΓ†∆X ∈ R2N×1, then we have

∆X̃k = ∆Xk.

22

Proof. Retaining the definition of Γ† from Lemma 1, the following is computed

ΓΓ
† =



(γ1
s)

2

∑(γi
s)2

0 . . .
(γ1

s)(γ
N
s)

∑(γi
s)2

0

0
(γ1

V)2

∑(γi
V)2

. . . 0
(γ1

V)(γN
V)

∑(γi
V)2

...
...

...
...

...
(γN

s)(γ1
s)

∑(γi
s)2

0 . . .
(γN

s)2

∑(γi
s)2

0

0
(γN

V)(γ1
V)

∑(γi
V)2

. . . 0
(γN

V)2

∑(γi
V)2


. (4.10)

Note that ΓΓ† ∈R2N×2N . For brevity’s sake, we prove the equivalence of the first element

of ∆X̃k. Performing the computation with the result in (4.10) gives the following

∆X̃k(1) =
N

∑
j=1

(γ1
s)(γ

j
s)

∑
N
i=1(γ

i
s)2 ∆si

k

=
N

∑
j=1

(γ1
s)(γ

j
s)

∑
N
i=1(γ

i
s)2 γ

j
s ∆sµ,k

= γ
1
s

∑
N
j=1(γ

j
s)

2

∑
N
i=1(γ

i
s)2 ∆sµ,k

= γ
1
s ∆sµ,k = ∆si

k = ∆X(1).

Following the same argument, it can be shown that ∆X̃k = ΓΓ†∆Xk.

Lemma 2 reveals a useful property of ΓΓ†: when being left multiplied to a change

in the sparse state ∆X , that same change in the sparse state is the result of the calculation.

23

CHAPTER FIVE

DENSE EXTENDED KALMAN FILTER

This section presents the proposed dense extended Kalman filter (DEKF). The

essential idea is to use EKF to estimate the states of an “averaging model”, and then

distribute the state estimation to each cell using the RFF matrix. In pursuit of a filtering

algorithm that estimates over the dense state, we first define the dense model as follows

xµ,k+1 = Aµxµ,k +BµUk +wµ,k (5.1a)

yµ,k = hµ(Xk,Uk)+ vµ,k, (5.1b)

where xµ,k :=
[

sµ,k Vµ,k

]T
, Aµ = Γ

†
kAΓk ∈ R2×2, Bµ = Γ

†
kB ∈ R2×N ,

hµ(X̂−k+1,Uk) =
1
N h(X̂−k+1,Uk), wµ,k ∼N (0,Γ†

kQkΓk) and vµ,k ∼N (0, 1
N2 Rk).

5.1 Dense Time Update

Given the dense model (5.1), its time update equations are given by

x̂−
µ,k+1 = Aµ x̂+

µ,k +BµUk (5.2a)

P−
µ,k+1 = AµP+

µ,kAT
µ +Qµ,k. (5.2b)

The estimate over the dense state vector is then “distributed” to each cell using the RFF

matrix, as follows:

X̂−k+1 = X̂+
k +Γk(x̂

−
µ,k+1− x̂+

µ,k) (5.3a)

P−k+1 = ΓkP−
µ,k+1Γ

T
k . (5.3b)

The following theorem derives the above dense time update, guaranteeing its

near-equivalence to the sparse time update.

24

Theorem 2. Under the assumption that Ts << τ i
p, the time update on X̂−k+1 as computed

by (5.2a) and (5.3a) is almost equivalent to the sparse time update as computed by (3.1a),

and P−k+1 as computed by (5.2b) and (5.3b) is equivalent to the sparse time update as

computed by (3.1b).

Proof. Let’s begin with (3.1a). First, apply the definition (4.8) to solve the

matrix-differential equation for sparse vector Xk in terms of xµ,k:

Γk =
∂Xk

∂xµ,k

Xk = Γkxµ,k−Γkxµ,0 +X0.

Xk = Γkxµ,k−ΓkΛX0 +X0

Xk = Γkxµ,k +(I−ΓkΛ)X0, (5.4)

where Λ = 1
N

[
I I . . . I

]
and is of size 2×2N, X0 is an initial condition for the sparse

state vector, and xµ,0 is an initial condition for dense state vector, which is derived directly

from X0. Substituting (5.4) into (3.1a),

Γkx̂−
µ,k+1 +(I−ΓkΛ)X0 = A(Γkx̂+

µ,k +(I−ΓkΛ)X0)+BUk

Γkx̂−
µ,k+1 = AΓkx̂+

µ,k +(A(I−ΓkΛ)− (I−ΓkΛ))X0 +BUk.

Multiplying the left pseudoinverse Γ
†
k returns

x̂−
µ,k+1 = Γ

†
kAΓkx̂+

µ,k +Γ
†
k(A(I−ΓkΛ)− (I−ΓkΛ))X0

+Γ
†
kBUk

= Aµ x̂+
µ,k +Γ

†
k(A− I)(I−ΓkΛ)X0 +BµUk, (5.5)

effectively isolating x̂−
µ,k+1.

25

As a result of the discretized system dynamics (2.3), for a sufficiently small Ts
τi

p
,

A→ I. For this reason, (5.5) can be approximated as,

x̂−
µ,k+1 ≈ Aµ x̂+

µ,k +BµUk.

To prove the equivalence of the time update on the covariance matrix, we first have

P−
µ,k+1 = E

[
(xµ,k+1− x̂−

µ,k+1)(xµ,k+1− x̂−
µ,k+1)

T
]

(5.6)

over the prediction. Multiplying Γk to (5.6), we have

ΓkP−
µ,k+1Γ

T
k =

= ΓkE
[
(xµ,k+1− x̂−

µ,k+1)(xµ,k+1− x̂−
µ,k+1)

T
]

Γ
T
k

= E
[
Γk(xµ,k+1− x̂−

µ,k+1)(xµ,k+1− x̂−
µ,k+1)

T
Γ

T
k

]
= E

[
(Xk+1− X̂−k+1)(Xk+1− X̂−k+1)

T
]

= P−k+1, (5.7)

which works out to be the sparse predicted process covariance P−k+1 as calculated in

(3.1b). Substituting (3.1b) into the right hand side of (5.7), we have

ΓkP−
µ,k+1Γ

T
k = AΓkP+

µ,kΓ
T
k AT +Qk. (5.8)

Multiplying Γ
†
k , we have

Γ
†
k

[
ΓkP−

µ,k+1Γ
T
k

]
(Γ†

k)
T = Γ

†
k

[
AΓkP+

µ,kΓ
T
k AT +Qk

]
(Γ†

k)
T

Utilizing the fact that Γ
†
kΓk = I (Lemma 1), we have

P−
µ,k+1 =

(
Γ

†
kAΓk

)
P+

µ,k

(
Γ

†
kAΓk

)T
+Γ

†
kQk(Γ

†
k)

T

= AµP+
µ,kAT

µ +Qµ,k. (5.9)

This completes the proof.

26

Remark 4. Though the proposed dense time update (5.2)-(5.3) incurs certain error, as

captured by Theorem 2, it significantly reduces the FLOPs requirement. In fact, the

regular sparse time update requires a theoretical FLOP count of 12N2 +6N, whereas the

proposed dense time update requires only 36N +14, due largely in part to many of the

associated dense matrices having constant size with respect to cell number. See Section

6.2 for more details.

5.2 Dense Measurement Update

Continuing with the dense model (5.1), its measurement update equations are

given by

Kµ,k+1 =
P−

µ,k+1HT
µ,k+1

Hµ,k+1P−
µ,k+1HT

µ,k+1 +Rµ,k
, (5.10a)

x̂+
µ,k+1 = x̂−

µ,k+1 +Kµ,k+1

(
yµ,k+1−hµ(X̂−k+1,Uk)

)
(5.10b)

X̂+
k+1 = X̂−k+1 +Γk(x̂

+
µ,k+1− x̂−

µ,k+1) (5.10c)

P+
µ,k+1 = (I−Kµ,k+1Hµ,k+1)P

−
µ,k+1, (5.10d)

where Rµ,k =
Rk
N2 , yµ,k+1 = 1

N yk+1, and Hµ,k+1 ∈ R1×2 as given by

Hµ,k+1 =
∂ (1

N h(X ,U))

∂xµ

∣∣∣∣∣
(X̂−k+1,Uk)

. (5.11)

The two next lemmas connect the dense Kalman gain Kµ,k+1 and Hµ,k+1 to the

sparse Kalman gain Kk+1 and Hk+1.

Lemma 3. The dense Jacobian Hµ,k+1 as computed by (5.11) and the sparse Jacobian

Hk+1 as computed by (3.6) satisfy

Hµ,k+1 =
1
N

Hk+1Γk. (5.12)

27

Proof. For brevity, we opt for short-hand notation h := h(X ,U) for derivations contained

within this section. The scalar 1
N can be moved to the front of the expression in (5.11) and

the Jacobian can be evaluated:

Hµ,k+1 =
1
N

∂h
∂xµ

=

[
1
N ∑

N
i=1

∂V i
oc

∂xµ (1) −
1
N

∂ ∑
N
i=1V i

∂xµ (2)

]
=

[
1
N ∑

N
i=1

∂V i
oc

∂xµ (1) −
1
N N

∂xµ (2)
∂xµ (2)

]
=

[
1
N ∑

N
i=1

∂V i
oc

∂xµ (1) −
1
N N
]

=

[
1
N (

∂V 1
oc

∂xµ (1) +
∂V 2

oc
∂xµ (1) + · · ·+

∂V N
oc

∂xµ (1)) −1
]
.

Recall from (4.6) that ∂xi(1)
∂xµ (1) = γ i

s, therefore

Hµ,k+1 =

[
1
N (γ1

s
∂V 1

oc
∂x1(1)

+ · · ·+ γN
s

∂V N
oc

∂xN(1)) −1

]
=

[
∑

N
i=1

1
N γ i

s
∂V i

oc
∂xi(1)

−1

]
=

[
1
N ∑

N
i=1 γ i

s
∂V i

oc
∂xi(1)

−1

]
.

Now, multiplying (3.6) by Γk gives

Hk+1Γk =

[
∂V 1

oc
∂x1(1)

−1 ∂V 2
oc

∂x2(1)
−1 · · · ∂V N

oc
∂xN(1) −1

]
Γk

=

[
∑

N
i=1 γ i

s,k
∂V i

oc
∂xi(1)

−∑
N
i=1 γ i

V,k

]
.

Without loss of generality, ∑
N
i=1 γ i

V = N. Hence,

1
N

Hk+1Γk =
1
N

[
∑

N
i=1 γ i

s,k
∂V i

oc
∂xi(1)

−N

]
=

[
1
N ∑

N
i=1 γ i

s,k
∂V i

oc
∂xi(1)

−1

]
= Hµ,k+1.

This completes the proof.

28

Lemma 4. The dense Kalman gain Kµ,k+1 as computed by (5.10a) and the sparse

Kalman gain Kk+1 computed by (3.7a) satisfy

Kk+1 =
1
N

ΓkKµ,k+1 (5.13)

Proof. According to (5.10a), (5.12) and the fact that Rµ,k =
Rk
N2 , we have

1
N

ΓkKµ,k+1 =
1
N

Γk
P−

µ,k+1HT
µ,k+1

Hµ,k+1P−
µ,k+1HT

µ,k+1 +
1

N2 Rk

=
1
N

ΓkP−
µ,k+1(

1
N Hk+1Γk)

T

(1
N Hk+1Γk)P

−
µ,k+1(

1
N Hk+1Γk)

T + 1
N2 Rk

=
1
N

N
ΓkP−

µ,k+1(Hk+1Γk)
T

(Hk+1Γk)P
−
µ,k+1(Hk+1Γk)

T +Rk

=
ΓkP−

µ,k+1ΓT
k HT

k+1

Hk+1ΓkP−
µ,k+1ΓT

k HT
k+1 +Rk

Utilizing (5.7), we have

1
N

ΓkKµ,k+1 =
P−k+1

Hk+1P−k+1HT
k+1 +Rk

= Kk+1

This completes the proof.

Now we are ready to present the main result of this section by introducing the

following theorem that guarantees the equivalence of (5.10) to the sparse measurement

update outlined in (3.7).

Theorem 3. The measurement update on X̂+
k+1 and P+

k+1 as computed by (5.10) is

equivalent to the sparse measurement update as computed by (3.7).

29

Proof. From (5.10c), we have

X̂+
k+1 =X̂−k+1 +Γk(x̂

+
µ,k+1− x̂−

µ,k+1)

=X̂−k+1 +ΓkKµ,k+1

(
yµ,k+1−hµ(X̂−k+1,Uk)

)
=X̂−k+1 +NKk+1

(
yµ,k+1−hµ(X̂−k+1,Uk)

)
=X̂−k+1 +Kk+1

(
Nyµ,k+1−Nhµ(X̂−k+1,Uk)

)
=X̂−k+1 +Kk+1

(
yk+1−h(X̂−k+1,Uk)

)
which establishes the equivalence of the state correction of (5.10) with that of (3.7).

As for the covariance equation, begin with (5.10d) and substitute (5.7) to get

P+
µ,k+1 = (I2×2−Kµ,k+1Hµ,k+1)P

−
µ,k+1

ΓkP+
µ,k+1Γ

T
k = Γk(I2×2−Kµ,k+1Hµ,k+1)P

−
µ,k+1Γ

T
k

P+
k+1 = Γk(I2×2−Kµ,k+1Hµ,k+1)P

−
µ,k+1Γ

T
k .

Substituting (5.13) and (5.12) and simplifying further, we get

P+
k+1 = Γk(I2×2−NΓ

†
kKk+1

1
N

Hk+1Γk)P
−
µ,k+1Γ

T
k

= Γk(Γ
†
kI2N×2NΓk−Γ

†
kKk+1Hk+1Γk)P

−
µ,k+1Γ

T
k

= ΓkΓ
†
k(I2N×2N−Kk+1Hk+1)ΓkP−

µ,k+1Γ
T
k

= ΓkΓ
†
k(I2N×2N−Kk+1Hk+1)P

−
k+1

= ΓkΓ
†
kP+

k+1 = P+
k+1.

Note that Lemma 2 is utilized to arrive the last equality.

Remark 5. In addition to the proposed dense measurement update’s equivalence to the

sparse measurement update, as captured by Theorem 3, it significantly reduces the FLOPs

requirement. In fact, the proposed dense algorithm reduces the FLOP count from cubic

(16N3 +4N2 +(2P+4)N +1) to linear ((2P+12)N +25) complexity. This major

30

reduction in computation time is owed mostly to the Kalman gain, measurement Jacobian,

and process covariance matrices all having constant size in the dense measurement

update. This fact confers a constant FLOP count on the dense state and covariance

updates.

5.3 Adaptive DEKF

Recall that Qµ,k = Γ
†
kQkΓk. Therefore, Qµ,k must also be computed at each time

step since Γk changes with each time step (recall its dependence on the cell currents as

outlined in (4.3), (4.4), and (4.6)). While in the context of the regular DEKF this would be

the case, there are existing methods of adaptive Kalman filtering [24, 41, 42] in which the

dense noise covariance matrices are not computed as a function of Γ, but instead as

approximate solutions to the following optimization problem

Θ
∗ =arg min

Qk,Rk
[J(Θ|YM)]

s.t. Qk ⪰ 0,Rk ≻ 0,

(5.14)

where the objective function is defined as

J(Θ|YM) =
k

∑
i=k−M+1

[
ln |Σi|+ν

T
i Σ
−1
i νi

]
,

Θ :=
[

Qk Rk

]
, the pre-fit residual νk := yk− ŷ−k assumes a Gaussian distribution of

N (0,Σk), M is an adjustable parameter describing the size of the window of past

measurements, and YM :=
[

yk−M+1 yk−M . . . yk−1 yk

]
. A full derivation of the

solution to (5.14) can be located in Appendix C of [41], where suitable approximations of

31

the optimal noise covariance matrices that maintain positive definiteness are found to be

Q∗k = Kk

 1
M

k

∑
i=i0

νiν
T
i

KT
k (5.15)

R∗k =
1
M

k

∑
i=i0

[
εiε

T
i +HiP

+
i HT

i

]
, (5.16)

where i0 = k−M+1 and post-fit residual εk := yk− ŷ+k . This adaptive formulation of the

covariance matrices is worked into the DEKF, which is referred to as the dense adaptive

extended Kalman filter (DAEKF) and is the solution which generates the simulation

results shown later in Section 6.2.

Remark 6. The additional number of FLOPs incurred by the dense without the adaptive

extension is linear (8N−3) and occurs in the time update when computing Γ
†
kQkΓk

(recall that Γk is a function of balancing currents). The adaptive step removes the

dependence of this computation on N, and instead renders its FLOPs count to a function

of window size M (6M+21).

5.4 Complete DAEKF Algorithm

The proposed DAEKF algorithm can be divided into two parts: the time update

and the measurement update. The former is summarized in Algorithm 1, and the latter in

Algorithm 2.

First we describe the time update portion of the DAEKF algorithm. In particular,

Lines 3 and 4 compute Γk and Γ
†
k given Uk, which are then used to calculate Aµ,k and

Bµ,k as shown in Line 5. Lines 6 through 9 check if this particular iteration of the DAEKF

is the first one, in which case the program initializes P+
µ,0, Qµ,0, and Rµ,0 in terms of

sparse covariances, Γ0, and Γ
†
0. Line 11 uses the results computed in Line 5 and the

corrected dense state x̂+
µ,k from the previous time step to generate the dense prediction

x̂−
µ,k+1. Line 12 uses the result obtained in Line 11 to predict the sparse state X̂−k+1, which

32

is a required computation since there is not yet a known way to develop a compact Voc

curve which is strictly a function of xµ (see a more detailed explanation in Section 6.2).

Line 13 computes the predicted dense process covariance P−
µ,k+1. The results obtained

from Lines 11 through 13 are outputs of the procedure, which are passed onto the

measurement update function.

Starting off the measurement update portion of the DAEKF algorithm, Line 2

evaluates a least-squares fit of each cell’s differentiated OCV (detailed explanation in

Section 6.2) as a function of sparse prediction X̂−k+1 to compute Hµ . Line 3 utilizes this

result, along with P−
µ,k+1 and Rµ to compute the dense Kalman gain Kµ,k+1. Line 5

corrects the prediction, computing the difference between the measurement yµ,k+1 and

the predicted measurement, and using that to calculate x̂+
µ,k+1. Line 6 computes the

updated sparse vector X̂+
k+1 as a function of Γk and the differences in the result from Line

5 and the predicted dense state. Line 7 simply computes the the updated dense process

covariance P+
µ,k+1 as a function of the results from Lines 2 and 3, and the procedure input

P−
µ,k+1. Line 9 uses the results of Line 2 and (70b) to approximate hµ(X̂+

k+1), which the

predicted measurement function evaluated over X̂+
k+1. This result is applied in Line 10,

which computes the dense post-fit residual εµ,k+1. Lines 11 through 14 consist on a

conditional statement which checks at least M−1 iterations have elapsed. If such is the

case, Lines 12 and 13 will overwrite Qµ and Rµ with the sub-optimal solutions to (5.14).

Line 15 simply increments the time step variable k to prepare for the next iteration of the

DAEKF. Line 16 returns the updated dense state x̂µ,k+1, updated dense process

covariance P−
µ,k+1, and update sparse state X̂+

k+1, which are all fed back into the time

update function for the following iteration.

33

Algorithm 1 DAEKF Algorithm: Time Update
input : x̂+

µ,k, P+
µ,k, Uk, X̂+

k , k

output: x̂−
µ,k+1,P

−
µ,k+1, X̂

−
k+1

Γk← computing (4.8);

Γ
†
k ← computing (4.9);

Aµ,k← Γ
†
kAΓk; Bµ,k← Γ

†
kB;

if k = 0 then

P+
µ,0← Γ†P+

0 (Γ†)T ;

Qµ ← Γ†Q(Γ†)T ;

Rµ ← 1
N2 R;

end

x̂−
µ,k+1← Aµ,kx̂+

µ,k +Bµ,kUk;

X̂−k+1← X̂+
k +Γk(x̂

−
µ,k+1− x̂+

µ,k);

P−
µ,k+1← Aµ,kP+

µ,kAT
µ,k +Qµ ;

34

Algorithm 2 DAEKF Algorithm: Measurement Update
input : x̂−

µ,k+1, P−
µ,k+1, X̂−k+1, yµ,k+1, k

output: x̂+
µ,k+1,P

+
µ,k+1, X̂

+
k+1

Hµ ← evaluates (6.3) at X̂−k+1;

Kµ,k+1← computing (5.10a);

x̂+
µ,k+1← x̂−

µ,k+1 +Kµ,k+1(yµ,k+1− (6.4));

X̂+
k+1← X̂−k+1 +Γk(x̂

+
µ,k+1− x̂−

µ,k+1);

P+
µ,k+1← (I−Kµ,k+1Hµ)P−µ,k+1;

hµ(X̂+
k+1)← computing (6.5);

εµ,k+1← yµ,k+1−hµ(X̂+
k+1);

if k ≥M−1 then
Qµ ← computing (5.15);

Rµ ← computing (5.16);
end
k← k+1

35

CHAPTER SIX

SIMULATION RESULTS

6.1 Implementation Details and Methodology

This subsection elaborates on the details specific to the DEKF implementation

which yields the simulation results shown later on, the selected hardware for simulation,

as well as considerations regarding the direct computation of FLoating-point OPerations

(FLOPs) for each step.

Recall that Hµ,k+1 is computed at each time step using (5.12) that relies on the

computation of sparse Hk+1, which requires each cell’s OCV-SOC curve be stored in

memory and its derivative evaluated over X̂−k+1 at each time step. As mentioned earlier,

the OCV-SOC curve for any particular cell is typically stored in a lookup table – the size

of which is directly related to the desired resolution. For a small number of cells, this may

be a viable method, but large memory requirements – and thus poor scalability – become

problematic as the number of cells grows. Instead, this work devotes offline computation

time to calculating N least-squares polynomials of degree P,

min
pi
∥Si pi−V i

oc∥22, 1≤ i≤ N, (6.1)

each evaluated over high-resolution, OCV-SOC data from its respective cell. In the case of

(6.1), pi is a (P+1)×1 vector of polynomial coefficients, Si is a L× (P+1) design

matrix computed from the SOCs of L samples from the ith cell’s OCV-SOC curve, and V i
oc

is the corresponding output vector of size L×1. The vector pi∗, and therefore the

36

polynomial, which solves (6.1) is defined as

pi∗ = Si†V i
oc

F i(si) =
P

∑
j=0

pi∗(j)(si) j, (6.2)

where s j is the ith cell’s SOC raised to the jth power. At each time step, the least-squares

fit F i(s) ands its derivative Ḟ i(s) := dFi

dsi is evaluated to complete the following steps of

the DAEKF algorithm

H−
µ,k+1 =

∂hµ

∂xµ

∣∣∣∣∣
xµ=x̂−

µ,k+1

≈
[

1
N ·∑

N
i=1 γ i

s,kḞ i(xi(1)) −1

]
(6.3)

hµ(X̂−k+1)≈
N

∑
i=1

(
F i(xi(1))−Ri

oui
k− xi(2)

)
(6.4)

hµ(X̂+
k+1)≈ hµ(X̂−k+1)+H−

µ,k+1(x̂
+
µ,k+1− x̂−

µ,k+1), (6.5)

where (6.3) and (6.4) are derived from Ḟ i(s) and F i(s), respectively, to compute the

first-order Taylor approximation of the measurement functions in (6.5), which is used to

compute the post-fit residual

εµ,k+1 = yµ,k+1−hµ(X̂+
k+1)

to update Rµ as shown in (5.16). For this specific implementation, a 21st-degree

polynomial is used to approximate the OCV-SOC behavior of each cell, meaning a

20th-degree polynomial approximates its derivative. Surely, polynomials of this size are

excessive in approximating open-circuit voltage characteristics, and in most cases can

require fewer terms.

In the context of computing theoretical resource consumption, the considerations

being made are (1) the structural redundancies of the matrices involved in calculation (i.e.

full multiplications need not be performed for matrices A and B as they are

37

block-diagonal), (2) matrix multiplication of two arbitrary matrices Am×n and Bn×p

requires m× p× (2n−1) FLOPs, (3) Horner’s Rule is the method employed for

evaluating polynomials of degree P, which requires 2P FLOPs to execute, (4) a matrix’s

pseudoinverse is computed in accordance with its definition, and (5) double-precision

floating-point format is used to represent and store numerical data in memory.

For each cell involved in the simulation, the following electrical parameters are

selected from a Gaussian distribution

η
i ∼N (0.9,0.1), Ci ∼N (5,0.5)

as a means of inducing heterogeneity unto the pack. For clarity, other circuit parameters

Rp = 1.1343 ·10−2, Cp = 2.8212 ·103, and Ro = 8.7826 ·10−3 are kept constant for all

cells. Note that all battery parameters are derived from [43–45], which utilize a battery

model simulation in which each circuit parameter’s value is determined from experiments

and stored as lookup tables of SOC and temperature. The constant values used are a result

of averaging each parameter’s value over the full range of SOCs at a temperature of 15◦C.

Lastly, the following simulation results were obtained by running the DAEKF algorithm

in MATLAB on an Intel i7-9750H CPU with six cores, 8 GB of RAM and 12 MB of

cache running at 2.60 GHz.

6.2 Results and Discussion

The cell current trajectories are selected to be an exponential family of functions

that are symmetric about a nominal battery pack current uk := 4.6 A. (See Fig. 6.1 for an

example.) Furthermore, the initial sparse process covariance, the standard deviations for

each cell’s process noise wi
k and the pack’s measurement noise vk are initialized as a block

diagonal matrix of 10−4, 10−5, and 10−2 respectively, and as a result of (5.7) and the

38

equations for Qµ,k and Rµ,k given in Section 5.3, the initial dense covariance matrices are

Pµ,0 =

9.884 ·10−5 0

0 1.000 ·10−4


Qµ,0 =

1.977 ·10−11 0

0 2.000 ·10−11


Rµ,0 =

[
4 ·10−6

]
,

N = 5, and M = 20. The measured terminal voltage and the cell currents are shown in Fig.

6.1. Over a period of 1500 seconds, Fig. 6.2 illustrates the results of the simulation, which

show that the DAEKF exhibits good performance in estimating SOC over all five cells

with the RMSE being on the order of 10−4 at best, and the maximum RMSE on predicted

average terminal voltage hµ(x̂+k+1) being within 20 mV (≈ 0.6% of its nominal value).

Shifting to the sparse EKF’s results, the estimation error is surprisingly slightly greater

than that of the DAEKF, residing mostly within the neighborhood of 2 ·10−3 to 3 ·10−3.

This is an artifact of the large predicted measurement error incurred by the sparse relative

to the dense, which is mostly contained within 100 mV. The reason for the larger

estimation error in sparse EKF is likely due to the need to invert a larger matrix when

calculating Kalman gain, resulting in higher numerical error.

In the context of FLOP count, a comprehensive comparison between the dense and

sparse adaptive extended Kalman filters is found in Table 6.1, where M is the size of the

measurement window from the adaptive step, N is the number of cells, and P is the degree

of the polynomials used to approximate OCV-SOC characteristics. The most laborious

step for the sparse AEKF is the measurement update, where there are no structural

patterns that can be exploited in the computation of (3.7c). Thus, the multiplication of two

arbitrary, square matrices of size 2N×2N yields a FLOP count proportional to N3. While

39

0 500 1000 1500

Time [s]

3.1

3.2

3.3

3.4

3.5

3.6

V
o

lt
a

g
e

 [
V

]

Measurement of Average Terminal Voltage

0 500 1000 1500

Time [s]

4.55

4.6

4.65

C
u

rr
e

n
t

[A
]

Net Cell Currents

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

Figure 6.1: Pack characteristics over five cells.

0 500 1000 1500

Time [s]

0

0.05

0.1

V
o

lt
a

g
e

 [
V

]

DAEKF: Predicted Measurement RMS Error

0 500 1000 1500

Time [s]

0

0.05

0.1

V
o

lt
a

g
e

 [
V

]

Sparse EKF: Predicted Measurement RMS Error

200 400 600 800 1000 1200 1400

Time [s]

0

2

4

6

E
rr

o
r

10-3 SOC Estimation: RMS Error

Dense

Sparse

Figure 6.2: Comparison of SOC estimation error and predicted measurement error between
the sparse EKF and the DAEKF over five cells.

40

Table 6.1: FLOP Comparison for Dense Adaptive EKF and Sparse Adaptive EKF

- Dense Sparse
Time Update 36N +14 12N2 +6N
Kalman Gain 2PN +10 8N2 +2PN +1
Measurement (2P+12)N +25 16N3 +4N2 +(2P+4)N +1
Adaptive Step 6M+21 8N2 +8N +6M−1

Total (48+4P)N +6M+70 16N3 +30N2 +(4P+18)N +6M+1

the measurement update is also the most laborious step for the DAEKF, it only grows

linearly with N as well as P. The values of M, N, and P used to obtain the results for the

100-cell problem in Fig. 6.3 can be borrowed to get an idea of the FLOPs count for both

estimators. Doing so yields a FLOPs count of 16,310,321 for the sparse, and a mere

13,390 for the dense, reinforcing the perceived intractability of the sparse formulation of

the AEKF.

A simulation with N = 100, i.e., with 100 cells, is also performed. The initial

covariance matrices are the following

Pµ,0 =

9.819 ·10−14 0

0 9.999 ·10−14


Qµ,0 =

9.641 ·10−15 0

0 9.999 ·10−15


Rµ,0 =

[
1 ·10−8

]
,

yielding the results shown in Fig. 6.3, where, in comparison to Fig. 6.2, the effect of a

larger cell number on the measurement noise can be observed in the RMSE curve of the

predicted terminal voltage. Specifically, the maximum prediction error for terminal

voltage is around 5 mV, demonstrating greater noise attenuation as a result of more cells.

41

In addition to this, the covariance matrices are intentionally initialized such that the model

predictions are favored greatly over the measurements. As a result, cumulative error is

exhibited, but the DAEKF and sparse EKF take on a nearly identical error trajectory. This

observation is reinforced by the plot of the absolute differences between both filters’

RMSE curves, which resides firmly in the vicinity of 6 ·10−8.

Keeping covariance matrices, process noise, and measurement noise the same

from Fig. 6.2. Fig. 6.4 plots the estimation error for different number of cells, where 20

simulation trials are run for each cell number. The averages and standard deviations (the

error bars) for both the error of the predicted terminal voltage and the estimated SOC are

shown here. Observing Fig. 6.4, the averages and standard deviations of the predicted

measurement error as well as the average SOC estimation error are decreasing as a

function of cell number. Because the inclusion of more cells scales down the measurement

by a larger number, measurement noise is more heavily attenuated, which results in the

DAEKF weighing measurements more favorably in its estimates. As a result, estimates

which rely less on the model are less prone to problems of accumulated error, ergo smaller

average error and smaller. It is also worth noting that, the estimation abilities of the

DAEKF are consistent across various cell numbers, as demonstrated by Fig. 6.4.

42

0 500 1000 1500

Time [s]

0

0.005

0.01

0.015

V
o

lt
a

g
e

 [
V

]

DAEKF: Predicted Measurement RMS Error

200 400 600 800 1000 1200 1400

Time [s]

0

0.5

1

1.5

E
rr

o
r

10-5 RMSE of SOC Estimation: DAEKF vs. Sparse EKF

DAEKF

Sparse EKF

200 400 600 800 1000 1200 1400

Time [s]

0

1

2

D
if
fe

re
n

c
e

10-7 Absolute Difference Between DAEKF and Sparse EKF

Figure 6.3: DAEKF and sparse EKF performance comparison over 100 cells.

Average DAEKF SOC Estimation Error (RMS)

2 5 10 20 30 50 75 100 150 200

Number of Cells

0

0.5

1

1.5

A
v
e

ra
g

e
 E

rr
o

r

10
-3

Average DAEKF Predicted Measurement Error (RMS)

2 5 10 20 30 50 75 100 150 200

Number of Cells

0

0.002

0.004

0.006

0.008

0.01

0.012

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.4: Evolution of average RMS errors in estimation and measurement prediction
across 20 trials over various cell numbers.

43

CHAPTER SEVEN

SPECIAL CASE WITH HOMOGENEOUS CELL CURRENT

Up to this point, the calculation of Γ has involved dynamic balancing currents,

requiring its computation to occur online. However, the case of no balancing currents, i.e.,

u1
k = u2

k = · · ·= uN
k , offers the conversion of the calculation to an exclusively offline

format. Without loss of generality, recall (4.3), where the state-of-charge fitness factor is

computed to be

γ
i
s,k =

η i

Ci ui
k

1
N ∑

N
i=1

η i

Ci ui
k

=

η i

Ci

1
N ∑

N
i=1

η i

Ci

, (7.1)

which is now constant with respect to time. Because cell capacities and efficiencies are

quantities known a priori, the computation of each cell’s SOC RFF in the case of no

balancing currents can be relegated to an offline computation. However, the same does not

hold for the RFF for relaxation voltage. Recalling how the voltage RFF is defined in (4.4),

a similar simplification to the one in (7.1) can be made if
V i

k
τi

p
is sufficiently small

γ
i
V,k ≈

ui
k

Ci
p

1
N ∑

N
i=1

ui
k

Ci
p

. (7.2)

However, computing γ i
V,k in this way incurs a certain amount of error, which is

derived in the following theorem.

Theorem 4. The error incurred in the computation of (2.1b) over V i
k+1 is given by∣∣∣∣∣∣∣∣∣−

Ts

τ i
p

V i
k +

Ts

Ci
p

ui
k

1−
∑

N
i=1

(
ui
k

Ci
p
−

V i
k

τi
p

)
∑

N
i=1

ui
k

Ci
p


∣∣∣∣∣∣∣∣∣. (7.3)

44

Proof. To assess the error involved in using the offline approximation of γ i
V,k, we consider

the difference between the discrete-time voltage update equation (2.1b) and the voltage

update as recovered from multiplying γ i
V,k to the change in the average (4.5b)

f1 :=

(
1− Ts

τ i
p

)
V i

k +
Ts

Ci
p

ui
k

f2 :=V i
k + γ

i
V,k∆Vµ,k.

For brevity, we denote these as f1 and f2, respectively. Substituting the approximation

(7.2) and the actual value for ∆Vµ,k as defined in (4.2b), f2 is expressed as

f2 =V i
k +

ui
k

Ci
p

1
N ∑

N
i=1

ui
k

Ci
p

· 1
N

N

∑
i=1

(
Ts

Ci
p

ui
k−

Ts

τ i
p

V i
k

)

=V i
k +

Ts
Ci

p
ui

k

∑
N
i=1

ui
k

Ci
p

·
N

∑
i=1

(
ui

k
Ci

p
−

V i
k

τ i
p

)
.

To compute the error, f2 is subtracted from f1, and the absolute value of the result is

obtained:

e = | f1− f2|

=

∣∣∣∣∣∣∣∣∣−
Ts

τ i
p

V i
k +

Ts

Ci
p

ui
k

1−
∑

N
i=1

(
ui

k
Ci

p
−

V i
k

τi
p

)
∑

N
i=1

ui
k

Ci
p


∣∣∣∣∣∣∣∣∣.

This completes the proof.

Referring to Fig. 7.1 and its tabulated values in Table 7.1, the conversion of

computations involving Γ to an offline format visibly reduces the DAEKF’s FLOPs

required for the time update by 66%. To be specific, the offline computations remove

24N−2 FLOPs from the online computation of the time update. Thus, in the case of no

45

DAEKF Time Update FLOP Comparison

5 10 15 20 25 30 35 40 45 50

Number of Cells

0

200

400

600

800

1000

1200

1400

1600

1800

2000

F
L
O

P
s

No Balancing

Balancing

Figure 7.1: Comparison of DAEKF FLOP count between the cases of balancing currents
and no balancing currents.

Table 7.1: DAEKF FLOPs for No Balancing and Balancing Time Updates

Cell Number Not Balanced Balanced
5 76 194

10 136 374
15 196 554
20 256 734
25 316 914
30 376 1094
35 436 1274
40 496 1454
45 556 1634
50 616 1814

46

balancing currents, the growth rate of the dense time update’s FLOP count grows

one-third as quickly as the case of balancing currents.

47

CHAPTER EIGHT

CONCLUSION

In this paper, the dense formulation of the extended Kalman filter, termed as

DEKF, was introduced to address the computational overhead and intractable resource

demands that hinder the sparse extended Kalman filter. The DEKF’s framework was

developed from the theoretical standpoint, its equivalence to the sparse formulation

demonstrated, the adaptive step appended to the general algorithm (DAEKF), and its

overall performance assessed from the perspective of resource consumption as well as the

ability to estimate multiple cells’ state simultaneously. Comparing FLOP count, the sparse

method’s FLOP count exhibited poor scalability insofar as its proportionality to the

number of cells N cubed, whereas the proposed dense method proved its superiority with a

FLOP count growing linearly with N. To this end, a slight optimization of the DAEKF

was introduced in the scenario of no balancing currents, where the RFF matrix Γ and

adjacent computations thereto can be performed offline. As for estimating performance,

the DAEKF maintained good SOC estimation for not only the selected five and

hundred-cell cases but over a plethora of cell numbers, where the average error in the

predicted measurement as well as its standard deviation gradually decreased for larger cell

numbers. Future work directions include: (1) validate the DAEKF’s estimation ability

through hardware experiment, (2) event-triggered methods which employ streamlined

methods for slowly changing balancing currents, and (3) assessing the feasibility of a

“dense" OCV-SOC curve approximation.

48

REFERENCES

[1] P. Ahmadi, “Environmental impacts and behavioral drivers of deep decarbonization
for transportation through electric vehicles,” Journal of Cleaner Production, 2019.

[2] H. Hao, X. Cheng, Z. Liu, , and F. Zhao, “Electric vehicles for greenhouse gas
reduction in china: A cost-effectiveness analysis,” Transportation Research Part D,
2017.

[3] X. Chen, W. Shen, T. Vo, Z. Cao, and A. Kapoor, “An overview of lithium-ion
batteries for electric vehicles,” IEEE, pp. 230–235, 2012.

[4] H. Askari, A. Khajepour, M. B. Khamesee, and Z. L. Wang, “Embedded
self-powered sensing systems for smart vehicles and intelligent transportation,”
Nano Energy, vol. 66, p. 104103, 2019.

[5] M. Dendaluce Jahnke, F. Cosco, R. Novickis, J. Pérez Rastelli, and V. Gomez-Garay,
“Efficient neural network implementations on parallel embedded platforms applied
to real-time torque-vectoring optimization using predictions for multi-motor electric
vehicles,” Electronics, vol. 8, no. 2, 2019.

[6] J. Chen, A. Behal, and C. Li, “Active battery cell balancing by real time model
predictive control for extending electric vehicle driving range,” IEEE Transactions
on Automation Science and Engineering. Accepted June 2023.

[7] M. Einhorn, W. Roessler, and J. Fleig, “Improved performance of serially connected
li-ion batteries with active cell balancing in electric vehicles,” IEEE Transactions on
Vehicular Technology, vol. 60, no. 6, pp. 2448–2457, 2011.

[8] J. Huang, D. Shi, and T. Chen, “Event-triggered state estimation with an energy
harvesting sensor,” IEEE Transactions on Automatic Control, vol. 62, no. 9,
pp. 4768–4775, 2017.

[9] J. Chiasson and B. Vairamohan, “Estimating the state of charge of a battery,” IEEE
Transactions on Control Systems Technology, vol. 13, pp. 465–470, April 2005.

[10] A. Pozzi, M. Zambelli, A. Ferrara, and D. M. Raimondo, “Balancing-aware charging
strategy for series-connected lithium-ion cells: A nonlinear model predictive control
approach,” IEEE Transactions on Control Systems Technology, vol. 28, no. 5,
pp. 1862–1877, 2020.

[11] F. S. Hoekstra, L. W. Ribelles, H. J. Bergveld, and M. Donkers, “Real-time range
maximisation of electric vehicles through active cell balancing using
model-predictive control,” in 2020 American Control Conference, (Denver, CO),
pp. 2219–2224, July 1–3, 2020.

49

[12] H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent circuit
models for state of charge estimation by an experimental approach,” Energies, vol. 4,
no. 4, pp. 582–598, 2011.

[13] L. Zhang, H. Peng, Z. Ning, Z. Mu, and C. Sun, “Comparative research on rc
equivalent circuit models for lithium-ion batteries of electric vehicles,” Applied
Sciences, vol. 7, no. 10, 2017.

[14] X. Lai, Y. Zheng, and T. Sun, “A comparative study of different equivalent circuit
models for estimating state-of-charge of lithium-ion batteries,” Electrochimica Acta,
vol. 259, pp. 566–577, 2018.

[15] S. J. Moura, F. B. Argomedo, R. Klein, A. Mirtabatabaei, and M. Krstic, “Battery
state estimation for a single particle model with electrolyte dynamics,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 2, pp. 453–468, 2016.

[16] K. Movassagh, S. A. Raihan, and B. Balasingam, “Performance analysis of coulomb
counting approach for state of charge estimation,” in 2019 IEEE Electrical Power
and Energy Conference (EPEC), pp. 1–6, 2019.

[17] G. Fathoni, S. A. Widayat, P. A. Topan, A. Jalil, A. I. Cahyadi, and O. Wahyunggoro,
“Comparison of state-of-charge (soc) estimation performance based on three popular
methods: Coulomb counting, open circuit voltage, and kalman filter,” in 2017 2nd
International Conference on Automation, Cognitive Science, Optics, Micro
Electro-Mechanical System, and Information Technology (ICACOMIT), pp. 70–74,
2017.

[18] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry,
“Kalman filtering with intermittent observations,” IEEE transactions on Automatic
Control, vol. 49, no. 9, pp. 1453–1464, 2004.

[19] G. Y. Kulikov and M. V. Kulikova, “Accurate numerical implementation of the
continuous-discrete extended kalman filter,” IEEE Transactions on Automatic
Control, vol. 59, no. 1, pp. 273–279, 2013.

[20] H. R. Hashemipour, S. Roy, and A. J. Laub, “Decentralized structures for parallel
kalman filtering,” IEEE Transactions on automatic control, vol. 33, no. 1, pp. 88–94,
1988.

[21] A. Tsiamis and G. J. Pappas, “Online learning of the kalman filter with logarithmic
regret,” IEEE Transactions on Automatic Control, vol. 68, no. 5, pp. 2774–2789,
2022.

[22] S. Liu, Z. Wang, Y. Chen, and G. Wei, “Protocol-based unscented kalman filtering in
the presence of stochastic uncertainties,” IEEE Transactions on Automatic Control,
vol. 65, no. 3, pp. 1303–1309, 2019.

50

[23] G. L. Plett, “Extended kalman filtering for battery management systems of
lipb-based hev battery packs: Part 1. background,” Journal of Power Sources,
vol. 134, no. 2, pp. 252–261, 2004.

[24] R. Xiong, H. He, F. Sun, and K. Zhao, “Evaluation on state of charge estimation of
batteries with adaptive extended kalman filter by experiment approach,” IEEE
Transactions on Vehicular Technology, vol. 62, no. 1, pp. 108–117, 2013.

[25] G. L. Plett, “Extended kalman filtering for battery management systems of
lipb-based hev battery packs: Part 3. state and parameter estimation,” Journal of
Power Sources, vol. 134, no. 2, pp. 277–292, 2004.

[26] D. Sun, X. Yu, C. Wang, C. Zhang, R. Huang, Q. Zhou, T. Amietszajew, and
R. Bhagat, “State of charge estimation for lithium-ion battery based on an intelligent
adaptive extended kalman filter with improved noise estimator,” Energy, vol. 214,
p. 119025, 2021.

[27] H. He, R. Xiong, X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the
lithium-ion battery using an adaptive extended kalman filter based on an improved
thevenin model,” IEEE Transactions on Vehicular Technology, vol. 60, no. 4,
pp. 1461–1469, 2011.

[28] O. C. Imer and T. Basar, “Optimal estimation with limited measurements,” in
Proceedings of the 44th IEEE Conference on Decision and Control, pp. 1029–1034,
IEEE, 2005.

[29] A. Valade, P. Acco, P. Grabolosa, and J.-Y. Fourniols, “A study about kalman filters
applied to embedded sensors,” Sensors, vol. 17, no. 12, 2017.

[30] P. Closas, J. Vilà-Valls, and C. Fernández-Prades, “Computational complexity
reduction techniques for quadrature kalman filters,” in 2015 IEEE 6th International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), pp. 485–488, 2015.

[31] D. Simon, “Kalman filtering,” Embedded systems programming, vol. 14, no. 6,
pp. 72–79, 2001.

[32] M. Raitoharju and R. Piché, “On computational complexity reduction methods for
kalman filter extensions,” IEEE Aerospace and Electronic Systems Magazine,
vol. 34, no. 10, pp. 2–19, 2019.

[33] Z. Deng, X. Hu, X. Lin, Y. Che, L. Xu, and W. Guo, “Data-driven state of charge
estimation for lithium-ion battery packs based on gaussian process regression,”
Energy, vol. 205, p. 118000, 2020.

51

[34] L. Song, K. Zhang, T. Liang, X. Han, and Y. Zhang, “Intelligent state of health
estimation for lithium-ion battery pack based on big data analysis,” Journal of
Energy Storage, vol. 32, p. 101836, 2020.

[35] D. Zhang, L. D. Couto, P. S. Gill, S. Benjamin, W. Zeng, and S. J. Moura,
“Thermal-enhanced adaptive interval estimation in battery packs with heterogeneous
cells,” IEEE Transactions on Control Systems Technology, vol. 30, no. 3,
pp. 1102–1115, 2022.

[36] Z. Pei, X. Zhao, H. Yuan, Z. Peng, and L. Wu, “An equivalent circuit model for
lithium battery of electric vehicle considering self-healing characteristic,” Journal of
Control Science and Engineering, vol. 2018, 2018.

[37] S. S. Madani, E. Schaltz, and S. Knudsen Kær, “An electrical equivalent circuit
model of a lithium titanate oxide battery,” Batteries, vol. 5, no. 1, p. 31, 2019.

[38] J. Wehbe and N. Karami, “Battery equivalent circuits and brief summary of
components value determination of lithium ion: A review,” in 2015 Third
International Conference on Technological Advances in Electrical, Electronics and
Computer Engineering (TAEECE), (Beirut, Lebanon), pp. 45–49, 2015.

[39] H. He, X. Zhang, R. Xiong, Y. Xu, and H. Guo, “Online model-based estimation of
state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles,”
Energy, vol. 39, no. 1, pp. 310–318, 2012. Sustainable Energy and Environmental
Protection 2010.

[40] A. Charnes, M. J. Kirby, and R. A. C. M. VA, “Properties of a generalized inverse
with applications to linear programming theory,” McLean, Va., Research Analysis
Corporation Technical Paper Number RAC-TP-171, August, 1965.

[41] C. T. Fraser and S. Ulrich, “Adaptive extended kalman filtering strategies for
spacecraft formation relative navigation,” Acta Astronautica, vol. 178, pp. 700–721,
2021.

[42] J. N. Yang, S. Lin, H. Huang, and L. Zhou, “An adaptive extended kalman filter for
structural damage identification,” Structural Control and Health Monitoring: The
Official Journal of the International Association for Structural Control and
Monitoring and of the European Association for the Control of Structures, vol. 13,
no. 4, pp. 849–867, 2006.

[43] X. Lin, H. E. Perez, J. B. Siegel, A. G. Stefanopoulou, Y. Li, R. D. Anderson,
Y. Ding, and M. P. Castanier, “Online parameterization of lumped thermal dynamics
in cylindrical lithium ion batteries for core temperature estimation and health
monitoring,” IEEE Transactions on Control Systems Technology, vol. 21, no. 5,
pp. 1745–1755, 2012.

52

[44] X. Lin, H. Fu, H. E. Perez, J. B. Siege, A. G. Stefanopoulou, Y. Ding, and M. P.
Castanier, “Parameterization and observability analysis of scalable battery clusters
for onboard thermal management,” Oil & Gas Science and Technology–Revue d’IFP
Energies nouvelles, vol. 68, no. 1, pp. 165–178, 2013.

[45] H. E. Perez, J. B. Siegel, X. Lin, A. G. Stefanopoulou, Y. Ding, and M. P. Castanier,
“Parameterization and validation of an integrated electro-thermal cylindrical lfp
battery model,” in Dynamic Systems and Control Conference, vol. 45318, pp. 41–50,
American Society of Mechanical Engineers, 2012.

53

	ACKNOWLEDGMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	2 CELL STATE ESTIMATION PROBLEM
	2.1 Battery Model
	2.2 Problem Formulation

	3 SPARSE EXTENDED KALMAN FILTER
	3.1 Sparse Prediction Model and Time Update
	3.2 Sparse Kalman Gain and Measurement Update

	4 RELATIVE FITNESS FACTORS
	4.1 Derivation of Individual RFF
	4.2 Constructing the RFF Matrix

	5 DENSE EXTENDED KALMAN FILTER
	5.1 Dense Time Update
	5.2 Dense Measurement Update
	5.3 Adaptive DEKF
	5.4 Complete DAEKF Algorithm

	6 SIMULATION RESULTS
	6.1 Implementation Details and Methodology
	6.2 Results and Discussion

	7 SPECIAL CASE WITH HOMOGENEOUS CELL CURRENT
	8 CONCLUSION
	REFERENCES

