
DEVELOPMENT OF A FOUR-WHEEL STEERING SCALE VEHICLE FOR
AUTONOMOUS VEHICLE MOTION CONTROL EVALUATION

by

CHRISTOPHER CARLYLE ROTHER

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHATRONIC SYSTEMS ENGINEERING

2023

Oakland University
Rochester, Michigan

Thesis Advisory Committee:

Jun Chen, Ph.D., Chair
Khalid Mirza, Ph.D.
Shadi Alawneh, Ph.D.

© by Christopher Carlyle Rother, 2023
All rights reserved

ii

ACKNOWLEDGMENTS

The author wishes to thank his advisor, Jun Chen, Ph.D., for his support and

expertise throughout the research process. Thanks are also due to committee members

Khalid Mirza, Ph.D. and Shadi Alawneh, Ph.D. for their contributions to this thesis.

Acknowledgment should also be extended to peers Zhaodong Zhou, Ali Irshayyid, and

Luke Nucalaj.

Christopher Carlyle Rother

iii

ABSTRACT

DEVELOPMENT OF A FOUR-WHEEL STEERING SCALE VEHICLE FOR
AUTONOMOUS VEHICLE MOTION CONTROL EVALUATION

by

Christopher Carlyle Rother

Adviser: Jun Chen, Ph.D.

The instrumentation and operation of a full-size vehicle for Autonomous Vehicle

motion control development can be costly. This paper presents a scale vehicle platform

that serves as a cost effective transition from testing in a simulation environment to a

physical system. The proposed scale vehicle platform, called JetRacer-4WS, is based on

the open-source JetRacer autonomous vehicle with additional modifications to support

four-wheel steering. To demonstrate the effectiveness of the proposed platform, model

predictive control-based motion controls are tested and calibrated using an ultrasonic

indoor positioning system to provide vehicle state information to the controller. The

developed scale vehicle demonstrates that four-wheel steering model predictive control

can significantly improve performance in certain driving scenarios, i.e., by reducing the

root mean square path tracking error by up to 21% for the testing included in this paper.

Finally, event-triggered model predictive control is also implemented and validated using

the proposed platform.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

CHAPTER ONE
INTRODUCTION 1

CHAPTER TWO
SCALE VEHICLE DESIGN 5

CHAPTER THREE
MPC-BASED PATH FOLLOWING 14

3.1. Vehicle Dynamic Model 14

3.2. Optimal Control Problem 15

3.3. Delay Compensation 17

3.4. PID Velocity Control 18

3.5. Track Generation 20

CHAPTER FOUR
CASE STUDY: CALIBRATION WITH DOE 27

4.1. Calibration Process 28

4.2. Small Track Test Results 31

4.3. Large Track Test Results 36

CHAPTER FIVE
CASE STUDY: EVENT-TRIGGERED MPC 41

v

TABLE OF CONTENTS—Continued

5.1. Event-Triggered MPC Path Following Control 41

5.2. Small Track Test Results 43

5.3. Large Track Test Results 44

CHAPTER SIX
CONCLUSION 50

REFERENCES 52

vi

LIST OF TABLES

Table 1.1 Comparison of the proposed JetRacer-4WS
with a selection of existing scale vehicles. 3

Table 2.1 Summary bill of materials for scale vehicle 12

Table 4.1 Design Of Experiments (DoE) results for two-wheel
steering Model Predictive Control (MPC) for
the small track. 33

Table 4.2 DoE results for four-wheel steering MPC for
the small track. 34

Table 4.3 DoE results for two-wheel steering MPC for
the large track. 37

Table 4.4 DoE results for four-wheel steering MPC for
the large track. 38

Table 5.1 Small track results for two-wheel steering event
triggered MPC. 44

Table 5.2 Small track results for four-wheel steering event
triggered MPC. 44

Table 5.3 Large track results for two-wheel steering event
triggered MPC. 47

Table 5.4 Large track results for four-wheel steering event
triggered MPC. 48

vii

LIST OF FIGURES

Figure 2.1 The proposed scale Autonomous Vehicle (AV)
platform with four-wheel steering capability. 5

Figure 2.2 Standard front wheel steering assembly for
the Tamiya TT-02 RC car. 6

Figure 2.3 Marvelmind Dashboard software showing the
stationary/mobile beacon locations. 8

Figure 2.4 Custom rear wheel steering assembly. 9

Figure 2.5 Custom rear wheel steering assembly annotated
drawing. 10

Figure 2.6 CAD drawing of the rear steering knuckle redesign. 11

Figure 2.7 Wiring schematic for JetRacer-4WS. 13

Figure 3.1 Overview of JetRacer-4WS motion control system. 22

Figure 3.2 A bicycle model with relevant parameters for
the vehicle dynamic model. 23

Figure 3.3 Reference state sequence coordinates plotted
with the corresponding state sequence. 24

Figure 3.4 Comparison of velocity signals with PID control
(1.0m/s set point) and constant throttle. 25

Figure 3.5 Comparison of velocity signals with PID control
(1.6m/s set point) and constant throttle. 26

Figure 4.1 The JetRacer-4WS platform with the testing track. 27

Figure 4.2 Latin hypercube calibration set for the small
track two-wheel steering mode test. 29

viii

LIST OF FIGURES—Continued

Figure 4.3 Latin hypercube calibration set for the small
track four-wheel steering mode test. 30

Figure 4.4 Latin hypercube calibration set for the large
track two-wheel steering mode test. 31

Figure 4.5 Latin hypercube calibration set for the large
track four-wheel steering mode test. 32

Figure 4.6 Path tracking performance for two- and four-wheel
steering MPC systems on the small track. 35

Figure 4.7 Path tracking performance for two- and four-wheel
steering MPC systems on the large track. 39

Figure 5.1 A representation of the event-triggered MPC algorithm. 42

Figure 5.2 Small track two-wheel steering path tracking
performance for event-triggered MPC. 45

Figure 5.3 Small track four-wheel steering path tracking
performance for event-triggered MPC. 46

Figure 5.4 Large track two-wheel steering path tracking
performance for event-triggered MPC. 48

Figure 5.5 Large track four-wheel steering path tracking
performance for event-triggered MPC. 49

ix

LIST OF ABBREVIATIONS

AV Autonomous Vehicle

DoE Design Of Experiments

ESC Electronic Speed Controller

MPC Model Predictive Control

RMSE Root Mean Square Error

x

CHAPTER ONE

INTRODUCTION

Model Predictive Control (MPC) has been widely studied in the field of

Autonomous Vehicle (AV) control [1–3] and mechatronics [4–6]. During early stages in

the design/development process of an MPC system, a relatively simple simulation

environment is generally used to ensure functionality and give an indication of the

performance that can be expected when the MPC system is fully implemented later in

hardware. For example, in [7], a simple MATLAB simulation environment was created to

evaluate the performance of four different MPC-based AV path following controllers.

Automotive simulation tools such as CARLA [8] are also used for a more thorough virtual

evaluation of MPC performance [9].

Transitioning the testing/evaluation process of an MPC system from simulation

into a physical environment presents several challenges. Instrumenting full-size vehicles

and using controlled testing facilities can introduce much higher costs. To address this

issue, scale vehicles have been developed in recent years to demonstrate autonomous

driving capability [10–15]. Several scale vehicle platforms from existing literature are

compared in Table 1.1. Integrating a scale vehicle platform into the controls development

process allows engineers to perform initial hardware evaluations and to debug issues

involved with using physical controllers, sensors, and actuators. Many scale vehicles, such

as the platform presented in [10], are primarily designed as educational tools, as the

two-wheel differential steering method is not representative of the steering systems found

in full-size vehicles. The Ackermann steering mechanisms used in [11–15] have greater

potential to be introduced into the AV development process. The scale vehicles presented

in [13–15] feature end-to-end autonomous driving technology, where AI methods are used

1

to generate control outputs directly from the sensor inputs. This is a potentially powerful

application of modern technology; however, it is currently rarely used in industry as

"explained by the challenges of verifying system performance" [13]. More traditional

methods that involve separate environment perception, path planning, and motion control

components are used in the scale vehicles presented in [10–13]. This results in greater

correlation to current automotive technology, which encourages integration into the AV

development process.

This paper presents a new scale vehicle platform, based on the open-source

JetRacer [15], for testing and evaluation of autonomous vehicle motion controls,

specifically for MPC systems. The proposed vehicle, which will be referred to as the

JetRacer-4WS for the remainder of the paper, has two significant differences from other

platforms that support its research contribution. First, the vehicle has four-wheel steering

capability, which allows early stage testing and validation of MPC-based motion control

algorithms with active rear steering functionality. Second, the platform is designed

primarily to test and evaluate motion control algorithms, rather than to demonstrate full

autonomous driving capability. In order to isolate the motion controls and avoid error

from other aspects of traditional AV operation, the platform does not include any onboard

environment perception capabilities, and a predefined vehicle path is used in lieu of

real-time path planning. Instead, vehicle localization is achieved using a Marvelmind

indoor positioning system [16] to provide real-time vehicle state information, which is fed

into the motion control module as feedback. Note that alternative positioning systems

could be developed using an overhead camera to track the vehicle with computer vision

methods [12] or an RTK GPS unit for outdoor testing [17, 18].

To demonstrate the effectiveness of the JetRacer-4WS platform and explore the

viability of implementing four-wheel steering MPC in physical AV control systems,

2

Table 1.1: Comparison of the proposed JetRacer-4WS with a selection of existing scale
vehicles.

Platform Steering Use Case Processor Onboard Sensors Cost

Duckiebot [10]
Two-wheel

differential

PD lane

keeping control
Raspberry Pi 2 Camera w/ fisheye lens $150

MIT Racecar [11] Ackermann
PID steering

control

NVIDIA

Jetson TX1

RGB-D camera

Scanning Lidar

Stereo camera

IMU

Speedometer

∼$3000

estimated

in [12]

ASIMcar [12] Ackermann
Stanley control method

for lane keeping

NVIDIA

Jetson TX2

IMU

Front camera w/ fisheye lens

Rear camera

One-beam Lidar

Speedometer

$1200

F1/10 [13] Ackermann

End-to-end

autonomous driving

and MPC

NVIDIA

Jetson TX2

Monocular USB web cam

Depth camera

Scanning Lidar

IMU

$3480 [19]

CNN-based

scale vehicle [14]
Ackermann

End-to-end

autonomous driving
Raspberry Pi 4

Camera w/ fisheye lens

Ultrasonic sensor
N/A

JetRacer [15] Ackermann
End-to-end

autonomous driving

NVIDIA

Jetson Nano
Wide angle camera $825

JetRacer-4WS

(ours)

Independent

front and rear

Ackermann

MPC path following

evaluation

NVIDIA

Jetson Nano

Mobile beacon for

Marvelmind indoor

positioning system

$850

3

several experiments are conducted comparing the path following performance of

two-wheel steering and four-wheel steering MPC systems. With a standard time-triggered

MPC implementation, both systems are calibrated to comparable maturity by designing

and running a series of calibrations using latin hypercube-based Design of Experiment

(DoE) methods. The performance of each calibration is then indexed based on root mean

square error and maximum error. The results of this scale vehicle research support the

application of four-wheel steering motion controls in physical AV systems to improve path

following performance in low-speed driving scenarios that benefit from greater agility and

maneuverability. Then, an event-triggered MPC system [7, 20–27] is implemented and

tested with several triggering thresholds. The results show that the four-wheel steering

system continues to perform best for the given driving scenario, while the triggering

threshold can be used to reduce computational load in exchange for reduced path

following performance.

The remainder of the paper is organized as follows. Chapter Two covers the

hardware design of the scale vehicle. Chapter Three introduces the MPC-based path

following controllers that are used to demonstrate the scale AV platform. Chapter Four

presents a systematic and automatic calibration procedure, together with experimental

results, and Chapter Five presents another case study of validating event-triggered MPC

with the proposed JetRacer-4WS. The paper is concluded in Chapter Six.

4

Figure 2.1: The proposed scale AV platform with four-wheel steering capability.

CHAPTER TWO

SCALE VEHICLE DESIGN

The JetRacer-4WS platform, based on the open-source JetRacer [15], is built from

a 1/10th scale Tamiya TT-02 RC car. See Fig. 2.1. The vehicle is driven by an electric

motor powering all four wheels through open differentials. Motor speed is controlled by a

Tamiya Electronic Speed Controller (ESC). A servo multiplexer (switched from the RC

transmitter) is used to select if the RC transmitter/receiver or the Jetson Nano/servo driver

module supply the control signals for the ESC and steering servos.

An NVIDIA Jetson Nano Developer Kit is installed on the Jetracer-4WS for

real-time data processing and control. Much of the code for the standard JetRacer platform

is for end-to-end autonomous driving and is not useful for this application. However, the

5

Figure 2.2: Standard front wheel steering assembly for the Tamiya TT-02 RC car.

6

codes setting up the control interfaces for the ESC and steering servo are reused. New

instances of the interface are created to process the rear steering servo commands from

additional sets of pins on the servo control board. One set of pins is used to keep the servo

at zero degrees when the multiplexer passes through the RC receiver signals. The other set

of pins is used to control the servo based on the MPC-generated steering command when

the multiplexer passes through the control signals from the Jetson Nano.

For the testing presented in this paper, the MPC system runs on a separate

computer. To calculate vehicle state information for the MPC-based motion controls, a

Marvelmind indoor positioning system [16] is used. The system consists of five beacons

and a modem. One of the beacons is mounted on the scale vehicle, and the Marvelmind

software is used to modify the settings to identify it as the mobile beacon. The other four

beacons are placed around the perimeter of the testing area, and they are set as stationary

beacons. Fig. 2.3 shows the beacon positions in the Marvelmind software. The position of

the mobile beacon is calculated based off of a time-of-flight calculation of an ultrasonic

signal sent from the mobile beacon to the stationary beacons [16]. The modem

communicates with the beacons wirelessly and sends data to the computer through a USB

connection. The computer interfaces with the onboard Jetson Nano through a WiFi

connection using Jupyter Lab. When the MPC system generates updated control

commands, they are sent from the computer to the Jetson Nano using a socket created

with the Python socket library.

The Jetracer-4WS platform’s front wheels use an Ackermann steering system

controlled by a servo motor as shown in Fig. 2.2. Originally, the rear wheels are designed

to be fixed at zero degrees. In order to create a rear wheel steering system for the car, the

front wheel steering design is modified to fit the different architecture around the rear

axles. See Fig. 2.4. Because of the placement of the spur gear and electric motor, it is

7

Figure 2.3: Marvelmind Dashboard software showing the stationary/mobile beacon
locations.

8

Figure 2.4: Custom rear wheel steering assembly.

simplest to mount the rear wheel steering components behind the rear axle. While original

parts can be used for some sections of the mechanism, other parts have to be modified or

specially designed and 3D printed to account for differing measurements.

Mounting points on the rear bumper originally used for cosmetic parts are

repurposed to fasten replacement copies of the front wheel bell cranks using a 3D printed

bracket with mounting pins. Because the bell cranks are positioned farther apart, the bell

crank linkage design also has to be lengthened to match the separation of the mounting

points and 3D printed. Replacement copies of the steering links and drag link both have to

be shortened (by cutting out a section of the middle of the link) and reconnected with a 3D

9

 69.0 mm

 28.0 mm

 25.5 mm

 14.5 mm

 13.5 mm

 17.0 mm

Figure 2.5: Custom rear wheel steering assembly annotated drawing.

printed bracket. The final lengths of the steering links must result in the wheels pointing

straight forward when the steering linkage assembly is centered. The rear steering

knuckles are also redesigned, as shown in Fig. 2.6, since exact copies of the front

knuckles would interfere with the rear dampers. The rear suspension arms also have to be

substituted for replacement copies of the front suspension arms. After drilling holes in the

rear bumper and fastening a second steering servo in place, the custom rear knuckles are

attached to the suspension arms, and the aforementioned steering linkage components are

assembled as shown in Fig. 2.4 and Fig. 2.5.

The electronic components are mostly connected as specified for the standard

JetRacer platform. See Fig. 2.7. The newly added rear steering servo connector is

10

Figure 2.6: CAD drawing of the rear steering knuckle redesign.

11

Table 2.1: Summary bill of materials for scale vehicle

Item Description Cost ($)

Tamiya TT02 NSX Kit 167.50

Tamiya TT02 Spare Parts for Rear Steering 24.75

Futaba RC Transmitter 162.35

Futaba Ball Bearing Servo x 2 33.46

Tenergy 7.2V Battery Pack 33.29

Intel Dual Band Wireless Card 20.98

TEU-105BK brushed ESC 52.00

Tenergy Battery Charger 23.99

3D printed parts 40.00

Misc Additional Parts 160.00

Nvidia Jetson Nano Dev Kit - B01 118.75

Total 837.07

attached to an output on the multiplexer board. The corresponding inputs on the

multiplexer both come from the servo driver.

Remark 1 Reducing cost of controls testing and evaluation is one of the primary reasons

to include a scale vehicle in the development process. All of the proposed JetRacer-4WS

components including the Jetson Nano Developer Kit can typically be found for around

$850. Table 2.1 lists the bill of materials for the proposed scale vehicle platform. In

addition, the Marvelmind system used for indoor positioning is currently between

$450-5001. In addition, Table 1.1 compares the cost of existing small vehicle platforms.

1Note that the cost information included in this chapter is based on the market price as of Fall 2021.

12

Figure 2.7: Wiring schematic for JetRacer-4WS.

13

CHAPTER THREE

MPC-BASED PATH FOLLOWING

To demonstrate the effectiveness of the JetRacer-4WS, an MPC path tracking

controller is designed. This chapter presents details of the MPC-based path tracking. The

control process is summarized in Fig. 3.1.

3.1 Vehicle Dynamic Model

MPC differs from traditional PID control because it incorporates a model of the

system behavior to determine the control action, rather than simply calculating a control

action based on the system’s offset from a desired set point. In other words, MPC requires

a model to predict the system evolution over the prediction horizon. This section briefly

discusses the vehicle model. Please refer to [28] for more details.

In literature, a dynamic vehicle model has been widely utilized [29, 30]. However,

since vehicle speed is usually low for the scale vehicle, a kinematic model is used in this

paper, which is specified as follows:

ṗx =V cos(ψ +β) (3.1a)

ṗy =V sin(ψ +β) (3.1b)

ψ̇ =
V cos(β)
Lx f +Lxr

(tan(δ f)− tan(δr)) (3.1c)

β =arctan
(

Lx f tan(δr)+Lxr tan(δ f)

Lx f +Lxr

)
(3.1d)

where px and py are the vehicle longitudinal and lateral positions, respectively, and ψ is

the vehicle yaw angle, all in the global frame; β is the vehicle slip angle; V is the velocity

of the vehicle’s center of gravity; Lx f and Lxr are the distances from the center of gravity

14

to the front and rear axles; δ f and δr are the front and rear steering angles. Fig. 3.2

illustrates these vehicle parameters using a bicycle model. The Marvelmind indoor

positioning system provides px and py. The angle ψ +β and the corresponding velocity V

are calculated from consecutive position measurements. Angle ψ can be calculated from

the ψ +β measurement by solving for β using equation 3.1d.

The state vector can be compactly denoted as

x(t) =
[

px, py,ψ

]T
,

and the control vector can be compactly denoted as

u(t) =
[

δ f ,δr

]T

Note that for a four-wheel steering system, the front and rear steering angles can be

independently commanded, while for a conventional two-wheel steering system with front

steering only, the rear steering angle δr is fixed to zero, and the control vector reduces to

u(t) = δ f .

3.2 Optimal Control Problem

MPC uses a prediction horizon p of several future points in time. The control

sequence U is the series of control actions for each point in the prediction horizon. Each

control sequence results in a state sequence X according to the prediction model described

above. A cost function can then be defined over the control sequence as well as the state

sequence to quantify the performance of the control sequence over the prediction horizon.

An optimization process is executed to determine the optimal control sequence that

minimizes the cost function.

In the case of path tracking control, the primary objective is to minimize the offset

between the vehicle’s actual and desired position. However, to ensure stability, the cost

15

function also includes other terms to penalize large steering angles and large changes in

steering angle between time steps. These terms are implemented to minimize the impact

of noise in the MPC inputs and to ensure smooth steering inputs that mimic a human

driving style. More specifically, MPC solves the following optimal control problem at

each time step:

min
u

p

∑
k=1
||xk− xr

k||
2
Qx +

p−1

∑
k=0
||uk||2Qu

+
p−1

∑
k=0
||uk−uk−1||2Qd

(3.2a)

s.t. xk+1 = f (xk,uk), k = 0, . . . , p−1 (3.2b)

umin ≤ uk ≤ umax, k = 0, . . . , p−1 (3.2c)

∆min ≤ uk−uk−1 ≤ ∆max, k = 0, . . . , p−1 (3.2d)

where the first term in the cost function penalizes deviation from the desired path, the

second term discourages large steering angles, and the third term minimizes the steering

angle rate of change. The constraint (3.2b) can be obtained by discretizing the kinematic

vehicle dynamics (3.1).

The reference state term xr
k of the optimal control problem (3.2) is populated with

coordinates representing the desired vehicle path over the prediction horizon. The

coordinates are selected from the predetermined array of points that make up the track.

The first point xr
0 is set as the track point with the minimum distance to the initial vehicle

position x0. Note that this value may be different from the measured value of the vehicle’s

position if delay compensation is implemented, as described in Section 3.3. Then, the

number of points that the vehicle will pass for each step in the prediction horizon

assuming constant velocity is calculated by multiplying the scale vehicle velocity by the

distance between track points and dividing by the time between steps. The rounded

16

number of points is then used to calculate the indices of the remaining track points that

populate xr
k. Fig. 3.3 shows an example of a reference state sequence with the

corresponding state sequence. Note that the term of the cost function (3.2a) that

discourages large steering angles causes an increasing offset between the state sequence

and the reference state sequence towards the end of the prediction horizon.

Remark 2 As a receding horizon control technique, after solving (3.2), a time-triggered

MPC implementation then applies only the first action in the resulted control sequence,

and then the process is repeated at the next time step with updated feedback measurement.

In this paper, we will also demonstrate the effectiveness of the proposed JetRacer-4WS

through by event-triggered MPC [7], which continues to apply subsequent actions in the

resulted control sequence without resolving (3.2) for each time step until a threshold is

exceeded. In this case, the threshold is implemented as the vehicle’s deviation from the

desired path. Event-triggered MPC is used to reduce computational load compared to

standard time-triggered MPC. As the triggering threshold increases, new control

sequences are calculated at a lower frequency, which generally trades reduced

computational load for reduced system performance. See Chapter 5 for more details.

Note that each term in the cost function (3.2a) has a gain that is calibratable to

achieve ideal driving characteristics. Different values for Qx, Qu, and Qd can result in

significantly different control performance. Therefore, a systematic approach to tune these

parameters will be proposed and studied in Chapter Four.

3.3 Delay Compensation

Due to several factors contributing to delay in the system, the actual position of the

scale vehicle will be somewhat ahead of the calculated vehicle state by the time the

control action is applied and the vehicle reacts. Delay compensation is included in the

17

motion controls to account for this issue. The main causes of the delay are the time the

processor takes to update the control sequence and the latency of the Marvelmind position

data caused by filtering methods designed to reduce noise. Several steps can be taken to

significantly reduce, but not entirely remove, latency in the Marvelmind system. For

example, the mobile beacon contains an IMU which allows the Marvelmind system to

generate velocity data; however, configuring the system to include this processed data

resulted in a significantly increased latency.

In this paper, delay compensation is achieved using the vehicle model to solve for

an estimated vehicle state one time step in the future based on the measured vehicle state,

the vehicle velocity, and the current control set point. The MPC system uses this estimated

vehicle state as the initial state x0, as it is expected to more accurately reflect the real

vehicle state when the newly calculated control action is applied.

3.4 PID Velocity Control

While testing path tracking controls with the JetRacer-4WS platform, a constant

throttle value can be used. However, implementing a PID-based velocity control system

has multiple benefits. First, it allows the selection of a velocity set point, while the average

velocity achieved with a constant throttle setting may shift over time due to factors such as

the battery state of charge. In addition, implementing velocity control can somewhat

reduce velocity fluctuations caused by large steering angles and other disturbances.

The PID controller is implemented by defining the velocity error as e =Vr−V

where Vr is the reference velocity. The proportional term applies a control input based on

the magnitude of the error signal. The integral term builds up over time based on the error

magnitude. In this application, the integral term is mainly used to provide the steady-state

throttle position. The derivative term produces a control output based on the rate of

18

change of the error signal, which allows the control system to anticipate an account for a

potential overshoot. However, as is typical with PID control, the derivative term results in

an amplification of noise from the error signal. To minimize this issue, a discrete low pass

filter is implemented using the form of the single-pole infinite impulse response filter

presented in [31], both on the velocity signal and on the calculation of the derivative term.

The raw velocity signal v is filtered as follows:

V = (b∗ v)+(a∗V−1) (3.3)

where V−1 is the previous filtered velocity, and a and b are the filter coefficients.

For this application, in addition to the standard PID terms, an additional control term S is

defined. This term is used to increase the throttle value as steering angles increase to

account for sources of resistance such as reduced efficiency of u-joints. The proportional,

integral, and derivative terms are calculated using the following equations:

P =Kp ∗ e (3.4a)

I =(Ki ∗ e)+ I−1 (3.4b)

de
dt

=
e− e−1

dt
(3.4c)

D =Kd ∗ ((b∗
de
dt

)+(a∗ (de
dt

)−1)) (3.4d)

S =Ks ∗δ
2
f (3.4e)

throttle =P+ I +D+S (3.4f)

where Kp, Ki, and Kd are the PID weights, I−1 is the previous integral term value,

e−1 is the previous velocity error value, (de
dt)−1 is the previous error derivative value used

for filtering, and Ks is the steering compensation weight. Initially, this velocity control

19

system was implemented and calibrated for the JetRacer-4WS on the small track with

Vr = 1m/s, as shown in Fig. 3.4. This set point is close to the minimum possible value

that allows for effective control. The minimum throttle value that the ESC will apply

results in a velocity of approximately 0.7m/s. To function effectively, the velocity

controller must have a reasonable throttle range below the set point to reduce velocity

when required. In addition, the relationship between throttle and velocity becomes

increasingly non-linear approaching the minimum value. As expected, the system was

able to control to the 1.0m/s set point with an average velocity of 1.003m/s. The system

was also able to reduce the velocity fluctuations. The Root Mean Square Error (RMSE)

values are calculated based on the error from the average velocity, as the constant throttle

test did not have a velocity set point, resulting in an average velocity of 1.077m/s. The

RMSE value for the constant throttle test was 0.077m/s, and the RMSE for the velocity

controlled test was 0.060m/s, or a 22% improvement. Next, the velocity controller set

point was increased to 1.6m/s for testing on the larger track. After recalibration, the

results (Fig. 3.5) showed that the velocity controller was able to achieve an average

velocity of 1.591m/s. The velocity controller achieved an RMSE value of 0.058m/s,

while the constant throttle test, with an average velocity of 1.672m/s, resulted in an

RMSE value of 0.065m/s.

3.5 Track Generation

The JetRacer-4WS scale vehicle testing included in this paper uses an oval track

(two half circles connected by straight sections) defined as an array of coordinates. In

order to simplify the process of modifying the track, a Python code was written to

generate the track based off of several inputs. Because the Marvelmind data is generated

using one of the stationary beacons as the origin, it is useful to specify shifts in the x and y

20

directions, as well as a rotation angle for the track (θ). In addition, the code allows the

user to set the radius of the turns (R), the length of the straight sections (L), and the

number of points included in each half circle section (N).

First, coordinates for the upper half circle are generated. For each of the the points

from n = 0 to n = N−1, the coordinates are calculated using the following equations:

x =R∗ cos(
n∗π

N−1
) (3.5a)

y =R∗ sin(
n∗π

N−1
) (3.5b)

The lower half circle coordinates are the same, but with negated x and y values.

Then, the distance between points (d) is calculated as d = (π ∗ r)/(N−1). To ensure that

the value of d remains constant throughout the track, the requested length of the straight

sections l is modified to be the first multiple of d that exceeds the requested length. The

top/bottom half circles are shifted up/down by L/2. The left and right straight section

coordinates are generated to fill the space between the half circle sections, while ensuring

that the order of points results in a continuous track when the four sections are

concatenated into a single array. After concatenation, the track can be rotated by

multiplying each coordinate pair by the following rotation matrix:

R =

cosθ −sinθ

sinθ cosθ

 (3.6)

Finally, all coordinates in the rotated track are shifted by the specified values to

create the final array of track points used for JetRacer-4WS motion controls testing.

21

Update vehicle state measurement
(with velocity filtering)

Calculate delayed vehicle
state from measurement

Calculate reference state
sequence from track points

Define MPC with updated parameters

Solve MPC

Apply updated control
values

Calculate updated
throttle position with
velocity PID control

Figure 3.1: Overview of JetRacer-4WS motion control system.

22

Figure 3.2: A bicycle model with relevant parameters for the vehicle dynamic model.

23

3.4 3.6 3.8 4.0 4.2 4.4
x position (m)

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

po

sit
io
n
(m

)

vehicle measured position
vehicle position with dela
state sequence
reference state sequence

Figure 3.3: Reference state sequence coordinates plotted with the corresponding state
sequence.

24

0 2 4 6 8 10 12 14 16 18

time (s)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

v
e
lo

c
it
y
 (

m
/s

)

V - PID Control

V - Constant Throttle

Figure 3.4: Comparison of velocity signals with PID control (1.0m/s set point) and constant
throttle.

25

0 2 4 6 8 10 12 14 16 18

time (s)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

v
e
lo

c
it
y
 (

m
/s

)

V - PID Control

V - Constant Throttle

Figure 3.5: Comparison of velocity signals with PID control (1.6m/s set point) and constant
throttle.

26

Figure 4.1: The JetRacer-4WS platform with the testing track.

CHAPTER FOUR

CASE STUDY: CALIBRATION WITH DOE

This chapter proposes a systematic and automatic calibration process to tune the

time-triggered MPC implementation discussed above. The process is implemented for a

27

smaller and larger sized track. Fig. 4.1 shows the JetRacer-4WS platform on the smaller

track.

4.1 Calibration Process

There are many parameters in an MPC-based motion control system that can

impact its control performance, including the length of the prediction horizon, distance

between points in the path, and bounds for the control parameters. The calibration process

presented in this paper focuses on the gains Qx, Qu, and Qd for the cost function (3.2a).

Moreover, since only their relative magnitude impacts the solution of (3.2), Qx is assumed

to be fixed, and only the calibrations of Qu and Qd are explored.

Remark 3 The JetRacer-4WS platform can function with either four-wheel steering or

two-wheel steering models (by fixing the rear steering command at 0). For the two-wheel

steering mode, the control input u = δ f is a scalar, and so are Qu and Qd . Therefore in

this case, there are two calibration parameters to determine. On the other hand, for the

four-wheel steering mode, the control input u =

[
δ f ,δr

]T
has a dimension of 2. By

assuming both Qu and Qd are diagonal matrices, there are then 4 calibration parameters

to determine in this case.

There are several DoE methods to effectively populate the design space with

calibrations to test. A full factorial design could work well with two variables in the

two-wheel steering mode. However, for the four-wheel steering mode, when the number

of test points is small, the full factorial design will place many points on the edges of the

design space, causing the step sizes between points in the interior of the design space,

where the optimal calibration is expected to be located, to be too coarse. An alternative

DoE method that works better for systems with several variables is the latin

hypercube [32]. It populates the design space by attempting to maximize the minimum

28

4 4.5 5 5.5 6 6.5 7 7.5 8

Q
d

1

1.5

2

2.5

3

3.5

4

Q
u

Figure 4.2: Latin hypercube calibration set for the small track two-wheel steering mode
test.

distance between test points. Therefore in this paper, a latin hypercube feature included in

the Python scipy library is used for the DoEs for both the two- and four-wheel steering

modes. The resulting sets of calibrations for the smaller track are presented in Figs. 4.2

and 4.3, and the sets of calibrations for the larger track are presented in Figs. 4.4 and 4.5.

All DoEs show reasonable distribution over the design space. Note that more points are

generated in the four-wheel steering mode due to its larger design space.

In order to gather data for these calibration sets, the two- and four-wheel MPC

controllers are implemented in separate scripts. The scripts automatically iterate through

the DoEs, apply the calibration for a set time, and generate data files. Between each

iteration, the first calibration (known to function reasonably well from hand calibration or

29

Figure 4.3: Latin hypercube calibration set for the small track four-wheel steering mode
test.

30

10 12 14 16 18 20 22

Q
d

9

10

11

12

13

14

15

16

17

18

Q
u

Figure 4.4: Latin hypercube calibration set for the large track two-wheel steering mode
test.

previous DoE results) is reapplied to allow the system to recover if the previous DoE

calibration performs poorly. In addition, data collection for a DoE calibration is ended

early if the vehicle deviates from the desired path beyond a predefined threshold.

4.2 Small Track Test Results

Both the two- and four-wheel steering time-triggered MPC systems are calibrated

using the calibration procedure discussed above. For the two-wheel mode, the DoE shown

in Fig. 4.2 is used, with results shown in Table 4.1. For the four-wheel steering mode, the

DoE shown in Fig. 4.3 is used, with results shown in Table 4.2. Note that in Tables 4.1

and 4.2, the RMSE and maximum error, both on lateral offset, are calculated for each

calibration’s best lap around the track. In order to determine the best performing

31

Figure 4.5: Latin hypercube calibration set for the large track four-wheel steering mode
test.

32

Table 4.1: DoE results for two-wheel steering MPC for the small track.

Qd Qu RMSE Max Error I

5.69 3.54 0.092 0.182 4.45
7.27 1.63 0.085 0.180 4.27
4.48 1.78 0.069 0.147 3.48
6.05 2.63 0.082 0.165 4.01
4.13 2.96 0.078 0.156 3.80
6.81 2.74 0.083 0.174 4.15
6.36 3.46 0.078 0.150 3.73
5.91 2.08 0.073 0.160 3.74
5.29 1.42 0.065 0.139 3.27
5.07 3.16 0.071 0.150 3.56
7.06 3.92 0.096 0.191 4.67
4.95 2.46 0.062 0.153 3.40
7.93 2.31 0.070 0.146 3.49
4.62 3.74 0.078 0.208 4.51
6.70 1.99 0.060 0.128 3.02
7.51 3.28 0.079 0.162 3.89
5.60 2.20 0.058 0.124 2.94

calibrations, a simple equation for the cost index I = RMSE +MaxError is created where

RMSE and MaxError are normalized with respect to the smallest value. Note that in both

Tables 4.1 and 4.2, the top performing calibrations based on the cost index are marked in

bold. In addition, Fig. 4.6 plots the path tracking performance for both two- and

four-wheel steering MPC with their respective best calibration, i.e., Qd = 5.60 and

Qu = 2.20 for two-wheel steering MPC and Qd f = 1.55, Qdr = 4.00, Qu f = 1.40 and

Qur = 3.35 for four-wheel steering MPC.

The test results presented in Table 4.1, Table 4.2, and Fig. 4.6 show that the best

calibrations from the four-wheel steering time-triggered MPC test were able to outperform

33

Table 4.2: DoE results for four-wheel steering MPC for the small track.

Qd f Qdr Qu f Qur RMSE Max Error I

3.20 5.00 1.60 4.80 0.048 0.092 2.28
3.28 3.00 1.60 4.29 0.058 0.108 2.73
2.03 4.77 1.05 3.66 0.046 0.081 2.08
2.29 6.10 1.63 3.06 0.048 0.093 2.29
4.53 5.61 1.55 3.60 0.063 0.146 3.32
1.77 5.02 0.71 5.68 0.047 0.075 2.03
3.55 6.05 0.93 5.32 0.057 0.103 2.63
1.87 5.47 2.07 2.73 0.053 0.117 2.74
2.78 4.16 2.10 4.23 0.056 0.120 2.83
2.60 6.31 1.19 2.02 0.046 0.097 2.31
1.55 4.00 1.40 3.35 0.046 0.074 2.01
2.14 3.55 1.84 5.45 0.053 0.110 2.63
3.96 6.39 1.72 4.69 0.067 0.143 3.39
4.15 5.81 0.77 3.85 0.053 0.101 2.51
3.09 3.76 0.89 2.32 0.052 0.106 2.56
3.34 5.69 2.18 5.57 0.059 0.113 2.80
2.91 5.29 1.35 4.87 0.054 0.095 2.45
2.69 4.62 1.47 5.18 0.056 0.111 2.71
4.63 3.89 1.30 5.99 0.048 0.080 2.12
3.71 4.31 1.13 3.27 0.047 0.092 2.26
3.81 3.30 1.93 2.54 0.060 0.127 3.01
4.36 3.66 1.01 4.90 0.059 0.100 2.63
4.19 4.53 1.77 2.41 0.061 0.147 3.31
4.73 4.90 1.97 4.52 0.059 0.155 3.36
2.43 3.21 0.84 3.98 0.049 0.093 2.32
4.90 5.21 0.65 2.81 0.051 0.105 2.52

34

-1.5 -1 -0.5 0 0.5 1 1.5

p
x
 [m]

-1

-0.5

0

0.5

1

p
y
 [
m

] four wheel steering

two wheel steering

track

Figure 4.6: Path tracking performance for two- and four-wheel steering MPC systems on
the small track.

35

the best calibrations from the two-wheel steering test. For example, the minimum RMSE

values achieved by the four-wheel steering system show a 21% improvement over the

two-wheel steering system. It is worth noting that, as shown in Fig. 4.6, the test track used

in this paper has a small turning radius that approaches the maximum achievable by the

two-wheel steering geometry. Therefore, the results suggest that implementing

independent four-wheel steering MPC could see performance improvements in parking

lots and other challenging driving scenarios that require high agility. However, with fully

independent control of the front and rear steering angles, the complexity of (3.2)

increases. Furthermore, the solution of (3.2) is also impacted by additional error sources

from the rear wheel steering mechanism. Therefore, for most normal driving conditions, a

two-wheel steering MPC may be preferable.

Remark 4 An alternative control strategy for four-wheel steering that may be worth

further investigation is to determine the rear wheel steering angle based on the front

steering angle. In other words, the ratio between δr and δ f is predetermined as a function

of vehicle speed, and MPC is set up to calculate δ f only. Such a strategy could reduce

MPC complexity while maintaining four-wheel steering improvements in agility at low

speed and cornering stability at high speed [33].

4.3 Large Track Test Results

In addition to testing the JetRacer-4WS platform on the small track with a distinct

focus on maneuverability, path tracking results are also presented for testing on a larger

track with a higher velocity set point (1.6m/s). Due to the significantly different driving

style required for the larger radius turns and longer straight sections, recalibration of the

cost function weights is necessary to achieve optimal performance. As a result, the DoEs

for the larger track are generated using a different set of ranges for the calibration

36

Table 4.3: DoE results for two-wheel steering MPC for the large track.

Qd Qu RMSE Max Error I

11.47 9.73 0.057 0.146 2.65
10.69 15.64 0.075 0.180 3.37
21.69 12.81 0.076 0.157 3.15
14.94 12.07 0.070 0.171 3.17
20.92 16.93 0.090 0.214 4.03
19.11 14.98 0.089 0.183 3.68
12.94 17.50 0.086 0.187 3.66
13.10 11.30 0.061 0.149 2.77
11.72 13.23 0.061 0.103 2.28
20.32 11.06 0.050 0.110 2.15
16.79 13.62 0.065 0.180 3.18
18.68 9.01 0.057 0.109 2.28
15.41 16.51 0.063 0.164 2.97
16.33 10.61 0.062 0.157 2.86
17.79 16.15 0.064 0.128 2.60
14.07 14.60 0.053 0.121 2.31
15.60 13.20 0.058 0.147 2.69

variables that increases cost for large steering angles and fast changes in steering angle.

The results for the two-wheel steering DoE shown in Fig. 4.4 is presented in Table 4.3,

and the results for the four-wheel steering DoE shown in Fig. 4.5 is presented in Table 4.4.

Fig. 4.7 shows the path tracking performance of the best calibrations, based on the

calculated cost index values, from the two- and four-wheel steering tests, i.e., Qd = 20.32

and Qu = 11.06 for two-wheel steering MPC and Qd f = 13.90, Qdr = 17.14,

Qu f = 13.60 and Qur = 14.72 for four-wheel steering MPC.

The JetRacer-4WS test results from the large track show that the four-wheel

steering MPC slightly outperformed the two-wheel steering MPC. For example, the

37

Table 4.4: DoE results for four-wheel steering MPC for the large track.

Qd f Qdr Qu f Qur RMSE Max Error I

14.00 16.00 12.00 14.00 0.053 0.120 2.32
12.50 19.58 11.76 12.83 0.063 0.104 2.33
14.95 15.08 15.75 12.05 0.060 0.140 2.66
17.98 19.90 13.98 17.91 0.073 0.158 3.11
16.87 16.60 12.36 13.54 0.066 0.115 2.51
11.81 16.11 15.53 18.93 0.050 0.101 2.05
17.47 16.88 15.97 19.90 0.062 0.138 2.67
16.05 17.86 12.77 14.25 0.069 0.157 3.02
13.53 18.08 10.68 19.06 0.070 0.178 3.26
12.12 13.68 13.83 14.09 0.070 0.149 2.95
18.21 13.93 17.00 15.29 0.079 0.180 3.46
11.24 18.77 14.23 17.23 0.071 0.152 3.01
14.33 13.12 11.67 16.05 0.063 0.135 2.67
13.16 15.25 15.09 15.58 0.075 0.138 2.93
13.90 17.14 13.60 14.72 0.051 0.096 2.02
10.71 14.63 12.81 19.47 0.072 0.173 3.24
11.12 15.74 10.02 16.17 0.074 0.138 2.91
15.70 19.40 11.00 15.01 0.066 0.156 2.94
18.96 18.57 14.71 12.58 0.080 0.178 3.46
16.62 14.88 12.05 18.23 0.084 0.190 3.65
19.53 17.28 11.26 17.72 0.073 0.158 3.11
19.83 16.01 13.13 17.01 0.076 0.192 3.52
18.45 14.17 10.43 13.18 0.076 0.144 3.01
15.46 13.31 14.77 18.58 0.073 0.151 3.03
10.20 17.49 16.47 13.79 0.064 0.154 2.89
14.53 19.04 16.28 16.77 0.080 0.164 3.30

38

-3 -2 -1 0 1 2 3

p
x
 [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

p
y
 [
m

] four wheel steering

two wheel steering

track

Figure 4.7: Path tracking performance for two- and four-wheel steering MPC systems on
the large track.

39

minimum RMSE achieved by the two- and four-wheel steering systems are identical, so

the four-wheel steering system’s lower cost indexes stem primarily from the 12%

improvement between the two lowest maximum offset values. While these results show

that the four-wheel steering path tracking controller is effective, it is worth noting the

results also show that the improvement over the two-wheel steering controller is

significantly reduced compared to the small track test results. This is due to the decreased

importance of the four-wheel steering system’s superior maneuverability for the larger

radius turns and longer straight sections.

40

CHAPTER FIVE

CASE STUDY: EVENT-TRIGGERED MPC

To further demonstrate the capability of the JetRacer-4WS platform for

cost-effective testing and evaluation of various motion control methods, event-triggered

MPC is demonstrated on the small track. Event-triggered MPC has been explored in

literature [7, 20–27] as an attempt to reduce MPC computation without major degradation

on control performance. One of the drawbacks of relevant literature is the lack of

experimental validation. This chapter implements event-triggered MPC algorithm

from [7] and performs experiment validation using the proposed JetRacer-4WS.

5.1 Event-Triggered MPC Path Following Control

In order to test the JetRacer-4WS platform with event-triggered MPC, the MPC

architecture presented in Chapter Three is modified. To determine if the system should

iterate through the current control sequence or calculate a new control sequence, an

event-trigger variable e is defined as follows:

e =

 1 if Y > σ or k > kmax

0 Otherwise
, (5.1)

The value of e depends on two conditions. The event trigger is set if the current step

number k exceeds a threshold kmax, where kmax must be less than the prediction horizon

length p. The trigger also sets if the vehicle’s displacement from the nearest point in the

desired path Y exceeds a predefined threshold σ .

The event-trigger MPC algorithm implemented is illustrated in Algorithm 5.1 and

Fig. 5.1, which shows how the value of e is used to determine the source of the control

output.

41

Figure 5.1: A representation of the event-triggered MPC algorithm.

42

Algorithm 5.1: Event-Triggered NMPC [7]
1. procedure eNMPC(x, k, Ut1 , Xt1)
2. k← k+1
3. e← computing(5.1)
4. if e = 1 then
5. k← 0
6. (Xt ,Ut)← Solving OCP (3.2)
7. u←Ut(1)
8. Ut1 ←Ut
9. Xt1 ← Xt

10. else
11. u←Ut1(k+1)
12. end
13. return u,k,Ut1 ,Zt1
14. end procedure

5.2 Small Track Test Results

Using the best performing calibrations from the small track two- and four-wheel

steering time-triggered MPC tests, additional results are generated for event-triggered

MPC with varying triggering thresholds (σ). For these tests, the same metrics are used to

determine path following performance, including RMSE, maximum offset, and the cost

index calculated from these values. In addition, relative computational load can be

compared using the triggering frequency, which is the percentage of actions in which the

control system calculates a new control sequence. Table 5.1 and Fig. 5.2 show the results

of the two-wheel steering event-triggered MPC, and Table 5.2 and Fig. 5.3 show the

results of the four-wheel steering event-triggered MPC. Note that the first row of both

tables uses a triggering threshold of zero, which behaves like a time-triggered system. In

most cases, the results confirm the expected trend that increasing the triggering threshold

43

Table 5.1: Small track results for two-wheel steering event triggered MPC.

σ RMSE Max Error I Frequency

0.000 0.067 0.115 2.48 100.0
0.015 0.077 0.129 2.83 91.5
0.025 0.087 0.176 3.48 89.6
0.035 0.145 0.259 5.49 84.9

Table 5.2: Small track results for four-wheel steering event triggered MPC.

σ RMSE Max Error I Frequency

0.000 0.048 0.120 2.14 100.0
0.015 0.060 0.105 2.25 91.5
0.025 0.072 0.110 2.53 90.0
0.035 0.066 0.133 2.64 87.7

will reduce computational load (lower triggering frequency) while negatively affecting

path following performance metrics (higher RMSE, maximum offset, and cost index).

5.3 Large Track Test Results

Two- and four-wheel steering event-triggered MPC test results are also provided

using the large track. Table 5.3 and Fig. 5.4 show the results of the two-wheel steering

event-triggered MPC, and Table 5.4 and Fig. 5.5 show the results of the four-wheel

steering event-triggered MPC. The results continue to show that four-wheel steering MPC

provides a performance improvement over two-wheel steering MPC, and implementing

event-triggering provides the ability to reduce computational load in exchange for reduced

performance.

44

-1.5 -1 -0.5 0 0.5 1 1.5

p
x
 [m]

-1

-0.5

0

0.5

1

p
y
 [
m

] 0.000 Threshold

0.015 Threshold

track

Figure 5.2: Small track two-wheel steering path tracking performance for event-triggered
MPC.

45

-1.5 -1 -0.5 0 0.5 1 1.5

p
x
 [m]

-1

-0.5

0

0.5

1

p
y
 [
m

] 0.000 Threshold

0.015 Threshold

track

Figure 5.3: Small track four-wheel steering path tracking performance for event-triggered
MPC.

46

Table 5.3: Large track results for two-wheel steering event triggered MPC.

σ RMSE Max Error I Frequency

0.000 0.039 0.110 2.34 100.0
0.015 0.088 0.192 4.62 92.2
0.025 0.095 0.174 4.58 93.4
0.035 0.123 0.268 6.44 90.1

Remark 5 For the two-wheel steering test, the cost index of the 0.015 meter threshold test

was similar to the 0.025 meter threshold test, which does not exactly align with the

expected trend of gradually decreasing performance as the triggering threshold increases.

In addition, the triggering frequencies for the non-zero triggering thresholds were similar

instead of gradually decreasing. While this does not align with the expectation that a

larger triggering threshold would require recalculation of the control sequence less

frequently, the impact of the reduced performance can counteract this trend, resulting in

the observed behavior. Also, the presence of random error in a physical vehicle system

can produce unexpected results. In the future, multiple tests will be run to eliminate the

impact of noise. The performance of the event-triggered MPC systems could likely be

improved by reducing the time step value over the prediction horizon, although this would

require recalibration of the cost function weights to approach optimal performance.

47

Table 5.4: Large track results for four-wheel steering event triggered MPC.

σ RMSE Max Error I Frequency

0.000 0.037 0.086 2.00 100.0
0.015 0.048 0.107 2.53 80.6
0.025 0.068 0.133 3.39 83.6
0.035 0.096 0.203 4.95 82.5

-3 -2 -1 0 1 2 3

p
x
 [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

p
y
 [
m

] 0.000 Threshold

0.015 Threshold

track

Figure 5.4: Large track two-wheel steering path tracking performance for event-triggered
MPC.

48

-3 -2 -1 0 1 2 3

p
x
 [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

p
y
 [
m

] 0.000 Threshold

0.015 Threshold

track

Figure 5.5: Large track four-wheel steering path tracking performance for event-triggered
MPC.

49

CHAPTER SIX

CONCLUSION

This paper presents the JetRacer-4WS: a scale vehicle platform with four-wheel

steering capability for testing autonomous vehicle motion controls. Introducing a scale

vehicle into the controls development process is meant to reduce the time and expense

associated with instrumenting and testing using a full-size vehicle. The JetRacer-4WS

platform provides advantages over existing scale vehicle platforms for MPC path tracking

control research based on its four-wheel steering capability, as well as its isolation of the

path tracking portion of AV operation by eliminating onboard environment detection and

real-time path planning. Model predictive control for both two- and four-wheel steering

are implemented using a kinematic vehicle model of lateral motion. Test sequences of cost

function tuning weights are generated using a latin hypercube-based Design of

Experiments method to intelligently fill the design spaces. The tests are run for two- and

four-wheel steering time-triggered MPC systems on a small and large track, and the

results show that the four-wheel steering system significantly outperforms the two-wheel

system in driving scenarios where its increased maneuverability provides a distinct

advantage. In less extreme driving scenarios, the test results from the large track show that

the four-wheel steering system performs only slightly better than the two-wheel steering

system, as vehicle maneuverability is a less important factor in the path tracking control

performance. Additional testing on the small track with event-triggered MPC shows that

the JetRacer-4WS platform can be used to evaluate the effect of variations in the

implemented control system. As the triggering threshold is increased, the computational

load of the MPC system decreases, but the path tracking performance is reduced. Future

work includes (1) testing path tracking performance of additional motion control methods,

50

(2) continuing to find and reduce sources of error contributing to path tracking error, and

(3) modifying the scale vehicle platform positioning system to allow for even higher speed

testing over a larger area with more variety of driving maneuvers.

51

REFERENCES

[1] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle
models for autonomous driving control design,” in 2015 IEEE Intelligent Vehicles
Symposium, (Seoul, Korea), pp. 1094–1099, June 28–July 1, 2015.

[2] S. Di Cairano, H. E. Tseng, D. Bernardini, and A. Bemporad, “Vehicle yaw stability
control by coordinated active front steering and differential braking in the tire
sideslip angles domain,” IEEE Trans. Control Syst. Tech., vol. 21, no. 4,
pp. 1236–1248, 2012.

[3] R. Yu, H. Guo, Z. Sun, and H. Chen, “MPC-based regional path tracking controller
design for autonomous ground vehicles,” in 2015 IEEE International Conference on
Systems, Man, and Cybernetics, pp. 2510–2515, IEEE, 2015.

[4] X. Sun, Y. Zhang, Y. Cai, and X. Tian, “Compensated deadbeat predictive current
control considering disturbance and vsi nonlinearity for in-wheel pmsms,”
IEEE/ASME Transactions on Mechatronics, 2022.

[5] I. Jammeli, A. Chemori, H. Moon, S. Elloumi, and S. Mohammed, “An assistive
explicit model predictive control framework for a knee rehabilitation exoskeleton,”
IEEE/ASME Transactions on Mechatronics, 2021.

[6] Q. Gong, J. Xu, J. Ye, H. Feng, and A. Shen, “Nonlinear model predictive control for
premixed turbocharged natural gas engine,” IEEE/ASME Transactions on
Mechatronics, 2021.

[7] J. Chen and Z. Yi, “Comparison of event-triggered model predictive control for
autonomous vehicle path tracking,” in 2021 IEEE Conference on Control Technology
and Applications (CCTA), pp. 808–813, IEEE, 2021.

[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open
urban driving simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.

[9] M. Kim, D. Lee, J. Ahn, M. Kim, and J. Park, “Model predictive control method for
autonomous vehicles using time-varying and non-uniformly spaced horizon,” IEEE
Access, vol. 9, pp. 86475–86487, 2021.

[10] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F. Chen, C. Choi,
J. Dusek, Y. Fang, D. Hoehener, S.-Y. Liu, M. Novitzky, I. F. Okuyama, J. Pazis,
G. Rosman, V. Varricchio, H.-C. Wang, D. Yershov, H. Zhao, M. Benjamin, C. Carr,
M. Zuber, S. Karaman, E. Frazzoli, D. Del Vecchio, D. Rus, J. How, J. Leonard, and
A. Censi, “Duckietown: An open, inexpensive and flexible platform for autonomy

52

education and research,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1497–1504, 2017.

[11] S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra, O. Guldner,
M. Mohamoud, B. Plancher, R. Shin, and J. Vivilecchia, “Project-based,
collaborative, algorithmic robotics for high school students: Programming
self-driving race cars at mit,” in 2017 IEEE Integrated STEM Education Conference
(ISEC), pp. 195–203, 2017.

[12] X. Wu and A. Eskandarian, “An improved small-scale connected autonomous
vehicle platform,” in Dynamic Systems and Control Conference, vol. 59148,
p. V001T04A003, 2019.

[13] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant, R. Mangharam,
D. Agarwal, M. Behl, P. Burgio, et al., “F1/10: An open-source autonomous
cyber-physical platform,” arXiv preprint arXiv:1901.08567, 2019.

[14] A. Seth, A. James, and S. C. Mukhopadhyay, “1/10th scale autonomous vehicle
based on convolutional neural network,” Int. J. Smart Sens. Intell. Syst, vol. 13, no. 1,
pp. 1–17, 2020.

[15] “Jetracer.” https://github.com/NVIDIA-AI-IOT/jetracer, 2019.

[16] M. Robotics. Accessed Apr. 11, 2022.

[17] J.-A. Yang and C.-H. Kuo, “Integrating vehicle positioning and path tracking
practices for an autonomous vehicle prototype in campus environment,” Electronics,
vol. 10, no. 21, 2021.

[18] S. Park, S. Ryu, J. Lim, and Y.-S. Lee, “A real-time high-speed autonomous driving
based on a low-cost rtk-gps,” Journal of Real-Time Image Processing, vol. 18, 08
2021.

[19] “Bill of materials.” https://f1tenth.org/build.html.

[20] F. D. Brunner, W. Heemels, and F. Allgöwer, “Robust event-triggered MPC with
guaranteed asymptotic bound and average sampling rate,” IEEE Transactions on
Automatic Control, vol. 62, no. 11, pp. 5694–5709, 2017.

[21] H. Li and Y. Shi, “Event-triggered robust model predictive control of
continuous-time nonlinear systems,” Automatica, vol. 50, no. 5, pp. 1507–1513,
2014.

[22] S. Huang and J. Chen, “Event-triggered model predictive control for autonomous
vehicle with rear steering,” SAE Technical Paper, no. 2022-01-0877, 2022.

53

https://github.com/NVIDIA-AI-IOT/jetracer

[23] R. Badawi and J. Chen, “Enhancing enumeration-based model predictive control for
dc-dc boost converter with event-triggered control,” in 2022 European Control
Conference, (London, UK), July 12–15, 2022.

[24] H. Li, W. Yan, and Y. Shi, “Triggering and control codesign in self-triggered model
predictive control of constrained systems: With guaranteed performance,” IEEE
Transactions on Automatic Control, vol. 63, no. 11, pp. 4008–4015, 2018.

[25] C. Liu, H. Li, Y. Shi, and D. Xu, “Codesign of event trigger and feedback policy in
robust model predictive control,” IEEE Transactions on Automatic Control, vol. 65,
no. 1, pp. 302–309, 2019.

[26] J. Chen, X. Meng, and Z. Li, “Reinforcement learning-based event-triggered model
predictive control for autonomous vehicle path following,” in 2022 American
Control Conference, (Atlanta, GA), June 8–10, 2022.

[27] R. Badawi and J. Chen, “Performance evaluation of event-triggered model predictive
control for boost converter,” in 2022 IEEE Vehicle Power and Propulsion
Conference, (Merced, CA), November 1–4, 2022.

[28] R. Rajamani, Vehicle Dynamics and Control. Mechanical Engineering Series,
Springer US, 2012.

[29] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active
steering control for autonomous vehicle systems,” IEEE Transactions on Control
Systems Technology, vol. 15, no. 3, pp. 566–580, 2007.

[30] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “MPC-based approach
to active steering for autonomous vehicle systems,” International Journal of Vehicle
Autonomous Systems, vol. 3, pp. 265–291, 2005.

[31] F. W. Isen, “Dsp for matlab and labview i: Fundamentals of discrete signal
processing,” in Synthesis Lectures on Signal Processing, pp. 169–188, 2009.

[32] F. A. C. Viana, “A tutorial on latin hypercube design of experiments,” Quality and
Reliability Engineering International, vol. 32, pp. 1975 – 1985, 2016.

[33] I. Besselink, T. Veldhuizen, and H. Nijmeijer, “Improving yaw dynamics by
feedforward rear wheel steering,” in 2008 IEEE Intelligent Vehicles Symposium,
pp. 246–250, 2008.

54

	ACKNOWLEDGMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	2 SCALE VEHICLE DESIGN
	3 MPC-BASED PATH FOLLOWING
	3.1 Vehicle Dynamic Model
	3.2 Optimal Control Problem
	3.3 Delay Compensation
	3.4 PID Velocity Control
	3.5 Track Generation

	4 CASE STUDY: CALIBRATION WITH DOE
	4.1 Calibration Process
	4.2 Small Track Test Results
	4.3 Large Track Test Results

	5 CASE STUDY: EVENT-TRIGGERED MPC
	5.1 Event-Triggered MPC Path Following Control
	5.2 Small Track Test Results
	5.3 Large Track Test Results

	6 CONCLUSION
	REFERENCES

